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ABSTRACT

IT HAS RECENTLY been established that the existence of one-component surface waves is compatibie with
material symmetry and that they can occur even in transversely isotropic materials. This paper deals
primarily with the existence of one-component surface waves in materials with a plane of symmetry normal
to the direction of propagation, with particular aitention given to transversely isotropic materials in this
class. Numerical results indicate that there are stable transversely isotropic materials for which one-
component surface waves exist for any orientation of the symmelry axis relative (o the free surface. A
separate numerical search shows that the one-component surface wave is incompatible with cubic symmetry.

1. INTRODUCTION

A RAYLEIGH surface wave in an isotropic elastic solid can be thought of as a linear
combination of evanescent longitudinal and transverse waves, each decaying into the
solid and with the same speed of propagation along the surface. In this sense a
Rayleigh wave is a two-component wave. In general, a surface wave propagating in
a given direction on the free surface of an anisotropic material is composed of all
three components, although in some circumstances and under certain assumptions
about the symmetry of the material, the wave may consist of fewer than three com-
ponents. Thus, sourface waves polarized in a plane of material symmetry are two-
component waves (CHADWICK, [990). Recently, BARNETT et al. (1991) derived
conditions under which a one-component surface wave can exist in an arbitrarily
anisotropic material. The conditions amount to constraints upon the moduli, and are
clearly not met by isotropic solids. However, it is a remarkable fact that moduli can
be found which correspond to stable ¢lastic materials and also satisfy the constraints
of BARNETT et al, (1991). The first instance of such a material was provided by
BArRNETT and Crabpwick (1991) and consists of a trickinic family of materials with
no inherent symmetry.

Although their existence is precluded in isotropic solids, it is natural to enquire
whether one-component surface waves can exist in materials with symmetry, This
question was answered in'the affirmative by CHapwiIcK (1992) who demonstrated
that there are stable transversely isotropic materials with this property. In addition
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to providing a specific example of such a material, Chadwick also proved some
negative results which have a bearing on the present study. Thus, one-component
surface waves cannot exist if either the free surface or the planie spanned by the normal
to the free surface and the direction of propagation is a plane of symmetry.

In this paper we explore in some detail the existence iof one-component surface
waves in materials with symmetry. Following some definitions in Section 2, the five
existence conditions of BARNETT et al. (1991) are summarized in Section 3. Most of
the paper is devoted to materials with a plane of symmetry normal to the propagation
direction, for which two of the five conditions are automatically satisfied. Further
simplification arises from assuming that the material is of orthorhombic or higher
symmetry, but such that the free surface is not a plane of symmetry. The procedure
adopted here for discussing this class of materials is defined in Section 5 and is applied
to transversely isotropic materials in Section 6. An attempt to classify the range
of transversely isotropic materials which support one-component surface waves is
discussed in that section. Finally, in Section 7, some numerical results are discussed
which indicate that one-component surface waves cannot exist in materials with cubic
symmefry.

2. PRELIMINARIES

The fundamental measure of the anisotropy are the 21 elements of the fourth-order
stiffness tensor, C, defined in some frame with coordinates x and an associated
right-handed triad of orthonormal direction vectors {ei,e5,e;3}. The clements of the
associated 6 x 6 stiffness matrix ¢ are defined by ¢;; = Cj,, where capital and lower
case subscripts run from one to six and one to three, respectively, with the cor-
respondence [ if defined by 1,2,3,4,5,611,22,33,23,13,12. The 6x6
compliance matrix s is the inverse of ¢. The usual symmetries are assumed,
Cijgr = Cyyy = Ciyy, and the materials are assumed to be stable, implying, among
other things, that the diagonal elements of s and ¢ are positive,

We are concerned here with one-component surface waves in materials with syni-
metry, for which it is necessary to distinguish between the surface wave frame
{e\,e;,¢,} and the reference frame of the material symmetry. Let § be the matrix of
compliances in the reference frame % with basis {&,,¢,, €;}. The coordinates transform
from one system to the other according to x = aXa”, where a is the 3 x 3 unitary
transformation matrix, while the compliances transform according to the equation

s = N&NT, 2.1

where N is a 6 x 6 matrix, defined by AuLD (1973), and discussed later in the appro-
priate sections. We define for later use the reduced compliances (TING, 1988)
8, = 5,y — 1350 (2.2)

