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A general asymptotic theory is developed to describe the acoustic response of heavily fluid-
loaded thin shells in the midfrequency regime between the ring and coincidence frequencies.
The method employs the ideas of matched asymptotic expansions and represents the total
response as the sum of an outer, or background response, plus an inner or resonant
contribution. The theory is developed for thin shells with smoothly varying material and
geometrical properties. First, a suitable background field is found which satisfies neither the
rigid nor the soft boundary conditions that have been typically employed, but corresponds to
an impedance boundary condition. The background field is effective throughout the
midfrequency as well as the strong bending regimes. The corresponding inner or resonance
field is also valid in the same range. The approach taken is to represent these fields as inverse
power series in the asymptotically small parameter 1/kR, where R is a typical radius of
curvature of the shell and & is the fluid wave number. The leading-order terms in the series
differ in the inner and outer expansions, in such a way that the displacement tangential to the
surface is negligible in the outer (background) region, but dominates the scattering near
resonances. The resonances can therefore be associated with compressional and shear waves in
the shell. A uniform asymptotic solution is derived from the combined outer and inner fields.
Numerical results are presented for the circular cylinder and the sphere and comparisons are
made with exact results for these canonical geometries. The results indicate that the method is
particularly effective in the midfrequency range. The strong bending regime is also well

represented, especially for cylindrical scatterers.

PACS numbers: 43.20.Fn, 43.30.Dr, 43.30.Gv, 43.40.Ey

INTRODUCTION

It is both well known and intuitively clear that when a
solid target, such as a metallic sphere, is subject to acoustic
wave radiation in a fluid medium, such as water, the bound-
ary condition on the scatterer surface may be accurately
modeled by the so-called rigid condition for which the nor-
mal velocity is everywhere zero. However, it is also well es-
tablished that the scattered field calculated by employing
this boundary condition breaks down at or very near every
in-vacuo resonant frequency of the scatterer. In physical
terms, the coupling between the solid and the fluid is very
strong in the vicinity of these resonances, and hence a sub-
merged structure that is only weakly affected by a given exci-
tation can in fact be subject to strong vibrations if the excita-
tion frequency is at or close to one of its in-vacuo resonances.
In mathematical terms, the approximation based upon the
rigid boundary condition is singular at the resonances. For
separable geometries, such as the sphere and the cylinder,
exact solutions exist from which the structure of these reso-
nances can be examined in detail. The analysis for these sim-
ple shapes serves as a guide for the study of more complicat-
ed shapes and also as a numerical test for approximate
theories and computational schemes.

These observations concerning the separation into back-
ground plus resonant contributions has generated a substan-
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tial literature over the past decade or so on what is referred to
as resonance scattering theory (RST),' a good account of
which may be found in the review article by Gaunaurd.? The
main utility of RST seems to be as a diagnostic and interpre-
tive procedure, whereby one can deconstruct the total re-
sponse by subtracting out the background field, which is
relatively easy to compute, so that one may then clearly iden-
tify any underlying resonances. It does not lend itself to a
constructive approach whereby one could use the separation
into background plus resonances to generate an efficient and
relatively simple means of computing the total response. A
procedure for doing this was recently described by Norris.>
The method is based upon the use of matched asymptotic
expansions and can be applied, in principle, to targets with
nonseparable geometries and complicated material proper-
ties. The matched asymptotic approach? splits the total field
into the background, plus a sum of resonant contributions.
The form of the background response comes out naturally
from the asymptotic scaling, where the small parameter in
the asymptotic expansion is the impedance ratio. In this ap-
proach the “outer” solution is the response sufficiently far
away from a given in-vacuo resonance, while the “inner”
solution is the rapidly varying response in the thin boundary
layer region surrounding a resonance. The total response is a
combination of the two solutions and displays, as a function
of frequency, the general form of a smooth background or
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outer field punctuated by sharp fluctuations arising from the
inner or resonance field.

A straightforward extension of the concept of a rigid
background response is not equally rewarding when applied
to thin shell structures.*” As an example consider an infi-
nitely long cylindrical thin shell in water subjected to a time
harmonic acoustic plane wave. The far-field backscattered
amplitude of the acoustic pressure field is plotted versus AR
in Fig. 1, where k = w/c, o is the circular excitation frequen-
¢y, c is the fluid sound speed, and R is the radius of the
cylinder. The sharp lines indicate resonances associated with
extensional and flexural wave motion on the shell. It seems
fairly clear that neither the rigid nor the soft boundary con-
dition is adequate to model the shell response away from
resonances, because, if either background were indeed repre-
sentative of the actual field one would expect the response to
drop almost down to zero between resonances, which is not
the case from Fig. 1, although it is worth noting that at lower
values of AR the soft or pressure release boundary actually
performs better than its rigid counterpart. The same failure
is found if the matched asymptotic algorithm?® is used to
generate the total response from a thin shell,® and the reason
can be crudely explained by the presence of another small
parameter in the problem, viz., the ratio 4 /R, where h is a
typical shell thickness and R is the radius of curvature. In
practice, and in the examples considered in this paper, this
ratio is far smaller than the impedance ratio, and, hence, any
asymptotic approximation based only upon the latter is
doomed to failure. Recently, however, Gaunaurd and
Werby? and Werby'? have proposed an intermediate
boundary condition for spherical shells which provides a
“correct” background in the sense that when subtracted it
yields sharp, isolated resonances. Furthermore, the bound-
ary condition reduces to the soft and rigid conditions in the
limits of low and high frequencies, as one might expect from
Fig. 1. Another type of boundary condition which also ap-
pears to be “correct” has been recently proposed by Norris®
and amounts to the approximation of the shell response
away from resonances as being due only to flexural motion.
The connections between these results will be addressed later
in the paper.

The objective of this paper is to describe a rational ap-
proach for approximating the total response from heavily
fluid-loaded thin shells. The methodology is similar to that
of Norris,® which addressed only the case of scattering by
solid targets, and for reasons mentioned above cannot be
adapted to thin shells without major modifications. These
modifications are described in detail in this paper. We begin
in Sec. I with the general equations for an arbitrarily curved,
smooth inhomogeneous thin shell. The outer or background
field is derived and discussed in Sec. 11, where the response is
assumed to be a regular asymptotic series in inverse powers
of kR. The form of this series is motivated by the observation
that for frequencies between resonances the normal displace-
ment is an order of magnitude greater than the in-surface
displacements. Equating terms of like order leads to a
boundary condition for the lowest-order pressure field
which includes bending effects. Solving for the lowest order
as well as the next higher-order pressure field we find that
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FIG. 1. The contrast between the soft and rigid backgrounds for broadside
incidence on a steel cylinder in water with 4 /R = 1/90; 4 is the thickness
and R is the radius of the cylinder. The curves show the difference between
the backscattering amplitudes for the “exact” solution and the responses
corresponding to rigid (Neumann) and pressure release (Dirichlet)
boundary conditions on the surface. See Sec. VII for details.

this expansion breaks down in the vicinity of membrane re-
sonances. We next turn to the inner field near a membrane
resonance frequency and represent it once again as an in-
verse power series. This time, the form of the series is chosen
to reflect the fact that at the compressional resonances the
in-surface displacements are an order of magnitude higher
than the normal displacements. Moreover, the shape of the
leading-order in-surface displacements are now proportion-
al to the membrane mode shape at that particular resonance.
We complete the analysis by determining a uniform solution
that is valid throughout the full frequency range for which
kR is large, meaning in practice kR > 5, roughly. The details
of the asymptotic analysis for the outer solution are given in
Sec. I1. The inner or resonant contributions are discussed in
Sec. III, where they are combined with the outer solution to
yield a uniform solution valid at all frequencies. Some of the
general features and properties of the uniformly asymptotic
solution are discussed in Sec. IV. The applicability of the
procedure is demonstrated in Secs. V and V1 for cylindrical
and spherical thin shells, respectively, and comparisons are
made with the corresponding exact analytical solutions for
these canonical shapes. Numerical results are presented in
Sec. VII which show that the asymptotic method is very
accurate over the entire midfrequency range for the cylinder
and sphere.

