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A general asymptotic theory is developed to describe the acoustic response of heavily fluid- 
loaded thin shells in the midfrequency regime between the ring and coincidence frequencies. 
The method employs the ideas of matched asymptotic expansions and represents the total 
response as the sum of an outer, or background response, plus an inner or resonant 
contribution. The theory is developed for thin shells with smoothly varying material and 
geometrical properties. First, a suitable background field is found which satisfies neither the 
rigid nor the soft boundary conditions that have been typically employed, but corresponds to 
an impedance boundary condition. The background field is effective throughout the 
midfrequency as well as the strong bending regimes. The corresponding inner or resonance 
field is also valid in the same range. The approach taken is to represent these fields as inverse 
power series in the asymptotically small parameter 1/kR, where R is a typical radius of 
curvature of the shell and k is the fluid wave number. The leading-order terms in the series 
differ in the inner and outer expansions, in such a way that the displacement tangential to the 
surface is negligible in the outer (background) region, but dominates the scattering near 
resonances. The resonances can therefore be associated with compressional and shear waves in 
the shell. A uniform asymptotic solution is derived from the combined outer and inner fields. 
Numerical results are presented for the circular cylinder and the sphere and comparisons are 
made with exact results for these canonical geometries. The results indicate that the method is 
particularly effective in the midfrequency range. The strong bending regime is also well 
represented, especially for cylindrical scatterers. 

PACS numbers: 43.20.Fn, 43.30.Dr, 43.30.Gv, 43.40.Ey 

INTRODUCTION 

It is both well known and intuitively clear that when a 
solid target, such as a metallic sphere, is subject to acoustic 
wave radiation in a fluid medium, such as water, the bound- 
ary condition on the scatterer surface may be accurately 
modeled by the so-called rigid condition for which the nor- 
mal velocity is everywhere zero. However, it is also well es- 
tablished that the scattered field calculated by employing 
this boundary condition breaks down at or very near every 
in-vacuo resonant frequency of the scatterer. In physical 
terms, the coupling between the solid and the fluid is very 
strong in the vicinity of these resonances, and hence a sub- 
merged structure that is only weakly affected by a given exci- 
tation can in fact be subject to strong vibrations if the excita- 
tion frequency is at or close to one of its in-oacuo resonances. 
In mathematical terms, the approximation based upon the 
rigid boundary condition is singular at the resonances. For 
separable geometries, such as the sphere and the cylinder, 
exact solutions exist from which the structure of these reso- 

nances can be examined in detail. The analysis for these sim- 
ple shapes serves as a guide for the study of more complicat- 
ed shapes and also as a numerical test for approximate 
theories and computational schemes. 

These observations concerning the separation into back- 
ground plus resonant contributions has generated a substan- 

tial literature over the past decade or so on what is referred to 
as resonance scattering theory (RST), • a good account of 
which may be found in the review article by Gaunaurd. 2 The 
main utility of RST seems to be as a diagnostic and interpre- 
tive procedure, whereby one can deconstruct the total re- 
sponse by subtracting out the background field, which is 
relatively easy to compute, so that one may then clearly iden- 
tify any underlying resonances. It does not lend itself to a 
constructive approach whereby one could use the separation 
into background plus resonances to generate an efficient and 
relatively simple means of computing the total response. A 
procedure for doing this was recently described by Norris. 3 
The method is based upon the use of matched asymptotic 
expansions and can be applied, in principle, to targets with 
nonseparable geometries and complicated material proper- 
ties. The matched asymptotic approach 3 splits the total field 
into the background, plus a sum of resonant contributions. 
The form of the background response comes out naturally 
from the asymptotic scaling, where the small parameter in 
the asymptotic expansion is the impedance ratio. In this ap- 
proach the "outer" solution is the response sufficiently far 
away from a given in-oacuo resonance, while the "inner" 
solution is the rapidly varying response in the thin boundary 
layer region surrounding a resonance. The total response is a 
combination of the two solutions and displays, as a function 
of frequency, the general form of a smooth background or 
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outer field punctuated by sharp fluctuations arising from the 
inner or resonance field. 

A straightforward extension of the concept of a rigid 
background response is not equally rewarding when applied 
to thin shell structures. •-7 As an example consider an infi- 
nitely long cylindrical thin shell in water subjected to a time 
harmonic acoustic plane wave. The far-field backscattered 
amplitude of the acoustic pressure field is plotted versus kR 
in Fig. 1, where k = co/c, to is the circular excitation frequen- 
cy, c is the fluid sound speed, and R is the radius of the 
cylinder. The sharp lines indicate resonances associated with 
extensional and flexural wave motion on the shell. It seems 

fairly clear that neither the rigid nor the soft boundary con- 
dition is adequate to model the shell response away from 
resonances, because, if either background were indeed repre- 
sentative of the actual field one would expect the response to 
drop almost down to zero between resonances, which is not 
the case from Fig. 1, although it is worth noting that at lower 
values of kR the soft or pressure release boundary actually 
performs better than its rigid counterpart. The same failure 
is found if the matched asymptotic algorithm 3 is used to 
generate the total response from a thin shell, 8 and the reason 
can be crudely explained by the presence of another small 
parameter in the problem, viz., the ratio h/R, where h is a 
typical shell thickness and R is the radius of curvature. In 
practice, and in the examples considered in this paper, this 
ratio is far smaller than the impedance ratio, and, hence, any 
asymptotic approximation based only upon the latter is 
doomed to failure. Recently, however, Gaunaurd and 
Werby 9 and Werby m have proposed an intermediate 
boundary condition for spherical shells which provides a 
"correct" background in the sense that when subtracted it 
yields sharp, isolated resonances. Furthermore, the bound- 
ary condition reduces to the soft and rigid conditions in the 
limits of low and high frequencies, as one might expect from 
Fig. 1. Another type of boundary condition which also ap- 
pears to be "correct" has been recently proposed by Norris s 
and amounts to the approximation of the shell response 
away from resonances as being due only to flexural motion. 
The connections between these results will be addressed later 

in the paper. 
The objective of this paper is to describe a rational ap- 

proach for approximating the total response from heavily 
fluid-loaded thin shells. The methodology is similar to that 
of Norris, 3 which addressed only the case of scattering by 
solid targets, and for reasons mentioned above cannot be 
adapted to thin shells without major modifications. These 
modifications are described in detail in this paper. We begin 
in Sec. I with the general equations for an arbitrarily curved, 
smooth inhomogeneous thin shell. The outer or background 
field is derived and discussed in Sec. II, where the response is 
assumed to be a regular asymptotic series in inverse powers 
ofkR. The form of this series is motivated by the observation 
that for frequencies between resonances the normal displace- 
ment is an order of magnitude greater than the in-surface 
displacements. Equating terms of like order leads to a 
boundary condition for the lowest-order pressure field 
which includes bending effects. Solving for the lowest order 
as well as the next higher-order pressure field we find that 
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FIG. 1. The contrast between the soft and rigid backgrounds for broadside 
incidence on a steel cylinder in water with h/R = 1/90; h is the thickness 
and R is the radius of the cylinder. The curves show the difference between 
the backscattering amplitudes for the "exact" solution and the responses 
corresponding to rigid (Neumann) and pressure release (Dirichlel) 
boundary conditions on the surface. See Sec. VII for details. 

this expansion breaks down in the vicinity of membrane re- 
sonances. We next turn to the inner field near a membrane 

resonance frequency and represent it once again as an in- 
verse power series. This time, the form of the series is chosen 
to reflect the fact that at the compressional resonances the 
in-surface displacements are an order of magnitude higher 
than the normal displacements. Moreover, the shape of the 
leading-order in-surface displacements are now proportion- 
al to the membrane mode shape at that particular resonance. 
We complete the analysis by determining a uniform solution 
that is valid throughout the full frequency range for which 
kR is large, meaning in practice kR > 5, roughly. The details 
of the asymptotic analysis for the outer solution are given in 
Sec. II. The inner or resonant contributions are discussed in 

Sec. III, where they are combined with the outer solution to 
yield a uniform solution valid at all frequencies. Some of the 
general features and properties of the uniformly asymptotic 
solution are discussed in Sec. IV. The applicability of the 
procedure is demonstrated in Sees. V and VI for cylindrical 
and spherical thin shells, respectively, and comparisons are 
made with the corresponding exact analytical solutions for 
these canonical shapes. Numerical results are presented in 
Sec. VII which show that the asymptotic method is very 
accurate over the entire midfrequency range for the cylinder 
and sphere. 

