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An interesting and useful analogy can be drawn between the equations of static poroelasticity 
and the equations of thermoelasticity including entropy. The correspondence is of 
practical use in determining the effective parameters in an inhomogeneous poroelastic medium 
using known results from the literature on the effective thermal expansion coefficient and 
the effective heat capacity of a disordered thermoelastic continuum. 

I. INTRODUCTION 

The similarity between the equations of poroelasticity 
for a fluid saturated porous medium and the equations of 
thermoelasticity has been noted many times in the litera- 
ture. Indeed, Biot was intimately aware of the connection 
having made fundamental contributions in both fields; in 
particular he is credited with the first consistent develop- 
ment of a dynamic theory of poroelasticity (see Ref. 1 for 
a review). The correspondence between the theories is par- 
ticularly useful in that there appears to be a more substan- 
tial literature on problems in thermoelasticity, and many of 
the available results can be directly translated into the 
realm of poroelasticity. For instance, Bonnet2 used the 
equivalence to draw upon known results in the thermoelas- 
tic literature to obtain explicit and simple expressions for 
the fundamental point source solution in two-dimensional 
(2D) and 3D dynamic poroelasticity. More recently, Ber- 
ryman and Milton3 noted that the question of determining 
one of the coupling parameters in the poroelastic constitu- 
tive equations for a composite medium is completely anal- 
ogous to the problem of finding the coefficient of thermal 
expansion in a composite material, for which there are 
several applicable results already known. The relation be- 
tween solutions of either theory is also discussed by Chan- 
drasekharaiah and Cowin. 

The connection between the parameters in the static 
equations of the two theories is explored in this paper. By 
considering the theory of thermoelasticity which includes 
entropy as a field variable it is possible to make a complete 
correspondence between the theories. The equivalence 
means that results for the effective heat capacity of a com- 
posite material have direct implications for one of the mod- 
uli in the Biot theory, namely M. This connection com- 
pletes the correspondence noted by Berryman and Milton3 

II. THE EQUATIONS OF STATIC POROELASTICITY 

We shall follow the notation of Biot from his 1962 
paper’ because, although it is not his first work in the area 
by any means, it does provide a concise review of the the- 
ory for both static and dynamic deformation, although dy- 
namic effects are not considered here. The fundamental 
field variables for static deformation are the bulk stress r, 
the bulk strain e, the pore-fluid pressure p, and the pore 
strain parameter g. The bulk stress and strain are both 

symmetric second order tensors, and the strain may be 
identified as the symmetric part of the tensor of displace- 
ment gradients, e = $Vu f (VU)~, where u is the bulk 
displacement vector. The pore strain may be identified as 
c = -div$ (U- u) , where U is the pore Iiuid displacement 
vector and 4 is the volume fraction occupied by the pore 
space, or porosity. We will not use the displacement vec- 
tors further, concentrating instead on the relations between 
stress and strain. The static equilibrium conditions for a 
given material are 

div r=O, p=constant. (1) 

These equations are satisfied throughout the sample, sub- 
ject to prescribed values of traction or displacement on the 
boundary. The magnitude of the uniform pressure within 
the sample depends upon its imposed value at the bound- 
ary. 

The constitutive relations are 

r=C,e-aM& p=-aMe + MC. (2) 

Here e = tr e and I is the second order identity tensor. The 
fourth order tensor C, represents the elastic moduli of the 
saturated or confined material, and are related to the cor- 
responding moduli of the unconfined sample, i.e., the 
frame moduli C, by C, = C + a2MI @  I. We assume for 
simplicity that the elastic moduli C of the frame are iso- 
tropic with bulk modulus K and shear modulus p. It is also 
assumed that the interaction between the pore parameters 
and the bulk variables in (2) is isotropic and defined by the 
scalar aM. One could generalize this to allow for the pos- 
sibility of anisotropic interaction, in which case the isotro- 
pic second-order tensor aMI is replaced by- a symmetric 
second-order tensor with three principal directions and 
three associated scalars instead of the single aM. 