. b
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and the Poisson’s ratios,
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The Poisson’s ratios in the reference frame are denoted by v,

3, THE ONE-COMPONENT SURFACE WAVE

The outward normal to the free surface of the anisotropic material is e,, and the
propagation direction of the surface wave is e,. BARNETT e al. (1991) proved that
the following conditions are both necessary and sufficient for the existence of a one-
component surface wave

§ia=815=5=0, §,=45s;, (3.1)
and
(§16_§45)2+4§]4§56 <0. (3.2)
This concise form of the conditions in terms of the reduced compliances is due to
TingG (1990, and is based directly upon the work of BARNETT and Crapwick (1991),
The one-component surface wave may be represented by the veloeity vector

u=a eih’(cl'x-i-pcz'x-—v\{), (33)

where k is arbitrary and the speed of propagation is given by

ppf = STI}: (34)

where p is the mass density per unit volume. The complex-valued parameter p deter-
mines the rate of decay in the solid e,-x < 0, and is

P =450 [$16+5us —i{—(F6—845)* 4514855} 42, (3.5)
The polarization vector is (not normalized) e
S:SG \{l‘lé
a=-—e +\{p—— le,. 36
AR I (p Sll) ’ (3-6)

These resuits are taken directly from the papers of BARNETT ef af. (1991) and BARNETT
and CHapwIcK (1991), and use the concise notation of TING (1988).

The one-component surface wave obviously has zero traction on the free surface
e, X = 0. However, since the dependence upon depth is simple and exponential, the
traction is zero at all depths. Hence, the wave may exist in a slab of arbitrary thickness
with free faces both normal to e,. The particle motion at all depths is in the plane
parallel to the free surface and is clockwise when viewed from above if §5, > 0, and
counterclockwise if §55 < 0. The particle motion describes an elliptical path in the
plane parallel to the free surface. The axes of the ellipse are generally not aligned in
any particular direction, except when §,, = §,., in which case the principal axes are
aligned with e; and e,, The polarization vector is an example of a bivector and the
one-component surface wave is an inflomogeneous plane wave. The general theory of
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bivectors and inhomogeneous plane waves is described in detail by Havgs (1984), and
the reader is referred to this paper for details. Briefly, a bivector is a complex-valued
vector in three-dimensions, with an associated ellipse defined by the real and imaginary
parts. Thus, if b, and b, are real vectors, the ellipse agsociated with the bivector
b +ib, is in the plane spanned by the real vectors and such that these vectors are
conjugate radii of the ellipse. A useful alternative form for the polarization is as
follows, again not normalized,

e]"“‘iao ei"f'e}, '5156 >O, 37
4= L ) )
e +igpe ey, §50 <0, 37
where
e = kit l/2>0 Sinqﬁ_fﬂ?___ﬁé _E<¢<f (3.8)
0 856 ’ aodss 2 2 :

The exact orientation and aspect ratio of the polarization ellipse may be found using
the methods outlined by Haves (1984).

The energy flux at any point is in the plane of polarization, although it is not
necessarily aligned with the propagation direction e,. The cnergy propagation velocity
is the velocity vector associated with the energy flux, and may be written as

€ =ve;+cje,, (3.9)

where the equality e, ¢ = v, follows from a general result of HavES (1984), The
component ¢; can be related to the ratio of the mean flux in the e;-direction over a
cycle, to the mean energy density. The energy flux component is —{(out +oful),
where the + denotes the real part. Taking the average over a cycle we find that

—Re (U‘i3ug|k+0'33lf§<)

- N
PGt i) (3.10)

Cy =
where the * denotes the complex conjugate. This may be simplified using the following
identities,