One of the motivations of the present work is to demon-
strate that the response from thin shells can be profitably
split into background and resonant parts, and that the deter-
mination of each of these separately is far less complicated
than the solution of the total problem as a whole. In practice,
the internal resonances can be very sharp, and any numerical
procedure which does not take them into account explicitly
may either give an incorrect amplitude or miss the resonance
entirely. The theoretical development in this paper addresses
among other topics the question of a suitable background
field for thin shells.>' It will become clear that the back-
ground response is far simpler to compute than the full re-
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sponse, since it amounts simply to an effective impedance
condition in the midfrequency range. Before commencing,
we should mention some related works in the large literature
on acoustic scattering by shells which have some bearing
upon the present approach. Among these are the reviews of
Gaunaurd and Werby'! and Muzychenko and Rybak,'? the
latter being mainly a survey of the Russian literature. In a
recent paper, Prikhod’ko'? attempted to implement an
asymptotic approach with the small parameter being the
geometrical ratio of shell thickness to radius. The back-
ground field was identified as the one satisfying a soft bound-
ary condition, which clearly cannot provide a suitable ap-
proximation except at very low frequencies (see Fig. 1). An
interesting but more ad-hoc approach to describing the
acoustic response of thin shells can be found in the papers by
Veksler'* and Veksler et al.;'* however, these papers are
restricted to cylindrical shells and deal only briefly with oth-
er geometries.

. BOUNDARY CONDITIONS FOR THIN SHELLS

The general equations of motion for a smooth fluid-
loaded shell are outlined in Appendix A, Egs. (A9) and
(A10). These are three equations, corresponding to the
three displacement components w, v% a = 1,2, which are
coupled to the acoustic pressure p (see Appendix A for a
definition of all the variables used here and a discussion of
the notation). We will be concerned with scalings based
upon a dimensionless frequency parameter. This is facilitat-
ed somewhat by working in terms of dimensionless variables
b, @, and 0%, defined by

n P A w aa v
= w=—, v=—, (1)
P pc’ R R

where the fixed length R is a typical radius of curvature of
the surface, ¢ is the acoustic sound speed, and p is the inviscid
fluid’s density. These dimensionless parameters will be used
for the remainder of the paper; however, to simplify notation
we drop the carats. Thus, to convert back to dimensional
variables, one simply multiplies p by pc* and the shell displa-
cements by R.

The acoustic pressure p(x,t) satisfies the wave equation

Vzp_c_zpnzoi (2)

in the infinite region exterior to the shell’s surface S. In Eq.
(2) and subsequent equations, the subscript ¢ indicates the
derivative with respect to time. The pressure may be decom-
posed into incident and scattered fields, but at this stage we
will not distinguish between these separate parts of the total
response. The remaining boundary condition requires that
the fluid and shell normal accelerations are the same
R —dp

- Wy = . 3
c2w on )

Time harmonic motion of radial frequency o is considered,
and the term Re {...e ~ “'} will be omitted from subsequent
expressions. Then, Eqs. (A9), (A10), and (3) become, re-
spectively,
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a=12, (4)
2
(kR)’w + Z—‘;R YAy — b aw)by
2 o2
—nR“<ﬁ7c—§H“"‘”w|aﬁ)M = np, (5)
o
(kRyw=R-% (6)
an

where k = w/c is the fluid wave number and ) = @R /c, is
the dimensionless compressional wave number in the plate.
Also, 17 and S are dimensionless numbers, the fluid loading
parameter and the thickness parameter, respectively, de-
fined as

(7N

R h?
17 P_’ BZ_
psh

T12R?

It is assumed that the fluid parameters p and c are constants
but the geometrical and material parameters for the shell,
such as the shell thickness /, may vary over its surface.

These are the basic boundary conditions for the acoustic
scattering problem in the exterior region. As discussed in
Appendix A, (4) and (5) are simply dynamic versions of the
shell equations in the book by Green and Zerna,'® and agree
with a similar set of equations recently obtained by Pierce,'’
and by many others over the years. These equations are
unique in the sense that they are the simplest set which de-
scribe the motion of arbitrarily curved shells and at the same
time include both flexural and membrane effects.'® The the-
ory developed in this paper is in no way limited to these
equations, but could be easily adapted to any linear set of
shell equations; however, we choose to concentrate on these
particular ones because they exhibit all the essential physics
of the problem.

1. THE OUTER SOLUTION
A. The effective boundary condition

We now develop asymptotic approximations to the full
set of boundary conditions in the limit of large kR. This
choice of the asymptotic parameter is quite distinct from the
ratio of acoustic impedances which turned out to be the nat-
ural parameter for solid targets,® and is independent of the
geometrical parameter defined by the ratio # /R. However, it
leads quite directly to scalings which define inner and outer
solutions in the same way that the impedance ratio did for
the solid target.’ In practice, as demonstrated by the nu-
merical examples, the fact that a high-frequency asymptotic
method is employed to split the solution into outer and inner
parts does not mean that we are restricted to large values of
kR, but rather to values for which kR = O(1) or greater.

We first summarize some results, that will be derived in
a more rigorous fashion later, but are useful at this stage to
understand the different physical effects and associated fre-
quency ranges. It helps to distinguish two separate frequen-
cy regimes: first, the frequency range from kR = O(1) to
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slightly below coincidence is referred to as the midfrequency
regime; while the range above and beyond this is called the
strong bending regime.** In the midfrequency regime, the
inertial effects of the shell dominate the elastic effects to first
order over most of the frequency range, i.e., bending wave
effects are small. This property is characteristic of the mid-
frequency range, as we will see. Bending or flexural wave
effects become significant, if not dominant, in the higher
frequency range, or the strong bending regime,'® which
starts roughly at the coincidence frequency w, defined by
k. R =c/c,p.

Thus, in the midfrequency region, the condition (5) can
be approximated simply by

(kR)w = np. (8)

Equation (8) combined with (6) implies that the pressure
satisfies a local impedance boundary condition

a9

on
This is equivalent to matching the pressure loading with the
normal acceleration of the shell, ignoring the normal forces
generated by the bending of the shell. On the other hand,
when we need to account for the effects of the flexural wave
motion, whether it is subsonic or supersonic, we must in-
clude the significant terms in (5) that were previously ig-
nored, which are those involving the highest derivatives of .
This gives, instead of (8), the condition

Y
_1,—0 9
Rp ®)

2

{kR)*w — nR 4(—ﬁ—i’;H"’B’"‘w aﬁ) = 7p. (10)
/4 |pA

Using the velocity continuity, (6), the normal displacement

w may be completely eliminated to yield a single boundary

condition for the acoustic pressure

2

PN, R B—H‘W(—al) ] =0. (11)
on R 7792 on taB X |pa

Equations (9) and (11) are the boundary conditions which

define the outer solutions or background fields in the midfre-

quency and strong bending regimes, respectively.

B. Asymptotic analysis

We now provide a justification for the conditions (9)
and (11) based upon a formal asymptotic expansion in the
small parameter 1/AR, or equally well, Q@ ~'. The preceding
discussion suggests the following asymptotic perturbation
scheme. We assume

p=p(0)+ (kR)—zp(l)+ (kR)—4p(2)+ sae ,
w=(kR) 2w + (kR) *w'V + ---, (12)
v* = (kR) ~ @ 4 (kR) 5™ 4 -1,

The motivation behind the scaling in (12) comes from a ray
theory type of ansatz for each of the quantities on the right-
hand side (rhs). Specifically, we assume that they depend
upon the “fast” shell coordinates 8, = 18,. We are not
directly interested in applying the ray theory here, but use it
purely as a basis for the scaling employed. In particular, each
surface derivative of any of these physical quantities implies
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a magnification of order kR. Several explicit ray treatments
of acoustic scattering from canonical thin shells are avail-
able,'®*? and we refer to these papers for further details on
ray applications.