One of the motivations of the present work is to demon- 
strate that the response from thin shells can be profitably 
split into background and resonant parts, and that the deter- 
mination of each of these separately is far less complicated 
than the solution of the total problem as a whole. In practice, 
the internal resonances can be very sharp, and any numerical 
procedure which does not take them into account explicitly 
may either give an incorrect amplitude or miss the resonance 
entirely. The theoretical development in this paper addresses 
among other topics the question of a suitable background 
field for thin shells. s-"• It will become clear that the back- 

ground response is far simpler to compute than the full re- 
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sponse, since it amounts simply to an effective impedance 
condition in the midfrequency range. Before commencing, 
we should mention some related works in the large literature 
on acoustic scattering by shells which have some bearing 
upon the present approach. Among these are the reviews of 
Gaunaurd and Werby • • and Muzychenko and Rybak, 12 the 
latter being mainly a survey of the Russian literature. In a 
recent paper, Prikhod'ko •3 attempted to implement an 
asymptotic approach with the small parameter being the 
geometrical ratio of shell thickness to radius. The back- 
ground field was identified as the one satisfying a soft bound- 
ary condition, which clearly cannot provide a suitable ap- 
proximation except at very low frequencies (see Fig. 1 ). An 
interesting but more ad-hoc approach to describing the 
acoustic response of thin shells can be found in the papers by 
Veksler •4 and Veksler et al.; • however, these papers are 
restricted to cylindrical shells and deal only briefly with oth- 
er geometries. 

I. BOUNDARY CONDITIONS FOR THIN SHELLS 

The general equations of motion for a smooth fluid- 
loaded shell are outlined in Appendix A, Eqs. (A9) and 
(A10). These are three equations, corresponding to the 
three displacement components w, v •, a = 1,2, which are 
coupled to the acoustic pressure p (see Appendix A for a 
definition of all the variables used here and a discussion of 

the notation). We will be concerned with scalings based 
upon a dimensionless frequency parameter. This is facilitat- 
ed somewhat by working in terms of dimensionless variables 
p, •, and b", defined by 

p= p____ •=w •,• v'• Pc , = (1) 
where the fixed length R is a typical radius of curvature of 
the surface, c is the acoustic sound speed, andp is the inviscid 
fluid's density. These dimensionless parameters will be used 
for the remainder of the paper; however, to simplify notation 
we drop the carats. Thus, to convert back to dimensional 
variables, one simply multiplies p by pc :• and the shell displa- 
cements by R. 

The acoustic pressure p ( x, t) satisfies the wave equation 

V2p--c-2œ, =0, (2) 

in the infinite region exterior to the shell's surface S. In Eq. 
(2) and subsequent equations, the subscript t indicates the 
derivative with respect to time. The pressure may be decom- 
posed into incident and scattered fields, but at this stage we 
will not distinguish between these separate parts of the total 
response. The remaining boundary condition requires that 
the fluid and shell normal accelerations are the same 

R --c9p (3) c"- •' w tt -- oa n 
Time harmonic motion of radial frequency ro is considered, 
and the term Re {...e - •"} will be omitted from subsequent 
expressions. Then, Eqs. (A9), (A10), and (3) become, re- 
spectively, 

a 2 

p•-•, [p•hc}H'•aPX(v•,lx - bp•.w) ]l • + 112v a = 0; 
a = 1,2, 

( kR )2w + -,o R :H'•a•'x( v•,/x -- b•,x w)b,• 

-- H ø•PxWlal • = •p, 

(4) 

(5) 

(6) (kR)2w = R Op 
On' 

where k = w/c is the fluid wave number and 1• = ear/c o is 
the dimensionless compressional wave number in the plate. 
Also, r/and ]• are dimensionless numbers, the fluid loading 
parameter and the thickness parameter, respectively, de- 
fined as 

12R 2 (7) 

It is assumed that the fluid parameters p and c are constants 
but the geometrical and material parameters for the shell, 
such as the shell thickness h, may vary over its surface. 

These are the basic boundary conditions for the acoustic 
scattering problem in the exterior region. As discussed in 
Appendix A, (4) and (5) are simply dynamic versions of the 
shell equations in the book by Green and Zerna, •6 and agree 
with a similar set of equations recently obtained by Pierce,•7 
and by many others over the years. These equations are 
unique in the sense that they are the simplest set which de- 
scribe the motion of arbitrarily curved shells and at the same 
time include both flexural and membrane effects. •8 The the- 

ory developed in this paper is in no way limited to these 
equations, but could be easily adapted to any linear set of 
shell equations; however, we choose to concentrate on these 
particular ones because they exhibit all the essential physics 
of the problem. 

II. THE OUTER SOLUTION 

A. The effective boundary condition 

We now develop asymptotic approximations to the full 
set of boundary conditions in the limit of large kR. This 
choice of the asymptotic parameter is quite distinct from the 
ratio of acoustic impedances which turned out to be the nat- 
ural parameter for solid targets, 3 and is independent of the 
geometrical parameter defined by the ratio h/R. However, it 
leads quite directly to scalings which define inner and outer 
solutions in the same way that the impedance ratio did for 
the solid target. 3 In practice, as demonstrated by the nu- 
merical examples, the fact that a high-frequency asymptotic 
method is employed to split the solution into outer and inner 
parts does not mean that we are restricted to large values of 
kR, but rather to values for which kR = O( 1 ) or greater. 

We first summarize some results, that will be derived in 

a more rigorous fashion later, but are useful at this stage to 
understand the different physical effects and associated fre- 
quency ranges. It helps to distinguish two separate frequen- 
cy regimes: first, the frequency range from kR = O( 1 ) to 
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slightly below coincidence is referred to as the midfrequency 
regime; while the range above and beyond this is called the 
strong bending regirne.•4 In the midfrequency regime, the 
inertial effects of the shell dominate the elastic effects to first 

order over most of the frequency range, i.e., bending wave 
effects are small. This property is characteristic of the mid- 
frequency range, as we will see. Bending or flexural wave 
effects become significant, if not dominant, in the higher 
frequency range, or the strong bending regime, 's which 
starts roughly at the coincidence frequency oc defined by 
kcR = C/Cp13. 

Thus, in the midfrequency region, the condition (5) can 
be approximated simply by 

(kR)2w = rip. (8) 

Equation (8) combined with (6) implies that the pressure 
satisfies a local impedance boundary condition 

3p •/p=O. (9) 
a9n R 

This is equivalent to matching the pressure loading with the 
normal acceleration of the shell, ignoring the normal forces 
generated by the bending of the shell. On the other hand, 
when we need to account for the effects of the flexural wave 

motion, whether it is subsonic or supersonic, we must in- 
clude the significant terms in (5) that were previously ig- 
nored, which are those involving the highest derivatives ofw. 
This gives, instead of (8), the condition 

(kR)2w--rlR4(t31c•--7• H"t•w.,a) =rip. (10) 
Using the velocity continuity, (6), the normal displacement 
w may be completely eliminated to yield a single boundary 
condition for the acoustic pressure 

On R rill 2 \ c•n / I,• J lea 
Equations (9) and ( 11 ) are the boundary conditions which 
define the outer solutions or background fields in the midfre- 
quency and strong bending regimes, respectively. 

B. Asymptotic analysis 

We now provide a justification for the conditions (9) 
and ( 11 ) based upon a formal asymptotic expansion in the 
small parameter l/kR, or equally well, f• - •. The preceding 
discussion suggests the following asymptotic perturbation 
scheme. We assume 

p =p(O) + (kR) -2p(t) + (kR) -4p•2) + ... , 

w: (kR) - 2w•ø) + (kR) --4W(I) '{- ''' , (12) 

v"= (kR)- 3v"(m + (kR)- Sv"(U + '" . 

The motivation behind the scaling in (12) comes from a ray 
theory type of ansatz for each of the quantities on the right- 
hand side (rhs). Specifically, we assume that they depend 
upon the "fast" shell coordinates 0 • = fl0,. We are not 
directly interested in applying the ray theory here, but use it 
purely as a basis for the scaling employed. In particular, each 
surface derivative of any of these physical quantities implies 

a magnification of order kR. Several explicit ray treatments 
of acoustic scattering from canonical thin shells are avail- 
able, •94• and we refer to these papers for further details on 
ray applications. 