Both a and M can be related to microstructural 
moduli.’ If there is only one type of grain present, with 
bulk modulus Kg, then 

K 1 4 a-+ -=--- - “‘l---K,’ M ++ Kg 2 (3) 

where Kf is the bulk modulus of the fluid occupying the 
pore space. We note the inequalities for an isotropic me- 
dium, K < Kg and 4 <a < 1,5 the latter of which follows 
from (3) and the requirement that M be non-negative for 
all physically permissible values of the fluid compressibil- 
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ity. When there is more than one type of granular material 
it is still possible to defme a modulus analogous to K* see 
Refs. 3 and 6 for details. 

The fundamental variables in (2) are taken to be the 
strains e and 5. Alternatively, we may consider e and p as 
the fundamental variables by rewriting (2) as 

1 
r=Ce-apI, tJ=~p + ae. 

Define S as the fourth-order compliance tensor for the 
frame, such that CS = SC = Ic4), where Ic4) is the fourth- 
order identity tensor. It is then possible to rewrite the con- 
stitutive relations in yet another form, this time emphasiz- 
ing the stress variables as fundamental. For the isotropic 
frame, this becomes 

a2 
e=Sr+&, f= ;+zp+ 

( 1 
&tr7. (5) 

Ill. THE EQUATIONS OF STATIC 
THERMOELASTICITY 

The basic variables are in many ways similar to those 
of a fluid saturated porous medium. We use the same pa- 
rameters to represent the bulk stress and strain, r and e. 
The variables associated with thermal effects are the tem- 
perature deviation, 8, and the entropy per unit volume, s. 
All variables, whether poroelastic or thermoelastic, are de- 
fined relative to their ambient values, and would be zero in 
the absence of some exterior motivating forces. The equi- 
librium conditions are analogous to ( 1) , 

div r=O, 0=constant, (6) 

where the constant value of temperature is defined by its 
prescribed value on the boundary. . 

The simplest form of the constitutive relations are7-9 

e=ST + fh9, s=cp6 + trfl~ . (7) 

Here, /3 is the symmetric second-order tensor of thermal 
expansion coefficients. The heat capacity per unit volume 
at constant stress is &,c,, where 6, is the ambient absolute 
temperature. The tensor S is now the tensor of isothermal 
compliances, with inverse C. 

It is clear that the constitutive relations (5) and (7) 
are identical in form if we make the correspondence p, 
{x+O, s. The thermoelastic relations corresponding to the 
other representations, (2) and (4) can be obtained by re- 
arranging (7). Choosing e and 8 as the fundamental vari- 
ables, we have 

T=ce-c”ye, s=c,tj + c,tr ye . (8) 

The heat capacity per unit volume at constant strain is 
Q, and is related to the heat capacity at constant stress by 
c”=c,-trj3QZ.P). The symmetric second-order tensor y is 
y = l/(c,) CD. Equation (8) should be compared with 
(4). The thermoelastic constitutive relations analogous to 
(2) are obtained by treating e and s as the fundamental 
variables, 

T=C#-ys, 8=-trye+$s, (9) 

where C, = C + cvy Q y is the tensor of isentropic stiffness. 

IV. THE CORRESPONDENCE 

Comparing (1) with (6), (2) with (9), (4) with (8), 
and (5) with (7), we can clearly see that the two physical 
theories are in complete correspondence if we make the 
identifications between variables and material parameters 
as follows: 

Thermoelastic Poroelastic 

T,e,C T,e,C, 
0 P 

1 
c, 

zi 

2 

CP a+; 

Y aMI 

G cc. 
The case most directly analogous to the poroelastic 

situation is one in which the coefficients of thermal expan- 
sion are identical, so that the tensor of expansion coeffi- 
cients is isotropic with p = fl, for which 

c,-c,=SK#?. ( 10) 

The confined or saturated bulk modulus K, corresponds to 
the isentropic or adiabatic modulus Kfl and conversely the 
frame modulus of the porous medium corresponds to the 
isothermal modulus of the thermoelastic medium. The ra- 
tios formed from the two pairs of bulk moduli follow from 
the table above and previously mentioned identities as 

Kc a2M KS cp 
z=l+K, z=c. 

