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An interesting and useful analogy can be drawn between the equations of static poroelasticity
and the equations of thermoelasticity including entropy. The correspondence is of

practical use in determining the effective parameters in an inhomogeneous poroelastic medium
using known results from the literature on the effective thermal expansion coefficient and

the effective heat capacity of a disordered thermoelastic continuum.

I. INTRODUCTION

The similarity between the equations of poroelasticity
for a fluid saturated porous medium and the equations of
thermoelasticity has been noted many times in the litera-
ture. Indeed, Biot was intimately aware of the connection
having made fundamental contributions in both fields; in
particular he is credited with the first consistent develop-
ment of a dynamic theory of poroelasticity (see Ref. 1 for
a review). The correspondence between the theories is par-
ticularly useful in that there appears to be a more substan-
tial literature on problems in thermoelasticity, and many of
the available results can be directly translated into the
realm of poroelasticity. For instance, Bonnet®> used the
equivalence to draw upon known results in the thermoelas-
tic literature to obtain explicit and simple expressions for
the fundamental point source solution in two-dimensional
(2D) and 3D dynamic poroelasticity. More recently, Ber-
ryman and Milton® noted that the question of determining
one of the coupling parameters in the poroelastic constitu-
tive equations for a composite medium is completely anal-
ogous to the problem of finding the coefficient of thermal
expansion in a composite material, for which there are
several applicable results already known. The relation be-
tween solutions of either theory is also discussed by Chan-
drasekharaiah and Cowin.*

The connection between the parameters in the static
equations of the two theories is explored in this paper. By
considering the theory of thermoelasticity which includes
entropy as a field variable it is possible to make a complete
correspondence between the theories. The equivalence
means that results for the effective heat capacity of a com-
posite material have direct implications for one of the mod-
uli in the Biot theory, namely M. This connection com-
pletes the correspondence noted by Berryman and Milton.>

li. THE EQUATIONS OF STATIC PORCELASTICITY

We shall follow the notation of Biot from his 1962
paper® because, although it is not his first work in the area
by any means, it does provide a concise review of the the-
ory for both static and dynamic deformation, although dy-
namic effects are not considered here. The fundamental
field variables for static deformation are the bulk stress 7,
the bulk strain e, the pore-fluid pressure p, and the pore
strain parameter . The bulk stress and strain are both
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symmetric second order tensors, and the strain may be
identified as the symmetric part of the tensor of displace-
ment gradients, e = {Vu + (Vu)7], where u is the bulk
displacement vector. The pore strain may be identified as
{ = —div¢(U—u), where U is the pore fiuid displacement
vector and ¢ is the volume fraction occupied by the pore
space, or porosity. We will not use the displacement vec-
tors further, concentrating instead on the relations between
stress and strain. The static equilibrium conditions for a
given material are

div 7=0, p=constant. (1)

These equations are satisfied throughout the sample, sub-
ject to prescribed values of traction or displacement on the
boundary. The magnitude of the uniform pressure within
the sample depends upon its imposed value at the bound-
ary.

The constitutive relations are

r=Ce—aM({l, p=—aMe+ M¢{. 2)

Here e = tr e and 1 is the second order identity tensor. The
fourth order tensor C, represents the elastic moduli of the
saturated or confined material, and are related to the cor-
responding moduli of the unconfined sample, ie., the
Sframe moduli C, by C,=C + o’MI®I. We assume for
simplicity that the elastic moduli C of the frame are iso-
tropic with bulk modulus X and shear modulus p. It is also
assumed that the interaction between the pore parameters

- and the bulk variables in (2) is isotropic and defined by the

scalar aM. One could generalize this to allow for the pos-
sibility of anisotropic interaction, in which case the isotro-
pic second-order tensor aMI is replaced by a symmetric
second-order tensor with three principal directions and
three associated scalars instead of the single oM.