Equation (6) implies that 

to •'• = R rn = 0,1,2 ..... (13) 

Substitution of (12) into (5), and recalling that a surface 
derivative is equivalent to a magnification of order kR in the 
asymptotic sequence, yields for rn = 0 

tdo• = ripera + riR 4(/•2 r•-fi,• ,•o• (14) 
This relation, combined with (13), implies that the follow- 
ing condition must be satisfied by the leading-order pressure 
field, 

•n R •. H"• ( Opm• = O. 
This is clearly cquivalem to ( 11 ), while the correspondin• 
condition for the midfrequency regime can be seen as a spe- 
cial case of the above conditionif t•e foliowin• scalin• holds 

1• • -• (16) 

This scalin• permits us to i•nore •he bendin• effects and 
leads to the point impedance condition (9). 

The in-surface displacements, to leadin• order, follow 
from (4) and (12) as the solution Io the forced system of 
equations 

(p, hc}H '•o}• )I• 4' p, ho•o 
= kR(p, hc3H"a•b•xw•m) a' (17) 

This system of two coupled equations describes the forced 
motion of a curved and closed membrane. Note that the cou- 

pling to the normal displacement equation has been elimin- 
ated and that all terms in ( 17 ) are of order (kR)•. The subse- 
quent tern in the series for p follows by substituting the 
previously found values for the leading-order displacements 
in (5), yielding 

-- " •/ ' (18) 

The final bendin• term in this equation may or may not •e of 
the same magnitude as the others, on the basis of the scalin• 
(16) alone. Tbe condition under which it mmches the others 
is • = O [ (•) -•]. if for the moment we assume for the 
sa•e of simplicity thai bendin• effect• are negligible, 
w • can be eliminated from (1•) •y usin• (1•) with m = 1 
to •ive an equation for p•, 

R o•ptt} 
On 

2 ) = _R2C;, H.at,.•( I ,(o) _bp..lw(o) b,,a ' (19) 
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This may be solved using the Green's function for the exteri- 
or Helmholtz equation subject to the boundary condition 
(9). The Green's function will be discussed later. 

In principle, this regular asymptotic perturbation pro- 
cedure can be iterated to find the successively smaller terms, 
providing that the iterative process converges. However, it is 
clear that the iteration must break down at the membrane 

resonance frequencies. These are defined as the frequencies 
at which (17) has a solution for zero forcing on the rhs. 
These homogeneous equations do not involve the normal 
displacement (w = 0) and hence the modal solutions corre- 
spond roughly to in-surface compressional and shear waves, 
quite distinct from bending wave type of solutions. These are 
membrane modes, in the terminology of shell theory. •6 The 
generic structure of the asymptotic expansion therefore 
breaks down at or near these membrane resonance frequen- 
cies, implying that a different assumption on the form of the 
total response is required locally in the frequency domain. 
We call this, by analogy with boundary layer theory, the 
inner solution, and the solution just discussed is the outer 
solution. The full solution comprises both the inner and out- 
er parts, and will be derived once the form of the inner solu- 
tion has been determined. First, it is useful to define some 
quantities associated with the membrane modes. 

C. The membrane modes 

The breakdown of the outer solution is apparent if the 
solution to (17) is expressed as a modal series. Let cs,•, 
m = 1,2 ..... be the modal frequencies and V (," TM be the mod- 
al displacements, which are solutions to 

(• t,,.2r_taBpx•z<,")• +pshcs• V (,")a = O. (20) 
We assume, for simplicity in later equations, that the modes 
are normalized according to 

(V("",V ('•)) = 1, (21) 

where ( ) is the inner product on the surface S, defined by 

(U,V) =-- ( U",V• ) --=rs e"V, psh dS. (22) 
It may then be demonstrated that the modes are orthonor- 
mal in the sense that 

(V('",V ("•) = &... (23) 

Modes which are degenerate may be defined such that (23) 
holds, however, it is assumed for the sake of simplicity that 
the modes are not degenerate. The solution to (17) can then 
be formally expressed as 

v r(ø) kR ]• {(p,h) -'• t.•2 r•-•pxt, ,,,½o• • kl•s"•p • . •pk • • lB' ra 
m=l 

x [ - 

Integrating by parts, this becomes 

o r(o) = -- kR o2 2 •=1 •0 m 
(24) 

wherein order to save space later thesurfacefunctions are 
now defined 

f(•) ---c•H aBaXbpx r.' -<e. (25) 
The quantityf (,") is an inner product of interior or surface 
stress with the curvature tensor, and vanishes wherever ei- 
ther the curvature is zero (locally flat) or where the mem- 
brane stresses are zero. Note that although the mth mode is 
normalized according to (21 ), it is assumed to be a ray-type 
solution, which implies that the surface functionf (,"• is of 
order (kR). As mentioned before, ray theory is not used here 
to determine the modes explicitly, although that could cer- 
tainly be done; our only purpose is to estimate the order of 
magnitude of terms in the asymptotic scheme. This is a rath- 
er unusual application of ray theory, but is not unknown in 
applications to the vibrations of shells. Gol'denveizer :3 and 
others •4 have used ray-type ansatzes to simplify the general 
shell equations, although the precise scaling considered here 
does not seem to fall into Gol'denveizer's classification. •3':4 

The fundamental consequence of the modal expansion 
(24) at this stage is that it clearly shows how the outer solu- 
tion blows up at each and every membrane modal frequency. 
Specifically, this happens to the next term in the scattered 
pressure, since it follows from (19) and (24) that near the 
ruth resonance frequencyœ • • must satisfy the boundary con- 
dition 

a 2 {w(O)or(,-) ) R ø')p(t) •]p(l) _ .f(m), (26) 
an d 

and hence it becomes singular as cs--,cs,.. 

III. THE RESONANT CONTRIBUTIONS 

A. The inner solution 

The breakdown of the outer expansion is due to the fact 
that it allows the in-surface vibration to become unbounded. 

There is no feedback between the forcing of the leading-or- 
der approximation and the displacements v "(ø), which are 
explicitly assumed to be small in magnitude. In order to alle- 
viate this shortcoming we propose an inner solution valid 
near the membrane resonance frequencies. Thus, near the 
resonance frequency cs,. we assume instead of (12) the new 
ansatz 

p = p(o) + (kR) -•P(•) + '" , 

w= (kR)-2W(ø) + '" , (27) 

v • = (kR) -•A(cs) V •'•)" + (kR) -•u '•) + '" . 

Comparing this with (12), we note that the in-surface dis- 
placements have leap frogged the normal displacement and 
are now one order greater, rather than an order smaller in 
magnitude. The present asymptotic analysis is based upon 
the assumption that the frequency is close to the resonance 
frequency in the sense that (kR) 2 -- (k,•R) 2 = O(1). The 
perturbation analysis could be performed in a more formal 
manner by rescaling the frequency variable according to this 
assumption, but the details tend to obscure the physical 
aspects of the solution. It is preferable to retain the original 
variables in so far as is possible so that the origin of each term 
is apparent. 

In the present asymptotic approximation the in-surface 
solution is essentially just the mode under consideration 
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with a frequency-dependent modal amplitude ,4 (•o) which 
must be determined. An equation for ,4 can be found by 
considering the equation for u "(!), which follows from (4), 
(20), and (27) as 

(p.h•H ual,t )lO + P, 
= kR (p, hc2vH'"a•bp,• W •o)) 

+ (kR):•Apsh(co• _ co2) V(.,),,. (28) 
We have replaced o• by co., in the left member of (28), since 
the difference is assumed to be relatively small, but the dif- 
ference is retained in the right member in order to arrive at a 
frequency-dependent expression for .4. Equation (28) has a 
unique solution for u "tn if the inner product of the right 
member with the mode V ("ø vanishes, implying the relation 

A(co• -- •2) + (kR) - • 

X ((p,h) - •(psh•H"•Xb•,,• r•(o• r,'•.ox = O. 
This may be transformed by integrating by parts on the sur- 
face, to give 

`4(co• - co• ) + (kR) - •( Wtø• f ø'") = 0, (29) 

wheref (•') is defined in (25). The factor of (kR) appears in 
these expressions because of the assumed scaling (27) and 
also because of the fact, noted previously, that f('") is of 
order (kR). It remains to find W tø). 