” 
(11) 

The first of these identities is associated with Gassmann” 
and the second is a well known result in the thermodynam- 
ics of solids and gases. 

V. INHOMOGENEOUS POROUS MEDIA 

a: Consider a porous medium for which the material pa- 
rameters vary from point to point, where a “point” means 
a volume large enough relative to the pore length scale that 
the continuum theory of poroelasticity applies. Thus, the 
material parameters C, a, and Mare functions of position. 
The spatial nonuniformity may result from variation of any 
or all of the secondary parameters q%, K, and Kf, or it may 
result from a nonuniform microstructure which causes K 
to vary even as 4 and KS remain relatively fixed. For in- 
stance, the intergranular contact in sandstones may dete- 
riorate with age resulting in a “softer” frame, although the 
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porosity and the grains themselves are unchanged. A fairly 
common situation, but one of significant importance, is 
that in which the frame parameters are constant but the 
fluid compressibility varies significantly, as for instance, 
when the frame is saturated with both water and gas. The 
large disparity in the two compressibilities can lead to an 
enormous range in the value of M, especially if the frame is 
relatively “stiff.” 

In any event, one can define an effective poroelastic 
medium such that the effective medium is characterized by 
the macroscopic material parameters C*, a*, and w. 
These may be defined by the macroscopic response of a 
sample subject to different boundary conditions. Thus, the 
frame modulus K* follows by applying a confining pressure 
while the fluid is permitted to drain. The effective confined 
or saturated bulk modulus, which follows from the Gass- 
mann identity ( 11) , 

x*=Kw + a*=AP c , (12) 

may be measured by sealing the boundary pores. The pa- 
rameter a* could be determined from the change in vol- 
ume for a given applied pore pressure. In each separate 
gedanken experiment the equilibrium conditions ( 1) must 
be satisfied everywhere. 

In general, the effective medium can only be defined if 
the length scales of the external forcing far exceed the 
length scales of the spatial inhomogeneity. An important 
and highly practical example is the propagation of com- 
pressional seismic waves though fluid-saturated porous 
rock. Typically, the wavelength is on the order of tens or 
hundreds of meters. The relevant modulus for the com- 
pressional wave speed in an effectively isotropic medium is 
c + $*, where ,u* is the effective shear modulus. 

Effective parameters, K*, e, /3*, etc., may also be 
defined for an inhomogeneous thermoelastic medium in the 
same manner. In this case the equilibrium conditions (6) 
must hold at every point. The correspondence between the 
two theories implies that the effective properties of the 
porous medium are related in the same manner as before to 
the effective thermoelastic properties. This connection can 
be used to advantage in predicting the effective properties 
of porous media. In a recent paper, Berryman and Milton3 
showed that the value of a* can be simply related to the 
effective frame bulk modulus K* in an isotropic two-phase 
medium. They fir&t derived this result within the context of 
poroelasticity without reference to thermoelasticity, and 
then pointed out the analogy between (a/3K) and the 
thermal expansion coefficient p, and the fact that results 
are known concerning the effective thermal expansion co- 
efficient in terms of the effective bulk modulus.‘1-‘3 Berry- 
man and Milton also derived an expression for LV* from 
the equations of poroelasticity for an inhomogeneous me- 
dium, and they remarked that “nothing comparable ap- 
pears likely in the equations for thermoelasticity”. How- 
ever, it follows from the intimate correspondence that we 
have delineated between the thermoelastic parameters and 
those of poroelasticity that the question of determining a* 
and M* is directly related to that of finding p* and c: in an 

inhomogeneous thermoelastic medium. The two pertinent 
correspondences are 

P a 
1 

Tz M C”++-- . 

Specifically, we can make use of any existing results for the 
effective thermal expansion coefficient p* in order to find 
a*, and in the same manner results for cf are directly 
applicable to M*. 