Equation (6) implies that

w(m) _ R ap(m) ]
n

m=0,12,... (13)

Substitution of (12) into (5), and recalling that a surface
derivative is equivalent to a magnification of order kR in the
asymptotic sequence, yields for m =0

2
w'® = 5p'® + R “(ﬂ— H""”‘w,‘,‘,’},) . (14)
nQ? oA
This relation, combined with (13), implies that the follow-
ing condition must be satisfied by the leading-order pressure
field, p(o’.

ap'? _ip(O)_”R4 g? Haap/l(apw)) ] =0.
on R nQ? an Jiaglipa

(15)

This is clearly equivalent to (11), while the corresponding
condition for the midfrequency regime can be seen as a spe-
cial case of the above condition if the following scaling holds

1<kR<pf . (16)

This scaling permits us to ignore the bending effects and
leads to the point impedance condition (9).

The in-surface displacements, to leading order, follow
from (4) and (12) as the solution to the forced system of
equations

(p R H (Y g + poher® ™™

= kR(p,hc, H b, w'®) 4. (17)
This system of two coupled equations describes the forced
motion of a curved and closed membrane. Note that the cou-
pling to the normal displacement equation has been elimin-
ated and that all terms in (17) are of order (kR )2 The subse-
quent term in the series for p follows by substituting the
previously found values for the leading-order displacements
in (5), yielding

() _ 2 pragpif_1_ o) ©
mw''=w""+R*LH (ﬁ o4 — boaw )b,,B

CZ
— 7R 4(—32—11"34"10“’) (18)
7Q? @ oA
The final bending term in this equation may or may not be of
the same magnitude as the others, on the basis of the scaling
(16) alone. The condition under which it matches the others
is B=0 [ (kR) ~?]. If for the moment we assume for the
sake of simplicity that bending effects are negligible, then
w'" can be eliminated from (18) by using (13) withm =1

to give an equation for p*"’,

IptH

5n — et

_ zé apaf 1 o) _ o) 19
= R CZ H kR Up/l bp,{w b(lﬂ' ( )
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This may be solved using the Green’s function for the exteri-
or Helmholtz equation subject to the boundary condition
(9). The Green’s function will be discussed later.

In principle, this regular asymptotic perturbation pro-
cedure can be iterated to find the successively smaller terms,
providing that the iterative process converges. However, it is
clear that the iteration must break down at the membrane
resonance frequencies. These are defined as the frequencies
at which (17) has a solution for zero forcing on the rhs.
These homogeneous equations do not involve the normal
displacement (w = 0) and hence the modal solutions corre-
spond roughly to in-surface compressional and shear waves,
quite distinct from bending wave type of solutions. These are
membrane modes, in the terminology of shell theory.'¢ The
generic structure of the asymptotic expansion therefore
breaks down at or near these membrane resonance frequen-
cies, implying that a different assumption on the form of the
total response is required locally in the frequency domain.
We call this, by analogy with boundary layer theory, the
inner solution, and the solution just discussed is the outer
solution. The full solution comprises both the inner and out-
er parts, and will be derived once the form of the inner solu-
tion has been determined. First, it is useful to define some
quantities associated with the membrane modes.

C. The membrane modes

The breakdown of the outer solution is apparent if the
solution to (17) is expressed as a modal series. Let w,,,
m = 1,2,..., be the modal frequencies and ¥ ™ be the mod-
al displacements, which are solutions to

(0. A H PV ) 5 + p,ho, V™% =0, (20)

We assume, for simplicity in later equations, that the modes
are normalized according to

(V(M)’v(m)) = 11 (21)
where ( ) is the inner product on the surface S, defined by
(UV) = (U",Va)sJ UV, p.h dS. (22)
S
It may then be demonstrated that the modes are orthonor-
mal in the sense that
(VM ymy —§ (23)

Modes which are degenerate may be defined such that (23)
holds, however, it is assumed for the sake of simplicity that
the modes are not degenerate. The solution to (17) can then
be formally expressed as

p?® = kR i ((p.h) = "(phcs H b w5,V )

m=1
X [V (0 — o)) ]

Integrating by parts, this becomes

@ —

o (0) £(m)
—kR Y ﬂf_)ytmw, (24)

2 2
m=1 @ — O,

where in order to save space later the surface functions are
now defined
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F=CH P, V. (25)

The quantity £ is an inner product of interior or surface
stress with the curvature tensor, and vanishes wherever ei-
ther the curvature is zero (locally flat) or where the mem-
brane stresses are zero. Note that although the mth mode is
normalized according to (21), it is assumed to be a ray-type
solution, which implies that the surface function f*™ is of
order (kR). As mentioned before, ray theory is not used here
to determine the modes explicitly, although that could cer-
tainly be done; our only purpose is to estimate the order of
magnitude of terms in the asymptotic scheme. This is a rath-
er unusual application of ray theory, but is not unknown in
applications to the vibrations of shells. Gol’denveizer** and
others®* have used ray-type ansatzes to simplify the general
shell equations, although the precise scaling considered here
does not seem to fall into Gol’denveizer’s classification.?>**

The fundamental consequence of the modal expansion
(24) at this stage is that it clearly shows how the outer solu-
tion blows up at each and every membrane modal frequency.
Specifically, this happens to the next term in the scattered
pressure, since it follows from (19) and (24) that near the
mth resonance frequency p‘'’ must satisfy the boundary con-
dition

Rap_m_np(U:R_zwftmi’ (26)

on 2 o —

and hence it becomes singular as w »w,,.

1l. THE RESONANT CONTRIBUTIONS
A. The inner solution

The breakdown of the outer expansion is due to the fact
that it allows the in-surface vibration to become unbounded.
There is no feedback between the forcing of the leading-or-
der approximation and the displacements v, which are
explicitly assumed to be small in magnitude. In order to alle-
viate this shortcoming we propose an inner solution valid
near the membrane resonance frequencies. Thus, near the
resonance frequency w,, we assume instead of (12) the new
ansatz

p:P(0)+ (kR)MZP“)-}- e
w=(kR) WO 4 -, (27)

a:(kR)—lA(w)V(m)a+ (kR)—Sua(l)+ e

Comparing this with (12}, we note that the in-surface dis-
placements have leap frogged the normal displacement and
are now one order greater, rather than an order smaller in
magnitude. The present asymptotic analysis is based upon
the assumption that the frequency is close to the resonance
frequency in the sense that (kR)* — (k,,R)* = O(1). The
perturbation analysis could be performed in a more formal
manner by rescaling the frequency variable according to this
assumption, but the details tend to obscure the physical
aspects of the solution. It is preferable to retain the original
variables in so far as is possible so that the origin of each term
is apparent.

In the present asymptotic approximation the in-surface
solution is essentially just the mode under consideration
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with a frequency-dependent modal amplitude 4(w) which
must be determined. An equation for 4 can be found by
considering the equation for u**?, which follows from (4),
(20), and (27) as

(p:hcp H P ul)) g + p ool u™”
= kR(p,hc2H “#*b,, W) 5
+ (kR)*Ap h(w}, — *)V ™2 (28)

We have replaced o by »,, in the left member of (28), since
the difference is assumed to be relatively small, but the dif-
ference is retained in the right member in order to arrive at a
frequency-dependent expression for 4. Equation (28) has a
unique solution for u™" if the inner product of the right
member with the mode V™ vanishes, implying the relation

A(0?, — 0®) + (kR) !
X ((psh) ~(p A H Po¥b, W) 5,V (™) = 0.