The equation for W tø• follows from (5) and (6). Now, 
in addition to the inertial term in the left member of (5), we 
must also include the possibility of a significant contribution 
from the term depending upon the in-surface components. 
Thus, instead of (5), 

+(•)-•(•)_L•.•*•, •/(•)=•p(m (30) 

Eliminating W •o) using the continuity condition (6) implies 
that the pressure satisfies the boundary condition 

to G:f--,•b-• Gf, where • satisfies the Helmholtz equation in 
the exterior region plus the radiation condition at infinity, 
and the following boundary condition on S 

Thus the operator is defined such that • = Gfis the radiated 
solution for the boundary condition (34) on $. Note that the 
boundary condition for the midfrequency regime is recov- 
ered if the last term on the left-hand side of (34) is dropped. 

Substituting the normal displacement W tø• into the 
solvability condition (29) implies a linear equation for A, 
which may be solved to give 

CO2 2 -- co,. q- a,,. CO2., /CO 2 
where 

(kR) - ] (35) 

(36) 

A further approximation may be made, which is entirely 
consistent with the high-frequency assumption, by removing 
the frequency dependence in the ratio (ct.,•/co •) by evalu- 
ating its magnitude at co = co.,. This is justified by the weak 
dependence of a., on frequency, about which we will say 
more later. Thus 

_ ,4 (kR) - ], (37) 
(02 2 

where 

ff,• = [a,. ] .... . (38) 
We reiterate that the appearance of the asymptotic param- 
eter (kR) in (37) is a result of the definition of,4 as a dimen- 
sionless parameter of order unity. Finally, we define for later 
use dimensionless quantities analogous to a,, and 

(39) 

o•n R r/fl z \--•-'n ! •,• lax 

_ .4 (co)R f(•). (31) 
c•kR 

This should be compared with the equivalent boundary con- 
dition (15) for the outer solution. It is also instructive to 
compare (31) with (26), which does not pro•rly account 
for the change in asymptotic behavior near resonance. Clear- 
ly, (31 ) gives a finite contribution as the frequency passes 
through r•onan•. 

Referring to (15) •d ( 31 ), the inner solution can be 
represented as the sum of the outer solution plus an addi- 
tional pa• pro•ional to A (•), 

p (o) = p(O) _ ( kR ) - • (R/•)•(•), ( 32 ) 

W (m w (ø) -- kR • = • (33) 
•2 

Here, •(•)•Gf (•) where the Green's operator G maps an 
arbitra• functionf from S to the exterior domMn according 

B. The uniform solution 

Equation (37) provides us with the amplitude for a sin- 
gle resonance near the resonant frequency co,,. Because the 
modes are assumed to be nondegenerate, the contribution 
from each may be summed as if it acts in ignorance of the 
others. Substituting from (37) into (32) and summing over 
the resonances gives 

I •' 

where 

We = ( kR ) - ate tin, (41) 

is the leading-order approximation to the normal displace- 
ment according to the outer expansion. Recall thatp m> and 
We are the total pressure and the normal displacement for 
the simplified scattering problem with boundary condition 
(15). In fact, using (13) We can be eliminated from (40), 
giving 
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1 b,. •(m), (42) =pO, + ,0 2 
where 

=/øP'ø' bm \ On f('•)' (43) 
The relation in (42) is hereafter referred to as model I. If the 
quantity b,• is evaluated at • = • and denoted by • in the 
expression (42), then we refer to that as model II. Note also 
that the midfrequency solution is contained in the present 
solution by letting • 0. The limit of• = 0 is not, however, 
a regular limit in the strong bending regime. The singular 
nature of this limit arises from the possibility of supersonic 
or near-supersonic flexural modes on the shell which are 
insignificant in the mid-frequency regime. Compa•ng the 
total first-order inner expansion (42) with the combined 
first and second terms for the outer expansion, viz., (12), 
(18), and (24), we see that the solution (42) actually con- 
tains the correct form of the outer expansion away from the 
resonant frequencies. Thus punif of ( 40 ) or (42) is the desired 
uniformly asymptotic solution, correct to first order at all 
frequencies in the midfrequency range. This is the main re- 
sult of the paper. 

IV. DISCUSSION 

The uniform solution in (42) has a simple form as the 
sum of a relatively smooth background solution, p(O), plus 
resonances at each of the frequencies of the membrane 
modes. The form of the resonance near a given modal fre- 
quency Or. depends upon the parameter ffm of Eqs. (36) and 
(38). Using the fact that kR is assumed to be large, the per- 
turbed resonant frequency may be approximated as 

CO = Or. -- •m/2CO m ß (44) 

It follows from the discussion in Appendix B that Im •,, > 0, 
and hence the imaginary part of the perturbed resonance 
frequency is strictly negative. This is in accord with the cau- 
sality requirement that the total solution must be analytic in 
the upper half of the complex co plane. The shift in both the 
real and imaginary parts of the frequency are small accord- 
ing to (44), indicating that the effect of fluid loading is not 
strong for these modes. This is not surprising, as the mem- 
brane modes are primarily caused by in-surface motion, 
which does not couple strongly to the exterior fluid. In fact, 
referring to the definition of a,• in (36), we see that it de- 
pends upon the surface functionf ' r.> of (25), which in turns 
depends explicitly upon the curvature. When the curvature 
vanishes, as in a flat plate, the coupling disappears. 

The coupling also vanishes for shear waves on regions 
with equal principal curvatures, or spherical regions. On 
such a region, the tensor H of Eq. (A7) simplifies consider- 
ably, and it may be shown, from (25), that 

Rf (m)= -- c3(1 + v) V(m•"l•, (45) 
where R is the radius of curvature. The quantity V(r.)"l,,, 
which is the trace of the strain tensor, vanishes for a shear 

wave, and hencef (m• = 0 if the mode is purely shear in na- 
ture. 

At frequencies O( 1 ) away from the membrane resonant 
frequencies the contribution of each modal term in (40) is of 
order 1/co 2 in comparison with p(O), and hence the uniform 
solution (40) reduces to the outer solution p (o). The mode m 
has on O( 1 ) contribution for frequencies such that 

co -- cor• = O(w,• • Re •,• ), (46) 

and the maximum occurs at co = co.• - Re 3,•/2Wm. It is 
interesting to note that the total normal displacement right 
at cor• is, using (32) and ignoring the other modal contribu- 
tions which are small, 

W © = w © O•('") (47) 
(Oq3(r.)/o•ntf (m)) On 

If we think of the surface functionsf • '") as basis functions for 
the normal displacement, then right at to = tom the compo- 
nent corresponding to mode m is identically zero. 

The modes that arise in the present asymptotic expan- 
sion are not exactly the same as what is commonly under- 
stood as membrane modes. Equations (20) are a pair of si- 
multaneous PDEs for the in-surface components of the shell 
displacement and are independent of the normal displace- 
ment. However, it is possible to supplement these equations 
with a third for the normal displacement. This is the conven- 
tional approach in discussions on membrane theories of 
shells. In terms of the general equations (4) and (5), it 
amounts to maintaining (4) exactly as shown, but to ignore 
the bending terms in (5), as well as the fluid pressure. Then, 
(5) provides an explicit expression for to in terms of the in- 
surface components, 

w - L P%plx (48) 
L '•ab,•a -- •2/R 2 ' 

where 

L p• = H •aV•b•e. (49) 

Eliminating to from (4) and assuming time harmonic mo- 
tion, we deduce that the membrane modes must satisfy 

p, hc3 H"avx-• (112 R -2 L•,e,b.,e,)'J-.l • 
+ p,hco• V ('•)" = O. (50) 

Comparing these equations with (20), we see that the differ- 
ence is associated with a term of order • 2, which is small 
by assumption. 

A regular perturbation analysis of (50) shows that the 
modal frequencies are shifted from those of (20) according 
to 112_, 112 + O( 1 ). This is entirely consistent with the shift 
predicted by the uniformly asymptotic theory, viz., Eq. 
(46). Before proceeding to the examples, we mention that it 
is possible to improve upon the impedance condition (9) by 
the introduction of a modified impedance, which is de- 
scribed in Appendix C. 
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V. EXAMPLE: THE CYLINDRICAL SHELL 

The theory outlined in the previous section will now be 
applied in detail to the specific example ofa circularly cylin- 
drical thin shell of infinite extent. The case of a thin spherical 
shell is discussed in the next section. For both of these ca- 

nonical geometries, it is possible to compare the asymptotic 
solution with exact analytical solutions for the scattered 
field, thereby providing some general understanding of the 
range of validity of the asymptotic method. Numerical com- 
parisons will be discussed in See. VII. The shell theories em- 
ployed in each of the cases considered are consistent with the 
original equations, (4) and (5), upon which the theory is 
based. We reiterate that this does not imply that the asymp- 
totic theory is restricted to this class of shell theories. 