G = = POy, O3 = —puits, 8130+ 53503+ 813033 = 0, (3.11)

the first two of which follow from the equations of motion in the ¢,;- and e,-directions,
respectively, while the third is a consequence of the fact that the strain componcnt s,
is identically zero for one-component surface waves. Eliminating the stresses from
(3.10) using (3.11), and then substituting from (3.3) and (3.6) we find that

! ( S!S)(§45_'§IG) S35 §14 ]
=]l =) 42 T U 312
? [2 F33/ \¥s6 — 814 533 (§56—514) ! ( )
Finally, we note that some idea of the nature of the materials which might exhibit
one-component surface waves can be gained from rewriting 3.1), as
Vipt vy, = 0. (3.13)

Thus, at least one of the Poisson’s ratios musi be negative or zero.
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4. PROPAGATION NORMAL TO A PLANE OF SYMMETRY

If the material is presumed to possess monoclinic symmetry with e, normal to the
plane of symmetry, then the compliance matrix has the form

fSll S12 513 S 0O 0 W
Syy 832 S23 824 O 0
§= < Si3 823 S33 S O 0 L 4.1
S1a S24 S3q 844 O 0
0 0 0 0 555 $s¢
L 0 0 0 0 536 566 |

Hence, §,5 = §;5 = 0 and the remaining conditions in (3.1) become

§12=0, §;=35ss. (4.2)
Also, §, = 845 = 0, and (3.2) reduces to the incquality
$rassg < Q. (4.3)
The polarization becomes
a = 5555565 +pes, (4.4)

where now p is purely imaginary,
p= “53551(”-§14556)if2- {4.5)

The wave speed reduces to pr? = 535, which can be related to the speed of an SH
wave on the elliptical SH sheet of the slowness surface. Specifically, the SH wave is
polarized in the e,-direction, with slowness vector in the direction (ss./555)€,+e;, and
corresponds to the unique wave which has energy propagation velocity in the direction
¢, of magnitude v,. This connection was first noted by CHapWICK (1992), to whom
we refer for further discussion. The form of the polarization in (4.4} indicates. that
the particle motion is efliptical in the planes parallel to the surface, with major and
minor axes aligned with the coordinate axes, and the sense of motion is clockwise
viewed from above if 55 > 0. We note, from (3.12), that the energy propagation
velocity is codirectional with the phase velocity, and is of the same magnitude, v,.

It should be noted that there exists a preferred frame for monoclinic materials
which is obtained by rotation about the normal to the plane of symmetry and within
which both s, and ¢;5¢ vanish (Muir, 1990). The existence of the one-component
surface wave requires that ss5¢ be non-zero, and hence it cannot exist if these axes
coincide with the directions e, and e,. Similarly, it cannot exist if the SH slowness
sheet is circular rather than strictly elliptical.

5. ROTATED ORTHORHOMBIC MATERIALS
N .
; i . . . .
We next consider materials which are formally of the type considered in the previous
section, but possess a symmetry higher than monoclinic. The formal equivalence ariscs
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from rotation of the principal axes relative to those of the surface wave frame. The
most general case is that of an orthorhombic material with principal axes {€,,8,,8}
which are related to the surface wave frame {e,e,,e5} by rotation about the coinci-
dent € = e, direction through an angle 8,0 < < 7/2. The resulis of CHADWICK (1992)
exclude consideration of the limiting angles § = 0, for whi¢h the frames coincide, and
8 = /2, for which &, = e, and &, = —e,. The compliance matrix s in the surface wave

frame can be found by applying (2.1} with

(5, 52 5, 0 0 0
§y3 8y 5 0 0 0
§ = _J ‘S-'ll ‘5723- 533 0 0 O L (5‘1)
0 0 5 0 0
6 0 0 0 55 0
L 0 0 0 0 0 Ss6 |
and
(1 0 0 0 0 0 |
0 cos®0  sin*@  cos@sin® 0 0
- . - .
N = 4 0 sin“@ c‘os g cos fsin @ 0 0 . (5.2)
0 -sin 20 sin 20 cos 24 0 0
0 0 0 0 cos @  —sgin@
0 0 0 0 sin @ cosGJ

By computing the elements sy, 5,5, 5,3, 523, §3; and $ss, the two conditions (4.2)
become