This may be transformed by integrating by parts on the sur-
face, to give

A(wz—mfn)+(kR)—1(W(°),f""))=0, (29)

where £ is defined in (25). The factor of (kR) appears in
these expressions because of the assumed scaling (27) and
also because of the fact, noted previously, that ¢ is of
order (kR). It remains to find W ®.

The equation for W @ follows from (5) and (6). Now,
in addition to the inertial term in the left member of (5), we
must also include the possibility of a significant contribution
from the term depending upon the in-surface components.
Thus, instead of (5),

W(O) _ ﬂR 4/ 32 HaBpAW(O)
By o8
Ui pA
2

c
+ (kR) ~'d(w) FP ZH* D,V i =P . (30)
Eliminating W ® using the continuity condition (6) implies

that the pressure satisfies the boundary condition

apP @ _ _711)(0) —7R* B’ Hag,,,l(aP‘o’) ]
on R 7’ o Jaglipa
- A“")R AR oim) (31)
C

This should be compared with the equivalent boundary con-
dition (15) for the outer solution. It is also instructive to
compare (31) with (26), which does not properly account
for the change in asymptotic behavior near resonance. Clear-
ly, (31) gives a finite contribution as the frequency passes
through resonance.

Referring to (15) and (31), the inner solution can be
represented as the sum of the outer solution plus an addi-
tional part proportional to A (),

P =p® _ (kR) (R /cH)A$™,
A apm

@ on
Here, ¢ =Gf "’ where the Green’s operator G maps an
arbitrary function f from S to the exterior domain according

(32)

WO =@ _ kR L (33)
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to G: f— ¢ =GY, where ¢ satisfies the Helmholtz equation in
the exterior region plus the radiation condition at infinity,
and the following boundary condition on S

e Sk L € I R

Thus the operator is defined such that ¢=Gfis the radiated
solution for the boundary condition (34) on S. Note that the
boundary condition for the midfrequency regime is recov-
ered if the last term on the left-hand side of (34) is dropped.

Substituting the normal displacement W into the
solvability condition (29) implies a linear equation for 4,
which may be solved to give

A= _ (w“”,f""’)
w? — 0, + a0 /0?

A further appr0x1manon may be made, which is entirely
consistent with the high-frequency assumption, by removing
the frequency dependence in the ratio (,, %, /©”) by evalu-
ating its magnitude at » = w,,. This is justified by the weak
dependence of «,, on frequency, about which we will say
more later. Thus
@ pim)
A=) g

W' — ok, + @&,

(kR) ', (35)

(36)

)~ (37)

where
Ap = [Am]uc o, (38)

We reiterate that the appearance of the asymptotic param-
eter (kR) in (37) is a result of the definition of 4 as a dimen-
sionless parameter of order unity. Finally, we define for later
use dimensionless quantities analogous to «,,, and &@,,,,
a,(@)=(R%c)e,, (0), a,

=(RYA)&,. (39)

B. The uniform solution

Equation (37) provides us with the amplitude for a sin-
gle resonance near the resonant frequency w,,. Because the
modes are assumed to be nondegenerate, the contribution
from each may be summed as if it acts in ignorance of the
others. Substituting from (37) into (32) and summing over
the resonances gives

4 1 &  (weS"™)
unll’ (0) . (m), (40)
P ¢ z_x o — o, +a,, ¢
where
wy = (kR) ~*w'?, (41)

is the leading-order approximation to the normal displace-
ment according to the outer expansion. Recall that p® and
w, are the total pressure and the normal displacement for
the simplified scattering problem with boundary condition
(15). In fact, using (13) w, can be eliminated from (40),
giving
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) 1 b
umf= Q) + m (m)’ (42)
P P Rm2m=1w2—cuf,,+?i,,,¢
where
)
b, = <_‘9§n me)). (43)

The relation in (42) is hereafter referred to as model L. If the
quantity b,, is evaluated at » = @, and denoted by b,, inthe
expression (42}, then we refer to that as model I1. Note also
that the midfrequency solution is contained in the present
solution by letting S— 0. The limit of # = 0 is not, however,
a regular limit in the strong bending regime. The singular
nature of this limit arises from the possibility of supersonic
or near-supersonic flexural modes on the shell which are
insignificant in the mid-frequency regime. Comparing the
total first-order inner expansion (42) with the combined
first and second terms for the outer expansion, viz., (12),
(18), and (24), we see that the solution (42) actually con-
tains the correct form of the outer expansion away from the
resonant frequencies. Thus p“™ of (40) or (42) is the desired
uniformly asymptotic solution, correct to first order at all
frequencies in the midfrequency range. This is the main re-
sult of the paper.

IV. DISCUSSION

The uniform solution in (42) has a simple form as the
sum of a relatively smooth background solution, p'*, plus
resonances at each of the frequencies of the membrane
modes. The form of the resonance near a given modal fre-
quency w,, depends upon the parameter &,, of Egs. (36) and
(38). Using the fact that kR is assumed to be large, the per-
turbed resonant frequency may be approximated as

0=, &,/ 2w,. (44)

It follows from the discussion in Appendix B that Im &, > 0,
and hence the imaginary part of the perturbed resonance
frequency is strictly negative. This is in accord with the cau-
sality requirement that the total solution must be analytic in
the upper half of the complex @ plane. The shift in both the
real and imaginary parts of the frequency are small accord-
ing to (44), indicating that the effect of fluid loading is not
strong for these modes. This is not surprising, as the mem-
brane modes are primarily caused by in-surface motion,
which does not couple strongly to the exterior fluid. In fact,
referring to the definition of «,, in (36), we see that it de-
pends upon the surface function ™ of (25), which in turns
depends explicitly upon the curvature. When the curvature
vanishes, as in a flat plate, the coupling disappears.

The coupling also vanishes for shear waves on regions
with equal principal curvatures, or spherical regions. On
such a region, the tensor H of Eq. (A7) simplifies consider-
ably, and it may be shown, from (25), that

Rf"™= —c(1+v)Vi™e,, (45)

where R is the radius of curvature. The quantity V¢,
which is the trace of the strain tensor, vanishes for a shear
wave, and hence £ = 0 if the mode is purely shear in na-
ture.
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At frequencies O(1) away from the membrane resonant
frequencies the contribution of each modal term in (40) is of
order 1/w? in comparison with p®, and hence the uniform
solution (40) reduces to the outer solution p©. The mode m

has on O(1) contribution for frequencies such that
o—o, =0,;'Red,,), (46)

and the maximum occurs at w = @,, — Re a,,/2w,,. It is
interesting to note that the total normal displacement right
at w,, is, using (32) and ignoring the other modal contribu-
tions which are small,

(w(O)f(m)) a¢(m)
(3™ /onfy on

WO — y©® _

(47)

If we think of the surface functions /" as basis functions for
the normal displacement, then right at @ = w,,, the compo-
nent corresponding to mode m is identically zero.

The modes that arise in the present asymptotic expan-
sion are not exactly the same as what is commonly under-
stood as membrane modes. Equations (20) are a pair of si-
multaneous PDE:s for the in-surface components of the shell
displacement and are independent of the normal displace-
ment. However, it is possible to supplement these equations
with a third for the normal displacement. This is the conven-
tional approach in discussions on membrane theories of
shells. In terms of the general equations (4) and (5), it
amounts to maintaining (4) exactly as shown, but to ignore
the bending terms in (5), as well as the fluid pressure. Then,
(5) provides an explicit expression for w in terms of the in-
surface components,

S (48)
L, — QY/R*’

where

Lot = H . (49)

Eliminating w from (4) and assuming time harmonic mo-
tion, we deduce that the membrane modes must satisfy

[ hcz(Haﬂpi+ LGBLM )V(m)]
pS P (Q2R ;Z_La‘ﬁ‘balﬂl) plA »

+p,ha, Ve =0.

(50)

Comparing these equations with (20), we see that the differ-
ence is associated with a term of order ) ~2, which is small
by assumption.