A. Equations of motion for the cylindrical shell 

We consider a uniform thin cylindrical shell of radius R, 
thickness h and we introduce cylindrical polar coordinates 
r,O,z. For the purposes of simplicity, we consider the case of 
broadside incidence thus eliminating the z dependence from 
the shell equations. The two pertinent rescaled shell equa- 
tions are 

d 2v + dw dO-•;- •-• + fl2v = O, (51) 

- w - d'-•' - /3 '•-• -z + W w = W •qp' (52) c3 

where 12 = •R/c v. These equations are identical to the well- 
known Donnell equations and can be found in Junget and 
Feit, 2s Eqs. (7.80 a,b,c). The circumferential displacement 
is denoted by o and the radial displacement by w, and both 
are functions of the angle 0 on the surface r = R. The re- 
maining boundary condition (6) on the shell surface is 

(kR)2w = R Op (53) 

The term ' in/3 is significant in bending deformation and will 
also be incorporated into our asymptotic theory. The lowest- 
order approximation starts from (52). This can be written as 

/3 2 c• 2 d 4w(ø) C 2 dO 4 (kR)2wtm•lptø). (54) 
By employing (53) we can write the boundary condition for 
the lowest-order approximation to the pressure field as 

3p(O) V p(O) /32 c•SP(ø) = 0, r = R. (55) 
Or R •2 oqO4 o•r 

In summary, the outer or background field p(m satisfies the 
Helmholtz equation in the exterior domain and (55) on the 
shell surface. Notice that the inclusion of the/3 2 term in (55) 
indicates we are including the effects of strong bending. In 
the midfrequency range these effects turn out to be small and 
the surface condition reduces to the simpler local impedance 
condition (9). 

B. Cylindrical membrane modes 

The equation for the membrane modes is obtained from 
(51 ) and is 

d'V(,,) 
-- + f• V ('" = O, (56) 

dO 2 

where ft,, = m, where m = 1,2,3... with corresponding nor- 
malized modes 

[/r{m ) __ sin(mO) (57) 

The appearance of the solid density is a consequence of the 
inner product definition (22). The correspondingf ('") fol- 
lows from (25) as 

f("')(O) = • m cos(mÜ) (58) 
R ' x/•rRp•h 

C. The Green's operator for the cylindrical shell 

As mentioned earlier in the strong bending regime the 
Green's operator must solve (34). When this equation is 
translated into cylindrical coordinates it reduces to 

8q3'"" V q•t•) 13•85qS'"'•)--f "", r=R. (59) 

The solution to the exterior Helmholtz equation for 
which satisfies both the radiation condition and (59) is 

•.. % 1 m 1 
c •' •rRx/•--•-•h /½H;,(kR) rtZ• 
X H• ( kr)cos( mO). (60) 

Here, the prime denotes differentiation with respect to the 
argument and 

Hm(kR) 
Zm - (61) 

kRH ' ( kR ) 

The bending effects are contained in the term E,• (/3), 

E• (•3) = 1 (62) 

The quantity a.• then follows from (36), (58), and (60). 
For the present example, it is useful to work with the nondi- 
mensional version of (39), which simplifies to 

1 
a., = (63) 

•/Z,• -- Em (/3) 

The dependence of E m upon/3 allows us to consider the 
midfrequency approximation separately by just replacing 
E,, (/3) by E m (0) = 1. which corresponds to the simpler im- 
pedance condition (9). Alternatively, we could define the 
midfrequency range fi•r this problem to be the range of fre- 
quencies for which the contributing modes have E,, (/3) • 1. 
Flexural effects become significant only when the frequency 
and mode order are such that the second term in Er• (/3) is of 
order unity. 
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D. Comparison of the exact and asymptotic solutions 

We consider an incident plane wave of unit amplitude 
propagating in the direction 0 = 0, 

pinC = eikrcos(O) 

---- • C,.m(kr)cos(rnO), (64) 
where C O ---- I and Cm = 2i m, rn• 1. The total exact response 
may be split into the sum of incident plus scattered where the 
scattered field is given by 

pSC= • D,•H,•(kr)cos(mO), (65) 
rn=O 

where 

am = --Urn J•(kg) (•Orn-E• (66) H• (kR) \*!Zm E•XJ ' 

and 

J,• (kR) 

ß Q'• kaJ•(kR) ' E• =Em(]•) -- (112-- 11•) 
(67) 

The scattered component of the outer solution is very similar 
in form and is found by replacing E• (/g) by Ern (/g). Hence, 
we can write 

p•O• = pi,• + p•c•o•, (68) 

wherep •{m is the leading-order term in the scattered portion 
of the outer field. 

The uniformly asymptotic field now follows from the 
inner and outer solution as 

pUnif=prO) q_ •'•-• • do, qj(m)(!.,O), 
(69) 

where a,• follows from (39) and (63), the radiated field •( 
is given in (60), and 

c 4 2i *lp, h kRCm 
dm = (70) 

4 m •-Rx•p•-•h H;(kR)(*IZ.• cp 

Combining these terms we find 

2it/ pUnif =p(O) q_ •/'-• • CruZmaim ,• = • HL (kR) 

1 H.• (kr) 
X cos(m0). (71) 

The above expression defines model I. If we evaluate the d m 
at re = ro,•, then we obtain model II. In this paper, all our 
calculations for the cylinder are based on model I. 

Finally, we note that the exact solution for the cylinder 
can be manipulated into a form which is remarkably like the 
uniform solution, 

2i• I © C.•Zr•a• 
p = p(m +__ • 

•rkR r• = • H 2 ( kR ) 

1 H,• (kr) 
X cos(m0). (72) 

1•--• +am Hm(kR) 

The only difference between (71) and (72) is that in the 
uniform approximation the denominator contains •m 
whereas in the exact solution the associated frequency-de- 
pendent parameter arn appears. We therefore see that the 
asymptotic solution has a very similar analytical form to the 
exact solution. Before discussing numerical comparisons, we 
turn first to the case of the sphere. 

VI. EXAMPLE: THE SPHERICAL SHELL 

A. Equations of motion 

The shell radius is R, with surface r = R in spherical 
polar coordinates (r,O,•). We assume that the shell is subject 
to plane-wave incidence in the direction 0 = 0 so that there is 
no dependence upon the azimuthal angle •. Only one in- 
surface component is zero, the one associated with 0 and we 
denote it by v. Let/• =- cos 0 and v be the Poisson's ratio, then 
the two shell equations follow from (4) and (5) as 

Lv-- (1 + v) Ix/-•--• •-• + fi2v = 0, (73) 
(1 + v) •-• x/1 --/•2V -- 2(1 + v)w 

2 2 

--/g X7• (V} + 1 - v)w + fi2w = (c•/c})*lP, (74) 
where 

d 

L= x/1 --/• + (1 --v). (75) 

These equations are similar to those of Junger and Feit, :s 
Eqs. (7.102), (7.103 ) et seq., which contain additional terms 
proportional to/g 2. The general shell theory of (4) and (5) 
does not include these effects, but they could be considered 
without much difficulty. Our purpose here is to develop the 
asymptotic theory within the context of shell equations that 
exhibit all of the essential features, including both membrane 
and bending effects. Both the present equations and those in 
Junger and Feit satisfy these criteria, therefore the omission 
of some terms here does not alter the significance of the re- 
sults, but rather makes the algebra more transparent and 
simpler to follow. It is not our contention that the shell equa- 
tions presented here are best in any sense other than in their 
simplicity and generality. 