4 cos 20{(3“’12 05'.23 ’+‘C052 0.633).8-\ B (Si112 0.3722 +C032 0523)5]3]

+Sin2 20(§|2+§]3)§44 = 0,

(§11—c0s? 0fs5 —sin® 05) (sin® 055 +2 sin® 0 cos? 65,4 +cos? 0y,

+sin® 0 cos? 05,4) — (sin? 05,5 +cos? 05,3)> = 0. (5.3)

The inequality (4.3) follows after computing the additional compliances §,,, 34 and

S35, A5

[(sin’® 05,5 +cos? 0533+ 1sin? 05,,)5,,
— (sin® 05,2+ c0s? 05,3 + 3c08? 05,4)5,3](Fss —Ses) > 0. (5.4)

Insummary, (5.3) and (5.4) are the necessary and sufficient conditions for the existence

of a one-component surface wave.
For instance, if 0 = n/4, using the fact that both (,,+§;,+25,) and §,, are

positive, the conditions (5.3) reduce to
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Fiatdis =0, 5 = §{(Fs5+Fes) (5.5)
and the inequality (5.4) becomes
(Fo5— 5560512 > 0. {5.6)
When (5.5} and (5.6) are satisfied, the speed and decay are
pot =570, p= — 157 [(F55 = 546)512] 72 .7
The unnormalized polarization direction is simply
a = pe, 42V e, (5.8}

and the motion is clockwise if 7,, < 0.
For angles other than n/4 the inequality (5.4) can be simplified by multiplying by
cos 20 and using (5.3), and the fact that §,, > 0, to give

(Sin2 0512+C0$2 0'5713)(555*566) cos 26 < 0. (5.9)
This is even simpler when expressed in terms of the rotated compliances,
S11856 €08 20 < 0, (5.10)

The conditions for the existence of a one-component surface wave cannot be met
by specializing the orthorhombic material to a cubic material. This result was found
by CHADWICK (1991) and follows from the fact that §5s = §,, for a cubic material and
hence 555 = 0 for any rotation. Neither can waves exist if the material is transversely
isotropic with the symmetry axis coincident with the propagation direction. However,
it is possible to have one-component surface waves in transversely isotropic materials
when the symmetry axis is in some other direction. In the next section we consider the
particular case of transverse isotropy with the axis perpendicular to the propagation
direction.

6. ROTATED TRANSVERSELY ISOTROPIC MATERIALS

The procedure of the previous section is now applied to a transversely isotropic
material, with principal axis &; in the orthonormal frame {€,,&,,6:}. The compliance
matrix is

(51 5, &5 .0 0 0o |
Si12 5y s .07 0
5= 453 S 5y 00 0 4 6.1
0 0 §,.0 0
0 0 0 0 3, 0
00 0 0 0 251, ~512) |

and the conditions required for positive definiteness are
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S0 >0, §),-52>0, (Fy+512)83~33 >0, §4>0. (6.2)

6.1. The case of 8 = nf4 N
We first consider the case 8 = =/4, for which the conditions (5.5) become
| §12+5—13."—"0: Saq = 25, 6.3)

The remaining condition (5.6) becomes, using (6.1}, (6.1),, and the definition (2.3) of
the Poisson’s ratios,

Tz < — 14 (6.4)
Note that the stability condition (6.2}, requires
h 1 < .‘FIZ' (6.5)

The speed and polarization are the same as those of (5.7), and (5.8), whereas the
decay, given by (5.7),, simplifies to

1 H P
P = i2ﬁ,2(1 + m) . (6.6)

A one parameter family of materials which is stable and meets the conditions (6.3)
and (6.4) is defined and discussed by CHADWICK (1992). Translated into the present
compliance notation, the material can be parameterized in terms of ¥,, as

Fig= —8§13 =53 =4es = —¥25. (6.7)

where the Poisson’s ratio can take any value consistent with (6.4) and (6.5), i.e.
—1 < ¥,,— 4. The parameter used by CHADWICK (1992) is 7 = —3$(1+v3').