A regular perturbation analysis of (50) shows that the
modal frequencies are shifted from those of (20) according
to 02— O + O(1). This is entirely consistent with the shift
predicted by the uniformly asymptotic theory, viz., Eq.
(46). Before proceeding to the examples, we mention that it
is possible to improve upon the impedance condition (9) by
the introduction of a modified impedance, which is de-
scribed in Appendix C.
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V. EXAMPLE: THE CYLINDRICAL SHELL

The theory outlined in the previous section will now be
applied in detail to the specific example of a circularly cylin-
drical thin shell of infinite extent. The case of a thin spherical
shell is discussed in the next section. For both of these ca-
nonical geometries, it is possible to compare the asymptotic
solution with exact analytical solutions for the scattered
field, thereby providing some general understanding of the
range of validity of the asymptotic method. Numerical com-
parisons will be discussed in Sec. VII. The shell theories em-
ployed in each of the cases considered are consistent with the
original equations, (4) and (5), upon which the theory is
based. We reiterate that this does not imply that the asymp-
totic theory is restricted to this class of shell theories.

A. Equations of motion for the cylindrical shell

We consider a uniform thin cylindrical shell of radius R,
thickness 4 and we introduce cylindrical polar coordinates
r,0,z. For the purposes of simplicity, we consider the case of
broadside incidence thus eliminating the z dependence from
the shell equations. The two pertinent rescaled shell equa-
tions are

dW  dw

X o aw=0, 51
d62+d0+ v (51)
dv , d*w 5 c?
—w-2L g2l w=Lp, 52)
v~ P 2 P (

P

where () = wR /c,. These equations are identical to the well-
known Donnell equations and can be found in Junger and
Feit,® Egs. (7.80 a,b,c). The circumferential displacement
is denoted by v and the radial displacement by w, and both
are functions of the angle € on the surface r = R. The re-
maining boundary condition (6) on the shell surface is

(kRyw=R-Z.. (53)
ar

The term in B 2 is significant in bending deformation and will

also be incorporated into our asymptotic theory. The lowest-

order approximation starts from (52). This can be written as

2
5 c_p d4w(0)
2

d04 _ (kR)zw(O):"P(O)-

(54)

By employing (53) we can write the boundary condition for
the lowest-order approximation to the pressure field as

A ) (0)_£2_m_0, r=R.

= 55
or R Q? 304 3r 3

In summary, the outer or background field p‘@ satisfies the
Helmbholtz equation in the exterior domain and (55) on the
shell surface. Notice that the inclusion of the # 2termin (55)
indicates we are including the effects of strong bending. In
the midfrequency range these effects turn out to be small and
the surface condition reduces to the simpler local impedance
condition (9).
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B. Cylindrical membrane modes

The equation for the membrane modes is obtained from
(51) and is
dwyem
de?
where (), = m, where m = 1,2,3... with corresponding nor-
malized modes

+ Q2 V™ =0,

(56)

sin(mt9)_ ‘
J7Rp,h

The appearance of the solid density is a consequence of the
inner product definition (22). The corresponding /™ fol-
lows from (25) as

yom — (57)

_Ci m cos(md)

R* [7Rph

) = (38)

C. The Green'’s operator for the cylindrical shell

As mentioned earlier in the strong bending regime the
Green’s operator must solve (34). When this equation is
translated into cylindrical coordinates it reduces to

r=R.

g _ 77;_45("-) _ 13__2_ 9 =fim, (59)

ar 0% 99 dr

The solution to the exterior Helmholtz equation for ¢'™
which satisfies both the radiation condition and (59) is

c 1 m 1

(m)y _ P
’ ¢’ [mRp,h kH ., (kR) nZ, —E,(B)
X H,, (kr)cos(m@). (60)

Here, the prime denotes differentiation with respect to the
argument and

H, (kR}
= . (1)
kRH*,(kR)
The bending effects are contained in the term E,, (3),
2.4
E.) =1-27 (62)

QZ

The quantity a,, then follows from (36), (38), and (60).
For the present example, it is useful to work with the nondi-
mensional version of (39), which simplifies to
1

Nz, — E,(B)

The dependence of E,, upon /3 allows us to consider the
midfrequency approximation separately by just replacing
E,_ (B) by E,, (0) = 1. which corresponds to the simpler im-
pedance condition (9). Alternatively, we could define the
midfrequency range for this problem to be the range of fre-
quencies for which the contributing modes have E,, (8) ~ 1.
Flexural effects become significant only when the frequency
and mode order are such that the second term in E,, (/3) is of
order unity.

a, =

(63)
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D. Comparison of the exact and asymptotic solutions

We consider an incident plane wave of unit amplitude
propagating in the direction 8 = 0,

inc ikr cos(6)

p=e

= i C,.J,. (kr)cos(m@), (64)
m=20
where C, = 1 and C,, = 2i"", m>1. The total exact response

may be split into the sum of incident plus scattered where the
scattered field is given by

pe=S D,H, (kr)cos(mo), (65)
where "
(S
and
- O I (KE) Eg=E, (B)—(Q—Q;)"".

~ kRJ' (kR)’

(67)
The scattered component of the outer solution is very similar
in form and is found by replacing E §; (8) by E,,, (). Hence,
we can write

p(O) =pinc _|_psc(0)’ (68)

where p*°©) is the leading-order term in the scattered portion
of the outer field.
The uniformly asymptotic field now follows from the
inner and outer solution as
. ® d ’
unif __ ,(0) -2 m (m)
= +Q _ (r,0),
p p mzlﬂz—ﬂfn'*'amqb
(69)
- wherea,, follows from (39) and (63), the radiated field ¢
is given in (60), and
kRC

= C_4 2 np‘h m (70)
Combining these terms we find

2[7] i szmafn
TkR =\ H' (kR)

1 H, (kr)
90— Q2 +a, H,(kR)

The above expression defines model I. If we evaluate the d,,,
at ® = w,,, then we obtain model II. In this paper, all our
calculations for the cylinder are based on model 1.

Finally, we note that the exact solution for the cylinder
can be manipulated into a form which is remarkably like the
uniform solution,

punif =p(O) +

cos(ma). (71)

, - 2

pzp(o) + 217] z szmam

wkR m=1H:"(kR)
1 H, (kr)

02— Q% +a, H,(kR)

cos(m@). (72)

3328 J. Acoust. Soc. Am., Vol. 92, No. 6, December 1992

The only difference between (71) and (72) is that in the
uniform approximation the denominator contains a,,
whereas in the exact solution the associated frequency-de-
pendent parameter a,, appears. We therefore see that the
asymptotic solution has a very similar analytical form to the
exact solution. Before discussing numerical comparisons, we
turn first to the case of the sphere.

VI. EXAMPLE: THE SPHERICAL SHELL
A. Equations of motion

The shell radius is R, with surface » = R in spherical
polar coordinates (r,0,4). We assume that the shell is subject
to plane-wave incidence in the direction 8 = 0 so that there is
no dependence upon the azimuthal angle é. Only one in-
surface component is zero, the one associated with 8 and we
denote it by v. Let u =cos @and v be the Poisson’s ratio, then
the two shell equations follow from (4) and (5) as

Lv—(1+v)\/1—yzj—z+92v=o, (73)

(1 +V)zd—\/1—,uzv—2(1 +v)w
]

—BVL(VL +1—vw+ Qw=(/)gp, (74
where

d d
Vﬁ=-d—(1—‘u,2)-a,

2
L=\/1—/.L2-j—2-\/1—u2+(1——v). (75)
{7}

These equations are similar to those of Junger and Feit,?’
Eqgs. (7.102), (7.103) et seq., which contain additional terms
proportional to B 2. The general shell theory of (4) and (5)
does not include these effects, but they could be considered
without much difficulty. Our purpose here is to develop the
asymptotic theory within the context of shell equations that
exhibit all of the essential features, including both membrane
and bending effects. Both the present equations and those in
Junger and Feit satisfy these criteria, therefore the omission
of some terms here does not alter the significance of the re-
sults, but rather makes the algebra more transparent and
simpler to follow. It is not our contention that the shell equa-
tions presented here are best in any sense other than in their
simplicity and generality.