B. Spherical membrane modes 

The equation for the membrane modes is 

Lo + 11• = 0. (76) 

Therefore, the modal frequencies are • = re m R/%, where 

11• =rn(m+l)--l+v; rn=1,2,3 ..... (77) 

and the normalized modes [see Eq. (21) ] are 

(m)• dPm (78) V <m> = B -- • , 
where P., (/•) is the rnth Legendre polynomial, and the nor- 
malization constant is 
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B<,, . = < 1 <2m q- l) •'• 2rrR 2psh 2•m-•--•)'] ' <79) 

The associated surface function f{ • of (25) follows, using 
(78), as 

2 

f•>= (1 +v) cp m(m+ l)B<m•pm(•). R• (80) 

C. The Green's operator for the spherical shell 

Consider an arbitrary azimuthally symmetric function g 
on the surface of the sphere. Then, g may be expanded in a 
series of Legendre polynomials, and the Green's operator for 
each term may be found separately. The boundary condition 
(34) reduces to the condition 

&b •/•b- V}(V} + l-v) =g, r=R. Or R -• -•r 
(81) 

The Green's operator for arbitrary g = l;2=og.P •(it) is 
therefore 

• - h. (kr) 

Gg = •o kh ; ( kR ) [ *lZ. --E.(/3)] 
(82) 

where h. (z)=h }•)(z) is the spherical Hankel function of 
order n, the prime denotes a derivative, and now 

h. (kR) 
Z. - (83) 

kRh • (kR) 

The function E,, (/3) for the sphere is 

E.• (/3) = 1 -/32(tl•/fi2) (ft2• + 1 - v). (84) 

The Green's operator for the simpler impedance condition 
(9) follows by putting/3 = 0, for which we have simply 
E,. (0) = 1. 

The radiated field for mode n follows from (34) and 
(80)-(82) as 

•r"(r,O) = (1 + v)n(n + 1) -- C3 B (n) 
kR 2 (*IZ.-E.) 

h. (kr) 
X P.•). (85) 

h; (kR) 

The quantity a.• of (36) then follows from (80) and (85), 
while the associated dimensionless quantity a• of (39) is 

1 q- (1 -- v)D,. • 
am(tO) = (1 q- v) 2 (86) 

•z,. - E,• 

D. Comparison of the exact and asymptotic solutions 

The incident plane wave of unit amplitude propagating 
in the direction 0 = 0 can be represented as 

pine = eikr cos O 

== • C•j.(kr)P.t•), (8'7) 
where C,, = (2n + 1 )i". The total, exact response may be 
split into the sum of the incident plus the scattered, where 
the exact scattered pressure is 

p•* = • D.h. (kr)P. (/t), (88) 
n=0 

where 

j;(kR) (•iQ.-E,•, • ) (89) D. = --C.h;(kR) \ E; • 
and 

j•(kR) 

kRj; ( kR ) 

E}• = E. (/3) - (1 +v) • 
fi•(fi• _ fi} ) 

2 (l+v) 

If the outer response is written in the same way; i.e., 

(90) 

(91l) 

then p•to) is the leading-order term in the regular perturba- 
tion approximation to the scattered field. It is very similar in 
form to the exact solution, and in fact can be obtained from 
(88)-(90) by simply replacing E e• with E.• (/3). 

We are now in a position to compute the quantities asso- 
ciated with the inner solution. The uniformly asymptotic 
field of (40) now follows from Eqs. (79), (82), (84), arid 
(86), which combined with the outer solution just discussed, 
yields 

pu.if==p(O) + 1•- 2 • d. q•"(r,O), 
.o fF- fi2. +a. (92) 

where a• follows from (38) and (86), •b r"> is the radiated 
field of (85), and 

d. it/ (1 + = 2 k2Rh,.kR)B(. 07Z.E.-•. (93) 

Combining the various elements in (92), the uniformly 
asymptotic solution can be written as 

['?]g n -- E n ([3) ] - 1 h. ( kr) 
X -- P. (/•). (94) 

112-11, 2, + •.h.(kR) 

This result corresponds to model I, defined in Sec, III. Mod- 
el II results from evaluating d,. at to = tom. In order to ap- 
preciate the precision in either case, we note that the exact 
solution can be manipulated into a somewhat similar form 
by using the identities in Appendix D, to give 
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i• 1 • C.Z,,a. p =p(o) + (•)2 h '. (kR) 
[t/Z. -- E. (fi) ] - t hn (kr) P. (/•), (95) 

where all the parameters are the same as for the uniform 
asymptotic solution, with the additional term 

X.= (1 + v) • 1 q • -- (•-- •). 
E. - 

(•6) 

Note that the sum in (95) should really be from n • 0, but 
this term is identically zero because of the fact that 
1/X o • O. In comparing the uniform and •he exact solutions 
note the difference in the denominator between the a• and 
a• terms. The quantRy X• is real and its effect is therefore to 
shift the resonance, but its influence upon the height and 
width of •he resonance is weak. This is apparent if X• is 
calculated explicitly for the case in which bendin• effects are 
included in the outer solution, for which it reduces to 

X• (•-•)• ( 2• )-• ( - e) _ - 
(97) 

Near resonance, the difference (112 - 112, ) is of order unity 
and therefore the quantity X,, is asymptotically small, of or- 
der l/f/2. The complex-valued parameter a n is of order uni- 
ty, and therefore the difference between the exact and uni- 
formly asymptotic solutions is indeed asymptotically small 
for the spherical shell. 

In closing this section, we note that Eqs. (72) for the 
cylinder and (95) for the sphere are apparently the first in- 
stances in which the resonant scattering from a thin shell has 
been explicitly decomposed into a classical resonant form, 
i.e., the background p(o) plus the resonant terms. Previous 
attempts along these lines invariably used an incorrect form 
for the background, which inevitably leads to an incorrect 
form for the resonant terms. 

VII. NUMERICAL RESULTS AND DISCUSSION 

The numerical results presented here are for cylindrical 
and spherical steel shells in water such that the radius to 
thickness ratio is always R/h = 90. The material parameters 
are (in mks units) p= 1000, c= 1482, p, =2700, 
% = 5435, and v = 0.289. The plots shown here are all for 
the far-field backscattering amplitude (0 = rr), where the 
far-field amplitude is defined by 

f(O) = lim{(2r) (n- ])/2e -ik,(p __ pinc)]., (98) 

where D is the spatial dimension, i.e., D = 2 for the cylinder, 
and D = 3 for the sphere. The scattering amplitude for the 
cylinder and sphere, for both the uniformly asymptotic and 
the exact solutions, can thus be calculated by substituting 
from (69), (72), (94), or (95) into (98). The limit is per- 
formed using the large argument asymptotic formulas for 
the cylindrical and spherical Hankel functions (see Appen- 

dix D). The ring frequency for both the cylinder and sphere 
is at fl = 1, or kR = %/c = 3.67, while the coincidence fre- 
quency is at kR = c/cvl3 = 85.01. The midfrequency range 
for the present purposes will be defined roughly as the range 
from about twice the ring frequency to slightly below the 
coincidence frequency. The numerical results were all com- 
puted for the range 5 < kR < 125, which includes the entire 
midfrequency range plus the strong bending regime, ]4'• 
which starts where the midfrequency range ends and contin- 
ues to about kR = 120. 

We first discuss the numerical results for the cylindrical 
thin shell. All the results presented here correspond to model 
I, i.e., all the quantities in the resonant terms in (71 ) are fully 
frequency dependent, except a,• which is evaluated at 
w = to,, according to (38) and (39). The exact and asymp- 
totic results are shown together in Fig. 2, from which we note 
generally good agreement except at low frequencies and at 
an apparently spurious resonance close to kR = 75. The lack 
of accuracy at low frequencies, i.e., less than about twice the 
ring frequency, is not surprising since the asymptotic theory 
is based upon a high-frequency ansatz. However, the spur- 
ious resonance is unexpected, but on closer examination it 
can be associated with a narrow, subcoincidence flexural res- 
onance. This conclusion is verified by inspection of Fig. 3 
which shows both the outer and total asymptotic responses, 
each of which displays a narrow resonance at the location of 
the spurious resonance. Hence, the appearance of the spur- 
ious resonance is due to the fact that the outer expansion 
exhibits resonance structure itself, and these resonances are 
due to flexural wave motion. There are many flexural modes 
over the midfrequency range but they have little or no effect 
upon the scattered response because they remain nonradiat- 
ing until close to the coincidence frequency, above which 
they are radiating and we then have the so-called strong 
bending regime •4 (note that the actual transition from non- 
radiating to radiating is complicated by the presence of sur- 
face curvature, and has been discussed recently by Pierce •7 ). 

1.5 

1.0 

If(n)l 

0.5 

0.0 

Cylinder 

uniform 

? 