6.2. Angles other than n/4

For a given value of § # /4, the conditions (5.3) and (5.9) for the existence of a
one-component surface wave can be expressed in terms of the transversely isotropic
moduli as

4 cos 20{(5 sin® 0+ 545 cos? 0)F,, — (¥, sin? O4-§,; cos? B)§,;)
4§53 sin? 20 =0, (6.8)
{51, o8 20425, sin? 0 —544 cos? 01[5,, sin® 6555 cos® G4 § (544 + 2§,5) sin? 20]
—(51,sin> 045, c08 B =0 (6.9)
and
(§12 sin? 04§15 cos? 0)(§,, ~§,5~— $5,4) cos 20 > 0. (6.10)

As an example, consider the compliance matrix



One-component surface waves £577

(241 «+1 0 0 0 0

T+l 2141 0 0 0 0
smeviy 00 03 000 6.11)

0 0 020 0f

0 0 00 2 0

L0 0 00 0 21|

where c isan arbitrary positive stiffness. This family of materials satisfies the conditions
(6.8), (6.9) and (6.10) for the specific case of # = n/3, and is stable for 0 < t < 1. The
wave parameters are

2 —2i 3
e s G am(imt)”zg~el—~ic3. (6.12)

1+37 2

6.3. Some numerical explorations

The example provided by Cuapwick (1992) for 0 = n/4 and the previous example
for 0 = =3 suggest that there is a Jarge class of transversely isotropic materials which
can support a one-component surface wave. In order to appreciate the extent of the
range of materials which exhibit this phenomenon, a numerical search was performed
to classify those materials for which the axis of symmetry is perpendicular to the
direction of propagation, i.c. the class of rotated TI materials considered above. Such
materials must satisfy the three conditions (6.8), (6.9) and (6.10}, and the stability
requirements (6.2).

The task of searching over this multi-dimensional space can be simplified in the
following manner. First rewrite (6.8) as -

$44 _ 4 cos 20
§§l - (\7|2 "f‘ﬁ)g) sin2 20

[(7)247)3) sin® 04 (¥, sin? §--79,; cos® )75 —7,,4],
(6.13)
where

g = sin? #+ %—jv?-cosz 6. {6.14)

Then, using this relation to eliminate §,, from (6.9), we obtain
cos 207,,9° — (2 sin* 09, —cos? 0 cos 2071, +cos? 07,,7,5)g
— (¥1, sin® 0+ 71, cos® )(¥,, sin? 0+¥)5 cos? §) = 0. (6.15)

The inequality (6.10) becomes

(l + 7, —-\.%)(ﬁ,z sin® 0+7,; cos? §) cos 26 < 0. (6.16)
B

For any given values of 4, ¥, and ¥,,, (6.15) can be solved to give two values for g,
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Fi16. . The shaded regions show the ranges of possible values for the Poisson’s ratios v, and ¥, for which

a transversely isotropic material may support one-component surface waves with the axis of symmetry

perpendicular to the propagation direction and at an angle & = 20° with respect (o the free surface. The
numerical search was performed over the region — 1t < ¥,, < 4, —6 < ¥, < 4.

each of which defines possible values of the parameter 3/&:1, and corresponding
possible values of §,,4/5,, follow directly from (6.13). We may assume §,, > 0 and
V12> —1, so that (6.2}, and (6.2), arc automatically satisfied. It then remains to
check whether or not the parameters satisly the three remaining inequalities: (6.2),,
(6.2), and (6.16).

Based upon this algorithm, a computer program was written to perform a two-
dimensional search over pairs (¥;,, 7,,) with 7, > —1, for given values of & in the
range O-n/2. The results indicate that there are continuous ranges of (¥,,, ¥,3) and 8
for which one-component surface waves exist. Some of the numerical results are
summarized in Figs 1-5, each of which shows the range in the two-dimensional space
of (¥4, 73} for different values of 8. At 8 = 20° there are two distinct regions, for
—1 < ¥,; <0and ¥, > 1. The latter region is present for ali angles less than =/4, as

8 = 40°

FiG. 2. The same as Fig. 1 but with ¢ = 40°, and for the search region —1 < 7, <4, ~4 <V ; < 6.
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8 =44