B. Spherical membrane modes
The equation for the membrane modes is
Lv+ Qv =0. (76)
Therefore, the modal frequencies are },, = »,, R /c,, where
D =m(m+1)—14v; m=123,., 7N

and the normalized modes [see Eq. (21)] are

dP
pom =BT = (78)
L

where P,, (1) is the mth Legendre polynomial, and the nor-
malization constant is
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172
2m4+1) ) (19)

B(M)=( 1
27Rp.h 2m(m + 1)

The associated surface function /™ of (25) follows, using
(78), as

2

Fom = (1 +v)%m(m+ 1)B™P_ (u). (80)

C. The Green’s operator for the spherical shell

Consider an arbitrary azimuthally symmetric function g
on the surface of the sphere. Then, g may be expanded in a
series of Legendre polynomials, and the Green's operator for
each term may be found separately. The boundary condition
(34) reduces to the condition

r=R.

(81)

The Green’s operator for arbitrary g=37_,g,P, (1) is
therefore

9 _ My B gy,
o RP T Tutlmvgo=e

—h, (kr)

o g .
; o (kR) Z, —E, (B)]

gnPn (ﬂ)’
(82)

where 4, (z)=h (" (z) is the spherical Hankel function of
order n, the prime denotes a derivative, and now

h,(kR)
Z =— (83)
kRh ! (kR)
The function E,, () for the sphere is
E,(B)=1-B%(02/9(Q,, +1—v). (84)

The Green’s operator for the simpler impedance condition
(9) follows by putting § =0, for which we have simply
E, (0)=1
The radiated field for mode 7 follows from (34) and
(80)-(82) as
2 B
kR2 (nZ, —E,)

" (r8)=1+wvn(n+1)

h,(kr)

_nx7’ 85
h (kR) (8)

P, (n).

The quantity «,, of (36) then follows from (80) and (85),
while the associated dimensionless quantity a,, of (39) is

+ (1 —»Q,?

(86)
”Zm - Em (B)

a,(w)=(1+v)? :

D. Comparison of the exact and asymptotic solutions
The incident plane wave of unit amplitude propagating
in the direction @ = O can be represented as
p

inc _ eikr cos 8
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= z Cj,(kr)P, (u), (87)
n=0

where C, = (2n + 1)i". The total, exact response may be

split into the sum of the incident plus the scattered, where

the exact scattered pressure is

= 3 Dk, (kn)P, (1), (83)
n=40
where
i* (kR —E
D, — _c B (nQn . ) (89)
h, (kR) —E;
and
0 = Ja. (kR)
" KkRj,(kR)’
(Q +1-w (1+v)
EY=E, () —(1+v)? -2 .
(02 -0 (0%
(90)
If the outer response is written in the same way; i.e.,
p(O) __pmc +PSC(O)) (9[)

then p*¥ is the leading-order term in the regular perturba-
tion approximation to the scattered field. It is very similar in
form to the exact solution, and in fact can be obtained from
(88)—(90) by simply replacing E$* with E,, (/).

We are now in a position to compute the quantities asso-
ciated with the inner solution. The uniformly asymptotic
field of (40) now follows from Egs. (79), (82), (84), and
(86), which combined with the outer solution just discussed,
yields

d,
—2¢(n)(r 6),

umf ()] -2
=p@+Q
=p Z a:

(92)

where @, follows from (38) and (86), ¢'™ is the radiated
field of (85), and

_ip (1+9C,
¢, k’Rh,(kR)B™

(nZ, - E,) " (93)

Combining the various elements in (92), the uniformly
asymptotic solution can be written as

oni in_ & @ CZa,
p f::p(()) —77—2- —2
(kR)*> /<1 Q2 h’(kR)

(112, —E, )] b, G
Q% - QZ +a, h,(kR)

P, ().  (94)

This result corresponds to model I, defined in Sec. III. Mod-
el II results from evaluating d,, at v = w,,. In order to ap-
preciate the precision in either case, we note that the exact
solution can be manipulated into a somewhat similar form
by using the identities in Appendix D, to give
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j « C.Z.a
_ (0) 177 n n n
= +
p=r (kR)? ,,; h!(kR)
% [nzn —En(ﬂ)] —! hn(kr)
0 —Q 4a, +X, h,(kR)
where all the parameters are the same as for the uniform
asymptotic solution, with the additional term

__U+wy (1+ “_”))—(92_92).
E,(B)—-E Q;

n

P, (1), (95)

n

(96)

Note that the sum in (95) should really be from » = 0, but
this term is identically zero because of the fact that
1/X, = 0. In comparing the uniform and the exact solutions
note the difference in the denominator between the a,, and
a,, terms. The quantity X, is real and its effect is therefore to
shift the resonance, but its influence upon the height and
width of the resonance is weak. This is apparent if X, is
calculated explicitly for the case in which bending effects are
included in the outer solution, for which it reduces to

2 2132 —
x, =) (1— 20 ) )
O? (1—w)(Q2 —1—%)

n

(97}

Near resonance, the difference (? — Q2) is of order unity
and therefore the quantity X, is asymptotically small, of or-
der 1/9% The complex-valued parameter a,, is of order uni-
ty, and therefore the difference between the exact and uni-
formly asymptotic solutions is indeed asymptotically small
for the spherical shell.

In closing this section, we note that Eqgs. (72) for the
cylinder and (95) for the sphere are apparently the first in-
stances in which the resonant scattering from a thin shell has
been explicitly decomposed into a classical resonant form,
i.e., the background p'® plus the resonant terms. Previous
attempts along these lines invariably used an incorrect form
for the background, which inevitably leads to an incorrect
form for the resonant terms.

Vil. NUMERICAL RESULTS AND DISCUSSION

The numerical results presented here are for cylindrical
and spherical steel shells in water such that the radius to
thickness ratiois always R /h = 90. The material parameters
are (in mks units) p= 1000, c=1482, p, = 2700,
¢, = 5435, and v = 0.289. The plots shown here are all for
the far-field backscattering amplitude (6 = 7), where the
far-field amplitude is defined by

f(a) — lim{(zr)(D— 1)/267ikr(p __17inc)}y

r— x

(98)

where D is the spatial dimension, i.e., D = 2 for the cylinder,
and D = 3 for the sphere. The scattering amplitude for the
cylinder and sphere, for both the uniformly asymptotic and
the exact solutions, can thus be calculated by substituting
from (69), (72), (94), or (95) into (98). The limit is per-
formed using the large argument asymptotic formulas for
the cylindrical and spherical Hankel functions (see Appen-
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dix D). The ring frequency for both the cylinder and sphere
isat ) = 1, or kR = ¢,/c = 3.67, while the coincidence fre-
quency is at kR = c¢/c,3 = 85.01. The midfrequency range
for the present purposes will be defined roughly as the range
from about twice the ring frequency to slightly below the
coincidence frequency. The numerical results were all com-
puted for the range 5 < kR < 125, which includes the entire
midfrequency range plus the strong bending regime,'*!
which starts where the midfrequency range ends and contin-
ues to about kR = 120.