•s so kR 75 100 125 

FIG. 2. Comparison of the exact solution and the matched asymptotic solu- 
tion for the cylinder. Note the dott&t line before kR = 75. When magnified 
the exact solution also has a small, narrow resonance here which is thought 
to be a flexural resonance. 
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FIG. 3. The outer or background is here compared with the full asymptotic 
solution. Note the presence of flexural resonances in the outer field. 

0.60 

If(•)l 
0.40 

0.20 

0.00 

inner exact 

I J, ,, /inner uniform 

50 kR 75 100 125 

FIG. 5. A comparison of the exact inner field and the asymptotic version. 
Note the slight deviation at lower frequencies and the spurious resonance 
near kR = 75. 

Thus the outer or background response is smooth over the 
entire midfrequency range, but it includes the effect of flex- 
ural resonances in the strong bending regime. In a sense, this 
violates our assumption used in deriving the matched asymp- 
toti c expansion that the outer solution is smooth near the 
membrane resonances. The appearance of the spurious reso- 
nance in the asymptotic response in Fig. 2 therefore results 
from rapid variation in the outer solution, and the variation 
is particularly rapid in the precursor region of the strong 
bending regime, where the flexural resonances are particu- 
larly narrow. Further into the strong bending regime the 
outer response is again sufficiently smooth, and no spurious 
resonances are produced. In summary, the erroneous spike 
in Fig. 2 is an early flexural resonance, magnified by the 
inner expansion to give an unphysical response. We will re- 
turn to this point later. 

The exact inner solution, defined by subtracting the out- 
er response from the exact total scattered field, is shown in 
Fig. 4, from which it is clear that the outer solution provides 

an adequate background over the entire midfrequency 
range, in the sense that the rigid and soft backgrounds of Fig. 
1 did not. Almost all of the resonances in the inner solution 

of Fig. 4 are attributable to compressional waves, whereas 
the major portion of the flexural wave content is in the outer 
response. The only exceptions to this categorization are the 
few small and narrow flexural modes which are just discern- 
ible in the inner response between kR = 70 and 90. The exact 
inner field and the asymptotically derived inner solutions are 
compared in Fig. 5, which again shows excellent agreement 
as low as kR = 5 and over the entire midfrequency range. 
The real measure of the accuracy of the asymptotic theory is 
indicated in Fig. 6. Finally, Fig. 7 shows the outer solution 
generated by ignoring bending effects in p(o), i.e., by using 
E, (0) rather than E, (/3) in the outer solution. Now the 
outer solution is smooth at all frequencies, especially 
throughout the strong bending regime, while the exact inner 
found by subtracting the outer from the exact displays both 
membrane and flexural resonances. This form of back- 

ground is similar to that recently discussed by Gaunaurd 
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r'" 'Itl•' outer 

2s so kR 75 lOO 125 

FIG. 4. The exact inner solution, defined as the exact minus the outer field, 
is compared here with the outer contribution. Note the regular membrane 
resonances in the inner field, even in the strong bending regime where flex- 
ural effects dominate the responge. 
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FIG. 6. The total error of the asymptotic solution is shown here on a magni- 
fied scale. 
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0.75 

If()l 
0.50 

Cylinder 

outer ( [•=0 ) 

I Ilexact - outerl 

FIG. 7. The outer or background field without flexural contributions. This 
is computed from Eq. (6:5) by using E m (0) rather than E•,. The lower 
curve is the difference between the exact and this background response. 
Note the presence of both compressional and flexural resonances in this 
"inner" field. 

and Werby 9'1ø for the specific case of spherical shells, to 
which we now turn. 

The exact and asymptotic backscattered amplitude for 
the spherical shell are compared in Figs. 8 and 9. As with the 
cylindrical shell, the agreement is very good over the midfre- 
quency range, say 5 < kR < 70, with understandable devia- 
tions at the lower end. The major feature which distinguishes 
the asymptotic solution is the appearance of many spurious 
resonances in the early part of the strong bending region. 
The explanation is the same as for the cylinder, i.e., they arise 
from the rapid variation in the outer solution which becomes 
magnified and enhanced in the inner response, because the 
latter is obtained by iteration of the operator or Green's 
function of the outer solution. However, the uniform solu- 
tion, (42), was based upon the explicit assumption of a local- 
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lexact - uniforml 

0.0 '•'J•'*"-" l" • ......... z ...... 
0 25 50 

kR 
75 lOO 125 

FIG. 9. The exact and uniform solutions for the sphere are compared here. 
Note that the error is very small over the midfrequency range 10 < kR < 50. 

ly smooth outer response. This is why we made the distinc- 
tion between models I and II. In a similar treatment of 

scattering from solid targets, s the background or outer re- 
sponse was obtained from the rigid boundary condition, and 
was always smooth as a function of frequency. Hence, there 
was no need to arbitrarily decide how to evaluate the 
matched solution for solid targets. In theory, if the solution 
is a proper uniform solution for all frequencies, it should not 
matter whether model I, II, or whatever is used. However, as 
can be seen by comparing Fig. 10 with Fig. 8, the difference 
between models I and II is significant in the strong bending 
region, where model II fares noticeably better. This is not to 
suggest that model II is to be preferred over model I; our 
point is that there is some sensitivity in the solution which 
indicates a nonuniform behavior. In fact, model II is less 
accurate at the low-frequency end, which is to be expected 
since it does not have the same flexibility as model I. Further 
details of the structure of the asymptotic solution are shown 

Sphere ( Model I ) 

If(=)l 

3 

exact 

1 

o 
o 25 

uniform 

50 75 100 125 
kR 

FIG. 8. The exact and uniform solutions compared for the spherical steel 
shell with h/R = 1/90. Model I leads to a good match in the midfrequency 
regime, and most of the error is confined to spurious flexural resonances in 
the early stages of the strong bending region. 
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0 25 5O kR 75 lOO 125 

FIG. 10. A comparison of the exact and asymptotic solutions, where the 
latter is computed using model II. This is to be contrasted with Fig. 8. The 
error in the midfrequency regime is now significant whereas it is decreased 
considerably in the strong bending region. 
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FIG. 11. The two separate constituents of the exact solution for the spheri- 
cal shell: the outer solution and the exact inner solution, defined as the exact 
minus the outer. 
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FIG. 13. The outer or background field for the sphere, without flexural 
contributions, and the remainder after subtraction from the exact solution. 
These curves are similar to the curves for the cylinder in Fig. 7. Again, both 
compressional and flexural resonances are present in the "inner" field. 

in Figs. 11 and 12, which are similar to Figs. 4 and 5 for the 
cylindrical shell. 

Finally, the background obtained by setting/3 to zero in 
the outer solution for the spherical shell, i.e., ignoring bend- 
ing, is plotted in Fig. 13, which also shows the remainder 
after subtraction from the exact solution. The latter is simi- 

lar to the residual computed and discussed by Gaunaurd and 
Werby for the specific case of the spherical shell. %m As dis- 
cussed above, this background does not contain any flexural 
effects, but depends only upon the inertial reaction of the 
shell. The distinction between this background (/3 = 0) and 
the one which contains bending effects (/3> 0) is irrelevant 
in the midfrequency range, as demonstrated by the figures, 
although it is to be preferred on the grounds of simplicity, 
since it reduces to an effective impedance condition (9). 

The results for both the cylinder and the sphere show 
that the asymptotic solution is not quite the uniform expan- 
sion we would like. It is perfectly satisfactory throughout the 
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FIG. 12. A comparison of the inner solution for the asymptotic and exact 
theories. 

midfrequency region but suffers from sensitivity, or more 
precisely, nonuniformity, in the strong bending region. The 
basic difficulty arises from the attempt to construct a 
matched asymptotic solution from an outer solution which 
itself possesses resonances. There are, of course, different 
remedies to this which could be explored, but any attempt at 
a "better" uniform asymptotic solution would probably not 
be as simple as the present scheme, particularly in the strong 
bending regime. These questions will be addressed in future 
publications. 