It turns out that there already exists a fairly large lit- 
erature on the effective thermoelastic behavior of compos- 
ite materials,“-l3 a good review of which may be found in 
Christensen’s book.7 In particular, results are available on 
both p* and cz for macroscopically isotropic two-compo- 
nent media. Denoting the two phases by suffices 1 and 2, 
the effective thermal expansion coefficent is related to the 
effective bulk modulus by the well-known identity3P7’” 

L?*-w=[ (&+2&-~)](~-(;)) ’ (14) 
where () denotes the spatial average. The effective heat 
capacity at constant stress follows from Rosen and 
Hashint and Christensen7 as 

c:-(cJ=9[ (&-,,/(&-&)]ca*-(P,) . (15) 

Relation (10) between the heat capacities then implies that 
the effective heat capacity at constant strain is given by 

x(P*-W)-K*P*2+ WP2). (16) 

Substituting from ( 13) into ( 14) and (16) yields the exact 
results for the effective poroelastic parameters 

a*-(a)= z ( ) w*--(K)), 
1 2 

&-(&)=-(=)(a*-<a)]. 
(17) 

The first identity in ( 17) agrees with Eq. (27) of Ber- 
ryman and Milton,3 while their equation (45) is exactly 
the same as the second identity of (17). We note that it is 
possible to define effective microstructural parameters for 
an inhomogeneous poroelastic medium3*6 that are analo- 
gous to the grain modulus K,-of a uniform medium, for 
instance. The values of these moduli for the inhomo- 
geneous medium may be determined from the effective pa- 
rameters a and M. Details of the procedure may be 
gleaned from Ref. 3. 

Finally, we note some consequences of (17). It is well 
known that K*<(K) for any inhomogeneous isotropic 
solid’ and therefore it follows from (17) that 

I1 I---1 

(18) 

with equality if and only if al = a2 The effective confined 
bulk modulus follows from (12) and ( 17) as 
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K*=K* + [(~)(K,-Kz)-((K)--K*)(al-a2)12 
c 

(KI--&)~ + C(K) -K*) (al-ad2 
(19) 

Note that M enters only through its harmonic average. The 
explicit relation (19) has two simpler limits 

IK*+a2(&)-', a1=a2(=a), 

c= -1 

+s0((a2)-(a)2) , 1 
K,=K,(=K). 

where 

(K)-K* 

so= ,&,4o (K2) - VP - 

(20) 

(21) 

Both limits include the case of a uniform frame, ai = a2 
and Kl =K,. The second limit is, on the face of it, quite 
interesting because it says that the saturated response de- 
pends upon the elastic moduli in a nontrivial way even 
though the moduli are uniform. The analogous situation in 
thermoelasticity is when the expansion coefficient ,varies 
from point to point while the elastic moduli are constant. 
The effective expansion coefficient is then simply the aver- 
age, but the effective heat capacity depends upon the par- 
ticular spatial distribution of /3. One situation for which the 
compliance So may be explicitly calculated is when the 
shear moduli of the two phases are equal. In this case, as 
noted by Berryman and Milton,3 the etfective bulk modu- 
lus K* can be determined precisely for any K(x) by using 
the identity due to Hi&l4 K* + ?$== ((K + $u)-I)-'. Ap- 
plying this to (21), we find So= (K + 2~)-'. 

VI. CONCLUSION 

Comparison of the static constitutive relations of po- 
roelasticity and thermoelasticity shows they are formally 
the same if we identify pore fluid pressure with tempera- 
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ture, and the relative fluid compression, g, with entropy. 
Similarly, the dry frame elastic moduli of a porous medium 
are related to the isothermal moduli of the thermoelastic 
medium, and the saturated or confined moduli correspond 
to the isentropic elastic response. The issue of estimating 
the effective parameters of an inhomogeneous porous me- 
dium can thus be immediately translated into the analo- 
gous problem for the thermoelastic medium. The problem 
of finding the frame or isothermal moduli is the same for 
both, and the remaining macroscopic material parameters 
can be related to the effective thermal expansion coeffi- 
cients and the effective heat capacity for the thermoelastic 
solid. Simple, explicit formulae exist for these quantities in 
a two component isotropic medium, leading to the rela- 
tions previously found by Berryman and Milton3 by a 
somewhat more complicated method. Other results in the 
literature for transversely isotropic thermoelastic materi- 
als, for instance Ref. 7, could be readily transferred to the 
poroelastic problem. 
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