We first discuss the numerical results for the cylindrical
thin shell. All the results presented here correspond to model
I,i.e., all the quantities in the resonant termsin (71) are fully
frequency dependent, except a,, which is evaluated at
® = w,, according to (38) and (39). The exact and asymp-
totic results are shown together in Fig. 2, from which we note
generally good agreement except at low frequencies and at
an apparently spurious resonance close to kR = 75. The lack
of accuracy at low frequencies, i.e., less than about twice the
ring frequency, is not surprising since the asymptotic theory
is based upon a high-frequency ansatz. However, the spur-
ious resonance is unexpected, but on closer examination it
can be associated with a narrow, subcoincidence flexural res-
onance. This conclusion is verified by inspection of Fig. 3
which shows both the outer and total asymptotic responses,
each of which displays a narrow resonance at the location of
the spurious resonance. Hence, the appearance of the spur-
ious resonance is due to the fact that the outer expansion
exhibits resonance structure itself, and these resonances are
due to flexural wave motion. There are many flexural modes
over the midfrequency range but they have little or no effect
upon the scattered response because they remain nonradiat-
ing until close to the coincidence frequency, above which
they are radiating and we then have the so-called strong
bending regime'* (note that the actual transition from non-
radiating to radiating is complicated by the presence of sur-
face curvature, and has been discussed recently by Pierce!” ).

. Cylinder
uniform
10 F
[f(m)]
05| \
exact

0‘0....I....I....I....I....I

0 25 50 kR 75 100 125

FIG. 2. Comparison of the exact solution and the matched asymptotic solu-
tion for the cylinder. Note the dotted line before kR = 75. When magnified
the exact solution also has a small, narrow resonance here which is thought
to be a flexural resonance.
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Cylinder

o |
05| \

uniform

0.0 PR U S W ST SR SR A PR S S S R 1 1
0 25 50 75 100 125
kR

FIG. 3. The outer or background is here compared with the full asymptotic
solution. Note the presence of flexural resonances in the outer field.

Thus the outer or background response is smooth over the
entire midfrequency range, but it includes the effect of flex-
ural resonances in the strong bending regime. In a sense, this
violates our assumption used in deriving the matched asymp-
totic expansion that the outer solution is smooth near the
membrane resonances. The appearance of the spurious reso-
nance in the asymptotic response in Fig. 2 therefore results
from rapid variation in the outer solution, and the variation
is particularly rapid in the precursor region of the strong
bending regime, where the flexural resonances are particu-
larly narrow. Further into the strong bending regime the
outer response is again sufficiently smooth, and no spurious
resonances are produced. In summary, the erroneous spike
in Fig. 2 is an early flexural resonance, magnified by the
inner expansion to give an unphysical response. We will re-
turn to this point later.

The exact inner solution, defined by subtracting the out-
er response from the exact total scattered field, is shown in
Fig. 4, from which it is clear that the outer solution provides

Cylinder

outer
0.8 |-
If(n)|
0.6 |-
04
inner exact

0.2

0.0
0 25 50 kR 75 100 125

FIG. 4. The exact inner solution, defined as the exact minus the outer field,
is compared here with the outer contribution. Note the regular membrane
resonances in the inner field, even in the strong bending regime where flex-
ural effects dominate the response.
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Cylinder

0.80 -

0.60 -

[f(m)]

0.40 -

_— inner exact

/inner uniform

L

FIG. 5. A comparison of the exact inner field and the asymptotic version.
Note the slight deviation at lower frequencies and the spurious resonance
near kR = 75.

020

B L1

0 25 50 7
kR

0

an adequate background over the entire midfrequency
range, in the sense that the rigid and soft backgrounds of Fig.
1 did not. Almost all of the resonances in the inner solution
of Fig. 4 are attributable to compressional waves, whereas
the major portion of the flexural wave content is in the outer
response. The only exceptions to this categorization are the
few small and narrow flexural modes which are just discern-
ible in the inner response between kR = 70 and 90. The exact
inner field and the asymptotically derived inner solutions are
compared in Fig. 5, which again shows excellent agreement
as low as kR = 5 and over the entire midfrequency range.
The real measure of the accuracy of the asymptotic theory is
indicated in Fig. 6. Finally, Fig. 7 shows the outer solution
generated by ignoring bending effects in p'©, i.e., by using
E, (0) rather than E, () in the outer solution. Now the
outer solution is smooth at all frequencies, especially
throughout the strong bending regime, while the exact inner
found by subtracting the outer from the exact displays both
membrane and flexural resonances. This form of back-
ground is similar to that recently discussed by Gaunaurd

020+ Cylinder
0.15 |-
[f(m)| _
010 [exact - uniform|
0.05 |-
0.00 1 b kil ) - .I. | U S S T . |
o 25 50 kR 75 100 125

FIG. 6. The total error of the asymptotic solution is shown here on a magui-
fied scale.
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Cylinder

1.00
outer ( f=0)
0.75 |-
[f(m)|
0.50 |-
[exact - outer|
0.25 |-
LWL i
0 25 50 75 100 125

kR

FIG. 7. The outer or background field without flexural contributions. This
is computed from Eq. (65) by using E,, (0) rather than E¢;. The lower
curve is the difference between the exact and this background response.
Note the presence of both compressional and flexural resonances in this
“inner” field.

and Werby®'® for the specific case of spherical shells, to
which we now turn.

The exact and asymptotic backscattered amplitude for
the spherical shell are compared in Figs. 8 and 9. As with the
cylindrical shell, the agreement is very good over the midfre-
quency range, say 5 < kR < 70, with understandable devia-
tions at the lower end. The major feature which distinguishes
the asymptotic solution is the appearance of many spurious
resonances in the early part of the strong bending region.
The explanation is the same as for the cylinder, i.e., they arise
from the rapid variation in the outer solution which becomes
magnified and enhanced in the inner response, because the
latter is obtained by iteration of the operator or Green’s
function of the outer solution. However, the uniform solu-
tion, (42), was based upon the explicit assumption of a local-

Sphere ( Model 1)

uniform

exact

P S S YN VR [N SN T W W S VT S T |

[ 25 50 75 100 125

kR

FIG. 8. The exact and uniform solutions compared for the spherical steel
shell with # /R = 1/90. Model I leads to a good match in the midfrequency
regime, and most of the error is confined to spurious flexural resonances in
the early stages of the strong bending region.
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FIG. 9. The exact and uniform solutions for the sphere are compared here.
Note that the error is very small over the midfrequency range 10 < kR < 50.

ly smooth outer response. This is why we made the distinc-
tion between models I and II. In a similar treatment of
scattering from solid targets,® the background or outer re-
sponse was obtained from the rigid boundary condition, and
was always smooth as a function of frequency. Hence, there
was no need to arbitrarily decide how to evaluate the
matched solution for solid targets. In theory, if the solution
is a proper uniform solution for all frequencies, it should not
matter whether model 1, I1, or whatever is used. However, as
can be seen by comparing Fig. 10 with Fig. 8, the difference
between models I and II is significant in the strong bending
region, where model II fares noticeably better. This is not to
suggest that model II is to be preferred over model I; our
point is that there is some sensitivity in the solution which
indicates a nonuniform behavior. In fact, model II is less
accurate at the low-frequency end, which is to be expected
since it does not have the same flexibility as model I. Further
details of the structure of the asymptotic solution are shown

Sphere ( Model Il )

50

40 |-

uniform

|f(m)]

20

0 25 0 r 100 125
FIG. 10. A comparison of the exact and asymptotic solutions, where the
latter is computed using model I1. This is to be contrasted with Fig. 8. The

error in the midfrequency regime is now significant whereas it is decreased
considerably in the strong bending region.
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FIG. 11. The two separate constituents of the exact solution for the spheri-
cal shell: the outer solution and the exact inner solution, defined as the exact
minus the outer.

in Figs. 11 and 12, which are similar to Figs. 4 and 5 for the
cylindrical shell.

Finally, the background obtained by setting 8 to zero in
the outer solution for the spherical shell, i.e., ignoring bend-
ing, is plotted in Fig. 13, which also shows the remainder
after subtraction from the exact solution. The latter is simi-
lar to the residual computed and discussed by Gaunaurd and
Werby for the specific case of the spherical shell.>'® As dis-
cussed above, this background does not contain any flexural
effects, but depends only upon the inertial reaction of the
shell. The distinction between this background (S = 0) and
the one which contains bending effects (8> 0) is irrelevant
in the midfrequency range, as demonstrated by the figures,
although it is to be preferred on the grounds of simplicity,
since it reduces to an effective impedance condition (9).