FiG. 3. The same as Fig. | but with 0 = 44°, and —4 < #,; < 4.
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illustrated in Fig. 2 for instance, but it disappears for n/4 < 0 < /2. There is an
abrupt transition at 6 = =n/4, illustrated in Figs 3 and 4. The region for —1 < 9,;, <0
stiil exists beyond this angle, but its extent gradually diminishes as @ increases, until
it vanishes at n/2. Figure 5 shows the range for 8 = n/3,:and it can be seen that the
materials defined by (6.11) fall within this region. Notice that the small region of
positive ¥, in Fig. 1 gradually increases with 0, as can be seen in Figs 2 and 3. The
numerical results also show that there is no transversely isotropic material in this class
with 7,, between zero and unity, and that at least one of the two Poisson’s ratio values
¥, and ¥,, must always be negative.

7. MATERIALS WITH CUBIC SYMMETRY

It was noted previously in Section 5 that one-component surface waves cannot exist
if we specialize the rotational procedure to materials with cubic symmetry (CHADWICK,
1992). Therefore, if such waves are to be found in cubic materials none of the cube
axes can be coincident with the surface wave axes. In fact, it would seem very unlikely
that any stable cubic material can satisfy the requirements (3.1} and (3.2). In order to
prove the conjecture of nonexistence one must consider all possible three-dimensional
rotations of the cube axes relative to the surface frame. This presents formidable obstacles
to any attempt at an analytical answer to the question. Here we will adopt the simpler,
more expedient, route of performing a numerical search over the {ull space of possible
cubic malerials.

The numerical search was performed in the following manner. Any cubic material
may be defined by three independent compliances, §,,, §1; and §44,

(5, 512 §. 0 0 0]
Sia §1i §, 00 0
§=<§|2 S12. 514 0 0 0 . (7.1)
0 0 f40 O 0
0 0 0 0 &4 0
k0 0 0 0 0 s'MJ

The compliance, and hence the stiffness, is positive definite if and only if
Fle>0, S>>0, —1<i,<i (7.2)

Two separate searches were performed. In the first §;, was set to unity, while 44 and
V., were allowed to vary such that 0 < §,, < 1 and 1 < ¥, < 4, In the second search
5,4 was fixed at unity and §,, and v, were varied, with the same range for ¥,, and
0 < &, < 1. In cach case the compliance matrix relative to the surface wave frame
was computed vsing (2.1} and the general form of the transformation matrix (AuLn,
1973)
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N =
a?, a3 aj) 2ay;ay, 2a3,ay, a4,
at, a3, ai, 2ay,as, 2a5,a,, 2a,,a,,
ais a3, ais 2a;3a3, 2azza; 2a13a;5

A12@y3  A2833 33033 A3yt apadss Q12433+ Aadsy 412823+ 41380
dz @y a3y dsadyy Ay dyz+doads) Qa8 +dgdsy Qsdy a1 ds

@ysdyy  dpnyy O30z Ay +ands; G @n+a,dy 4)dx+a),d);

(7.3)

Arbitrary rotations were considered using three Eulerian angles, (0, ®,1), as defined
in Morse and FESHBACH (1953). Because of the cubic symmetry, it was only necessary
to search over the cube 0 < 8, O,y < n/2.

Each search was therefore over a five-dimensional box, and at every point in this
space the value of the parameter [see (3.1)]

A= 18 1H18 s+ 825+ 1811 855} (7.4)

was evaluated and its minimum over all rotations was recorded for each value of the
material parameters considered. The sign of the left member of (3.2) was also recorded
at each minimum. The searches were computed using 30 points in each of the five
dimensions. At no point was it found that the left member of (3.2) was negative at a
minimum of 1. Programs were also run which found the minimum of A over all
possible materials for each rotation, and in some cases it was found that the left
member of (3.2) became negative at a minimum of A, but the latter always exceeded
0.12 while the former never went below — 1077 in value at these points. Based upon
these findings, we conclude that one-component surface waves cannot exist in stable
materials with cubic symmetry.
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