Both ¢ and M can be related to microstructural
moduli.! If there is only one type of grain present, with
bulk modulus K, then

K 1 ¢ a—¢
a=1——

Kg’ H':E;'i' Kg ’ ' (3)

where K¢ is the bulk modulus of the fluid occupying the
pore space. We note the inequalities for an isotropic me-
dium, K <Kg and ¢<a< 1, the latter of which follows
from (3) and the requirement that M be non-negative for
all physically permissible values of the fluid compressibil-
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ity. When there is more than one type of granular material
it is still possible to define a modulus analogous to K, see
Refs. 3 and 6 for details.

The fundamental variables in (2) are taken to be the
strains e and §. Alternatively, we may consider e and p as
the fundamental variables by rewriting (2) as

. 1
r=Ce—apl, {=7:p+ce. (4)

Define S as the fourth-order compliance tensor for the
frame, such that CS = SC = I'¥, where I'*) is the fourth-
order identity tensor. It is then possible to rewrite the con-
stitutive relations in yet another form, this time emphasiz-
ing the stress variables as fundamental. For the isotropic
frame, this becomes '

et 1 o2 a
e=Sr+2rL §=(A7+E)P+§l—(tf1'- (5)

lil. THE EQUATIONS OF STATIC
THERMOELASTICITY

The basic variables are in many ways similar to those
of a fluid saturated porous medium. We use the same pa-
rameters to represent the bulk stress and strain, 7 and e.
The variables associated with thermal effects are the tem-
perature deviation, 0, and the entropy per unit volume, s.
All variables, whether poroelastic or thermoelastic, are de-
fined relative to their ambient values, and would be zero in
the absence of some exterior motivating forces. The equi-
librium conditions are analogous to (1),

div r=0, | @=constant, (6)

where the constant value of temperature is defined by its
prescribed value on the boundary. .

The simplest form of the constitutive relations are’™

e=St-+ B0, s=c,04tfr. (7

Here, B is the symmetric second-order tensor of thermal
expansion coefficients. The heat capacity per unit volume
at constant stress is 0yc,, Where 6, is the ambient absolute
temperature. The tensor S is now the tensor of isothermal
compliances, with inverse C.

It is clear that the constitutive relations (5) and (7)
are identical in form if we make the correspondence p,
£<>0, 5. The thermoelastic relations corresponding to the
other representations, (2) and (4) can be obtained by re-
arranging (7). Choosing e and 6 as the fundamental vari-
ables, we have

r=Ce—c,y0, s=c,0+ctrye. (8)

The heat capacity per unit volume at constant strain is
O4c,» and is related to the heat capacity at constant stress by
¢,=c,—tr3(CB). The symmetric second-order tensor ¥ is
v=1/(c,) CB. Equation (8) should be compared with
(4). The thérmoelastic constitutive relations analogous to
(2) are obtained by treating e and s as the fundamental
variables,
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1
r=Ce—vs, 6=—-tr'ye+E-S, (9)
v
where C, = C + ¢,y ® y is the tensor of isentropic stiffness.

iV. THE CORRESPONDENCE

Comparing (1) with (6), (2) with (9), (4) with (8),
and (5) with (7), we can clearly see that the two physical
theories are in complete correspondence if we make the
identifications between variables and material parameters
as follows:

Thermoelastic Poroelastic

7,e,C ,e,C,
6 p
s 4
1
c, 7
1 o
c,, MtE
a
B 4 I
Y aMl1
C, C.

The case most directly analogous to the poroelastic
situation is one in which the coefficients of thermal expan-
sion are identical, so that the tensor of expansion coeffi-
cients is isotropic with B = I, for which

cp—cl,=9KB2 . (10)

The confined or saturated bulk modulus K, corresponds to
the isentropic or adiabatic modulus K, and conversely the
frame modulus of the porous medium corresponds to the
isothermal modulus of the thermoelastic medium. The ra-
tios formed from the two pairs of bulk moduli follow from
the table above and previously mentioned identities as

K, a’M K, p

K- '7TK ' Ko
The first of these identities is associated with Gassmann
and the second is a well known result in the thermodynam-
ics of solids and gases.