VIII. CONCLUSIONS 

In this study, we have presented a general theory of 
acoustic wave scattering from thin shells of varying material 
and geometrical properties. The theory is based upon an 
asymptotic expansion of the total response, and yields as 
part of the answer a new background field which contains 
the inertial and flexural effects of the shell. The remainder of 

the response comes from the lightly fluid-loaded membrane 
resonances. Each of the two separate parts is far simpler to 
obtain than the total response, and in combination they pro- 
vide a new representation for the scattered field. The outer, 
or background, field simplifies over the midfrequency range 
in the sense that the flexural contributions become negligible 
and the effective boundary condition is a simple impedance 
condition on the shell surface. Analytical results and nu- 
merical computations show that the combined asymptotic 
solution is very accurate over the mid-frequency range for 
the canonical examples of the cylindrical and spherical thin 
shells. 

A major motivation behind the development ofthe pres- 
ent approach is the idea that the total scattering from a thin 
shell in the midfrequency range can be profitably split into 
physically and mathematically simpler constituents. In this 
theory, the two which fall out quite naturally are the outer 
response, which amounts to solving an impedance condition 
on the shell, and a contribution due to membrane reson- 
ances. The structural details are contained in the latter, 
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through the mode shapes of the compressional resonances. 
The tasks involved in determining both constituents are in- 
deed nontrivial, but together they are guaranteed to provide 
the correct form of the response near the frequencies of 
structural resonance. The same cannot be said of explicit 
methods which ignore the physics of the problem and may 
not fully capture the resonant response. The major difficulty 
with the proposed scheme is that it is essentially a modal 
method, and therefore requires determining all possible 
membrane modes in the frequency range of interest. This in 
itself may be a very formidable task for large structures, 
since the number of modes which may contribute can in- 
crease very rapidly. Some techniques will probably be re- 
quired to filter out those modes which will not contribute 
significantly, see Refs. 26, 3 for instance, for preliminary 
attempts along these lines. Statistical approaches to classify- 
ing both the density of modes :7 and the modal shapes :8 will 
also be very useful, if not essential, for considering large and 
complex structures. 
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APPENDIX A: SHELL THEORY 

We follow the development of Green and Zerna •6 who 
provide two derivations of the asymptotic theory of smooth 
shells, both methods yielding the same set of equations. The 
first derivation uses a direct method, analogous to the meth- 
od used for plate theory, to obtain approximate equations for 
the bending of shells. In the second procedure Green and 
Zerna use asymptotic expansions to obtain the same equa- 
tions from the three-dimensional equations of elasticity in a 
more consistent manner. The same set of equations were 
obtained by, among others, Koiter •8 who also used asymp- 
totic methods to find a consistent theory for small deflec- 
tions. 

The equations defined below are for an arbitrarily 
curved, smooth shell, and are the simplest set of shell equa- 
tions which includes both membrane effects and bending 
effects, each of which is important for the scattering prob- 
lem. The basic assumptions are: (i) the shell is thin; i.e., 

h/Rmi• '• 1, 

where h is the thickness and Rmi n the smallest principal radi- 
us of the undeformed middle surface; (ii) the strains are 
small and hence Hooke's law applies everywhere, and (iii) 
the state of stress is approximately plane, i.e., the traction in 
the direction normal to the undeformed middle surface is 

small in comparison with the remaining components of 
stress, which lie in the tangent plane. We first review the 
static theory from Green and Zerna. •6 

The curvilinear coordinates on the shell are 0• and 02, 
with corresponding direction vectors aa--=x•, a = 1,2, not 

necessarily of unit magnitude, and unit surface normal a 3 
directed out of the shell. Greek sub- or superscripts assume 
the values 1 or 2, and the suffix, a denotes differentiation 
with respect to 0 0 . The symmetric metric surface tensor has 
contravariant components aa• e = a,• .a•, and covariant com- 
ponents such that a '• aer = 6•. The covariant derivative is 
distinguished by ] and is defined such that v"la =v,e.axa •'x, 
or vale = v'•,• + F.•av x, where I'• = a"Vav.ax, • are the 
Christoffel symbols of the second kind. 

The in-plane stress resultant has components n "•, and 
the stress couples are rn '•. The shearing forces q• are related 
to the couples by 

q• • jr•a/•]a ' 
The equilibrium equations are 

n•l• + p• = O, 
n•ab,•# + q•l• 

where p• are the 
normal force, and 

b•e = be• = 

(A1) 

(A2) 

+P3 •--- 0, (A3) 

applied shear forces and P3 the applied 
be• define the surface curvature 

-- a• .a3, •. (A4) 

The displacement vector of a point originally on the middle 
surface is o• a • + wa3. The constitutive relations for an elas- 
tic shell are 

n,• = p, hc3H •,•X( v•,l x _ ba x w), (AS) 
h 3 t• r,2•-•a•P"•,• 

m•a -- T• •" •laX, (A6) 
where H depends upon the symmetry of the material com- 
prising the shell, and simplifies for isotropic materials to 

H •* = • [ ( 1 - v ) (a •*a • + a •ea e•) + 2va •a e• ]. 
(A7) 

Here, v is the Poisson's ratio, ce is the plate compressional 
: = E/p• ( 1 -- •), where E is the Young's wave speed, c• 

modulus. The dynamic equations for a fluid-loaded shell are 
obtained by substituting 

p•=--p•ho,•, •3=--p•hw,-p, (A8) 

wherep is the acoustic pressure in the external fluid andp• is 
the mass density per unit volume of the solid. The resulting 
shell equations are 

[p•hc•H•(o• -- b•w) ] •e -p•0,3 = 0; a = 1,2, 
(A9) 

-p•hw. =p. (AIO) 

APPENDIX B: INTEGRAL IDENTITIES 

Let •b be a radiating solution to the Helmholtz equation 
in the region exterior to S with far-field behavior defined by 
the radiation amplitude B such that 

•5=B -•-- + o , r-. oe. (B1) 
Integrating the identity •*V2• -- •5V2•5 * = 0 over the exteri- 
or region, and using Green's theorem to cast it as surface 
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integrals on S and the surface at infinity, implies the identity 

Alternatively, 

im;s•b , &b dS=k f4 iBi2dD ' (B3) •n 

Now, assume that • is the solution to the radiation prob- 
lem (34)for real-valuedf Then, using (34) implies that 

& ' •n 

Integrating by parts, or using the self-adjoint property of the 
boundary condition (34), we may convert the final term in 
the right member so that it becomes 

' On ' On 

(B4) 

It therefore follows from (B3) and (B4) that 

- Iml-•n• ar) =Pk f4,• lB I2 dD>O ß (BS) 

APPENDIX C: A MODIFIED IMPEDANCE 

The impedance condition (9) depends only upon the 
ratio of inertial effects, since v/R = p/p•h. The impedance 
condition was motivated by identifying the terms in the left 
member of Eq. (5) which are largest under the assumption 
of high-frequency, subject to (16), but all the while ignoring 
bending effects. One result of this particular asymptotic scal- 
ing was that the terms dependent upon the in-surface dis- 
placement were ignored, as was the term 
-- pshc•2H"•P'•b•bpx w. By including this term, which is lin- 

ear in w, but still ignores membrane effects, we obtain a 
slightly different impedance, i.e., V-•//, where 

•/= r/ >•r/. (C1) 
1 - (R 2/112)Ha/•PXbaabaa 

The inequality (C1) follows from the positive definite na- 
ture of the elasticity tensor, and the equality prevails only at 
a locally flat region. 

The difference between V and •/is small, of order 1/fl 2, 
on account of the high-frequency assumption. Therefore, the 
modified impedance •/will not differ much from V. It is pos- 
sible to simplify the term in the denominator of (C1) by 
choosing the local coordinates to coincide with the principal 
directions of curvature, Let the signed principal radii of cur- 
vature be R• and R2, then it follows from the definition of 
H a•px in (A7) that 

I 1 2v (C2) H •t•PXb•t•b.x = • + • + R, R-• 

The values for the sphere (R l = R2) and the cylinder 
(1/R 2 = 0) follow immediately. 

APPENDIX D: SOME USEFUL IDENTITIES 

The surface integrals for the spherical shell simplify us- 
ing the following identities 29 

• 2 /dP"•'•2 2m(m + 1) (DI[) I (1 --,u )•-•-• ) d,u -- 2m + 1 ' 
e2,, d/.t- (D2) 

• 2m+l 

The Wronskian relation for the spherical Bessel functions is 

j• (z)h ; (z) -j; (z)h.(z) = i/z 2. (D3) 

The asymptotic behavior of spherical Hankel functions ,of 
large argument is also used, 

h,, (z) = ( - i)" + t ( d*/z) + O(l/z2). (D4) 
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