(11)

10

V. INHOMOGENEOUS POROUS MEDIA

*" Consider a porous medium for which the material pa-
rameters vary from point to point, where a “point” means
a volume large enough relative to the pore length scale that
the continuum theory of poroelasticity applies. Thus, the
material parameters C, «, and M are functions of position.
The spatial nonuniformity may result from variation of any
or all of the secondary parameters ¢, K, and Ky, or it may
result from a nonuniform microstructure which causes K
to vary even as ¢ and K, remain relatively fixed. For in-
stance, the intergranular contact in sandstones may dete-
riorate with age resulting in a “softer” frame, although the
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porosity and the grains themselves are unchanged. A fairly
common situation, but one of significant importance, is
that in which the frame parameters are constant but the
fluid compressibility varies significantly, as for instance,
when the frame is saturated with both water and gas. The
large disparity in the two compressibilities can lead to an
enormous range in the value of M, especially if the frame is
relatively “stiff.”

In any event, one can define an effective poroelastic
medium such that the effective medium is characterized by
the macroscopic material parameters C*, a*, and M*.
These may be defined by the macroscopic response of a
sample subject to different boundary conditions. Thus, the
frame modulus K* follows by applying a confining pressure
while the fluid is permitted to drain. The effective confined
or saturated bulk modulus, which follows from the Gass-
mann identity (11),

K*=K* | a**M*, (12)
- may be measured by sealing the boundary pores. The pa-

rameter a* could be determined from the change in vol-
ume for a given applied pore pressure. In each separate
gedanken experiment the equilibrium conditions (1) must
be satisfied everywhere.

In general, the effective medium can only be defined if
the length scales of the external forcing far exceed the
length scales of the spatial inhomogeneity. An important
and highly practical example is the propagation of com-
pressional seismic waves though fluid-saturated porous
rock. Typically, the wavelength is on the order of tens or
hundreds of meters. The relevant modulus for the com-
pressional wave speed in an effectively isotropic medium is
K* 4+ %u*, where u* is the effective shear modulus.

Effective parameters, K*, K¥, B*, etc., may also be
defined for an inhomogeneous thermoelastic medium in the
same manner. In this case the equilibrium conditions (6)
must hold at every point. The correspondence between the
two theories implies that the effective properties of the
porous medium are related in the same manner as before to
the effective thermoelastic properties. This connection can
be used to advantage in predicting the effective properties
of porous media. In a recent paper, Berryman and Milton3
showed that the value of a* can be simply related to the
effective frame bulk modulus K* in an isotropic two-phase
medium. They first derived this result within the context of
poroelasticity without reference to thermoelasticity, and
then pointed out the analogy between (a/3K) and the
thermal expansion coefficient B, and the fact that results
are known concerning the effective thermal expansion co-
efficient in terms of the effective bulk modulus.!*"!* Berry-
man and Milton also derived an expression for M* from
the equations of poroelasticity for an inhomogeneous me-
dium, and they remarked that “nothing comparable ap-
pears likely in the equations for thermoelasticity”. How-
ever, it follows from the intimate correspondence that we
have delineated between the thermoelastic parameters and
those of poroelasticity that the question of determining a*
and M* is directly related to that of finding 8* and ¢¥ in an
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inhomogeneous thermoelastic medium. The two pertinent
correspondences are

a 1 .
ﬁwﬁ, Ve (13)

Specifically, we can make use of any existing results for the
effective thermal expansion coefficient B* in order to find
a*, and in the same manner results for ¢¥ are directly
applicable to M*. '

It turns out that there already exists a fairly large lit-
erature on the effective thermoelastic behavior of compos-
ite materials,!"13 a good review of which may be found in
Christensen’s book.” In particular, results are available on
both B* and c* for macroscopically isotropic two-compo-
nent media. Denoting the two phases by suffices 1 and 2,
the effective thermal expansion coefficent is related to the
effective bulk modulus by the well-known identity>"!!

pr—®)=| b | (%—I%)](Ki— (). ao

where () denotes the spatial average. The effective heat
capacity at constant stress follows from Rosen and
Hashin!® and Christensen’ as

1 1
c:~<c,,>=9[(31—ﬁz> / (E—E)]w*—qs)) . (15)

Relation (10) between the heat capacities then implies that
the effective heat capacity at constant strain is given by

1 * _ 1 1
§(Cu —{c))= [(BI“BZ)/(E_E)

X (B*—{B)) —K*B** + (KB*) . (16)

Substituting from (13) into (14) and (16) yields the exact
results for the effective poroelastic parameters

ay—ay
(@)= (=g | okr— kD),

1 1 ay—ay %
b (ER) -
The first identity in (17) agrees with Eq. (27) of Ber-
ryman and Milton,* while their equation (45) is exactly
the same as the second identity of (17). We note that it is
possible to define effective microstructural parameters for
an inhomogeneous poroelastic medium>® that are analo-
gous to the grain modulus K of a uniform medium, for
instance. The values of these moduli for the inhomo-
geneous medium may be determined from the effective pa-
rameters ¢ and M. Details of the procedure may be
gleaned from Ref. 3.

Finally, we note some consequences of (17). It is well
known that K*<(K) for any inhomogeneous isotropic
solid” and therefore it follows from (17) that

(17)

1yt

* —
secls) (18)
with equality if and only if a; = a,. The effective confined

bulk modulus follows from (12) and (17) as

Andrew Norris 1140

Downloaded 30 Mar 2003 to 128.6.73.148. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



[{a) (Ki—K3) — ((K) —K*) (a1 — ) |

I .
<A_{> (K] —K2)2 + ((K) —K*) (al'_aZ):Z
(19)

Note that M enters only through its harmonic average. The
explicit relation (19) has two simpler limits

111
K*+0£2<A—{> , a=op(=a),

= 1 -1
= k4 o [gg) + st - | P
Ki=K,(=K) .
where
. (Ky—K*
So= Im (K 21

|Ky—K,| -0

Both limits include the case of a uniform frame, a; = «,
and K;=K,. The second limit is, on the face of it, quite
interesting because it says that the saturated response de-
pends upon the elastic moduli in a nontrivial way even
though the moduli are uniform. The analogous situation in
thermoelasticity is when the expansion coefficient -varies
from point to point while the elastic moduli are constant.
The effective expansion coefficient is then simply the aver-
age, but the effective heat capacity depends upon the par-
ticular spatial distribution of 8. One situation for which the
compliance S, may be explicitly calculated is when the
shear moduli of the two phases are equal. In this case, as
noted by Berryman and Milton,? the effective bulk modu-
lus K* can be determined precisely for any K(x) by using
the identity due to Hill,"* K* + fu=((K + %) ") ~L. Ap-
plying this to (21), we find So= (K + )"

VI. CONCLUSION

Comparison of the static constitutive relations of po-
roelasticity and thermoelasticity shows they are formally
the same if we identify pore fluid pressure with tempera-
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ture, and the relative fluid compression, {, with entropy.
Similarly, the dry frame elastic moduli of a porous medium
are related to the isothermal moduli of the thermoelastic
medium, and the saturated or confined moduli correspond
to the isentropic elastic response. The issue of estimating
the effective parameters of an inhomogeneous porous me-
dium can thus be immediately translated into the analo-
gous problem for the thermoelastic medium. The problem
of finding the frame or isothermal moduli is the same for
both, and the remaining macroscopic material parameters
can be related to the effective thermal expansion coeffi-
cients and the effective heat capacity for the thermoelastic
solid. Simple, explicit formulae exist for these quantities in
a two component isotropic medium, leading to the rela-
tions previously found by Berryman and Milton® by a
somewhat more complicated method. Other results in the
literature for transversely isotropic thermoelastic materi-
als, for instance Ref. 7, could be readily transferred to the
poroelastic problem.
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