The results for both the cylinder and the sphere show
that the asymptotic solution is not quite the uniform expan-
sion we would like. It is perfectly satisfactory throughout the

Sphere ( Model | )

inner uniform
2} inner exact

L B
LA
25 50 kR 75

FIG. 12. A comparison of the inner solution for the asymptotic and exact
theories.
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FIG. 13. The outer or background field for the sphere, without flexural
contributions, and the remainder after subtraction from the exact solution.
These curves are similar to the curves for the cylinder in Fig. 7. Again, both
compressional and flexural resonances are present in the “inner” field.

midfrequency region but suffers from sensitivity, or more
precisely, nonuniformity, in the strong bending region. The
basic difficulty arises from the attempt to construct a
matched asymptotic solution from an outer solution which
itself possesses resonances. There are, of course, different
remedies to this which could be explored, but any attempt at
a “‘better” uniform asymptotic solution would probably not
be as simple as the present scheme, particularly in the strong
bending regime. These questions will be addressed in future
publications.

VIIl. CONCLUSIONS

In this study, we have presented a general theory of
acoustic wave scattering from thin shells of varying material
and geometrical properties. The theory is based upon an
asymptotic expansion of the total response, and yields as
part of the answer a new background field which contains
the inertial and flexural effects of the shell. The remainder of
the response comes from the lightly fluid-loaded membrane
resonances. Each of the two separate parts is far simpler to
obtain than the total response, and in combination they pro-
vide a new representation for the scattered field. The outer,
or background, field simplifies over the midfrequency range
in the sense that the flexural contributions become negligible
and the effective boundary condition is a simple impedance
condition on the shell surface. Analytical results and nu-
merical computations show that the combined asymptotic
solution is very accurate over the mid-frequency range for
the canonical examples of the cylindrical and spherical thin
shells.

A major motivation behind the development of the pres-
ent approach is the idea that the total scattering from a thin
shell in the midfrequency range can be profitably split into
physically and mathematically simpler constituents. In this
theory, the two which fall out quite naturally are the outer
response, which amounts to solving an impedance condition
on the shell, and a contribution due to membrane reson-
ances. The structural details are contained in the latter,
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through the mode shapes of the compressional resonances.
The tasks involved in determining both constituents are in-
deed nontrivial, but together they are guaranteed to provide
the correct form of the response near the frequencies of
structural resonance. The same cannot be said of explicit
methods which ignore the physics of the problem and may
not fully capture the resonant response. The major difficulty
with the proposed scheme is that it is essentially a modal
method, and therefore requires determining all possible
membrane modes in the frequency range of interest. This in
itself may be a very formidable task for large structures,
since the number of modes which may contribute can in-
crease very rapidly. Some techniques will probably be re-
quired to filter out those modes which will not contribute
significantly, see Refs. 26, 3 for instance, for preliminary
attempts along these lines. Statistical approaches to classify-
ing both the density of modes?’ and the modal shapes?® will
also be very useful, if not essential, for considering large and
complex structures.
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APPENDIX A: SHELL THEORY

We follow the development of Green and Zerna'¢ who
provide two derivations of the asymptotic theory of smooth
shells, both methods yielding the same set of equations. The
first derivation uses a direct method, analogous to the meth-
od used for plate theory, to obtain approximate equations for
the bending of shells. In the second procedure Green and
Zerna use asymptotic expansions to obtain the same equa-
tions from the three-dimensional equations of elasticity in a
more consistent manner. The same set of equations were
obtained by, among others, Koiter'® who also used asymp-
totic methods to find a consistent theory for small deflec-
tions.

The equations defined below are for an arbitrarily
curved, smooth shell, and are the simplest set of shell equa-
tions which includes both membrane effects and bending
effects, each of which is important for the scattering prob-
lem. The basic assumptions are: (i) the shell is thin; i.e.,

h/Rmin <1’

where /4 is the thickness and R, the smallest principal radi-
us of the undeformed middle surface; (ii) the strains are
small and hence Hooke’s law applies everywhere, and (iii)
the state of stress is approximately plane, i.e., the traction in
the direction normal to the undeformed middle surface is
small in comparison with the remaining components of
stress, which lie in the tangent plane. We first review the
static theory from Green and Zerna.'®

The curvilinear coordinates on the shell are 8, and 6,,
with corresponding direction vectors a, =x,, a = 1,2, not
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necessarily of unit magnitude, and unit surface normal a,
directed out of the shell. Greek sub- or superscripts assume
the values 1 or 2, and the suffix, a denotes differentiation
with respect to 8, . The symmetric metric surface tensor has
contravariant components a,, = 8,854, and covariant com-
ponents such that ¢*” a5, = 57. The covariant derivative is
distinguished by | and is defined such that v* ;=v 52,4,
or v, =v"g + [igv’, where I'j, =a"a a,, are the
Christoffel symbols of the second kind.

The in-plane stress resultant has components #n**, and
the stress couples are m*”, The shearing forces ¢° are related
to the couples by

¢ =m?,. (Al)
The equilibrium equations are

n, +p=0, (A2)

nb.g + %, +p3 =0, (A3)

where p® are the applied shear forces and p, the applied
normal force, and by, define the surface curvature

(A4)

The displacement vector of a point originally on the middle
surface is v,a” + wa;. The constitutive relations for an elas-
tic shell are

bﬂB = bﬁa = — aa'a3ﬂ.

n“’3=pshcf,H"ﬁp‘(va _ le), (AS)

3
B __ h 2 BpA
m*¥ = — —p.c,H""w,_,,

12
where H depends upon the symmetry of the material com-
prising the shell, and simplifies for isotropic materials to
H*% = 1[(1 — v)(a™a® + a*d®) + 2va®Pa* ).

(A7)

Here, v is the Poisson’s ratio, c, is the plate compressional

wave speed, ¢, = E /p,(1 — 1), where E is the Young’s

modulus. The dynamic equations for a fluid-loaded shell are

obtained by substituting

pPr= —Pshl’ﬁ: Py = _p:hwn iy (A8)

where p is the acoustic pressure in the external fluid and p, is
the mass density per unit volume of the solid. The resulting
shell equations are

[phciH % (v, — b w)] 5 —p.hv =0; a=12,

(A6)

(A9)
phe H (v, — baw)beg — 5(p.h >3 H 2w ,0)
_pshwn =p. (A10)

APPENDIX B: INTEGRAL IDENTITIES

Let ¢ be a radiating solution to the Helmholtz equation
in the region exterior to S with far-field behavior defined by
the radiation amplitude B such that

ikr
o)) e
r r

Integrating the identity ¢* V¢ — $V2$* = 0 over the exteri-
or region, and using Green’s theorem to cast it as surface

(B1)
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integrals on S and the surface at infinity, implies the identity

[(## 292 is =ik [ 1mpan. 2
S an an 4m
Alternatively,
Imf(p*ﬁds:kf |B > dQ. (B3)
< adn 4z

Now, assume that ¢ is the solution to the radiation prob-
lem (34) for real-valued f. Then, using (34) implies that

() e ) (25

9p [ B° prase(08* ] >
+<6n o nﬂzH p(c?n )aﬁ [rzs .

Integrating by parts, or using the self-adjoint property of the
boundary condition (34), we may convert the final term in
the right member so that it becomes

{2 on )22

(), ).,

It therefore follows from (B3) and (B4) that

_1m<f’_¢f>=pkf B2d0 >0, (BS)
r?n 47

APPENDIX C: A MODIFIED IMPEDANCE

The impedance condition (9) depends only upon the
ratio of inertial effects, since /R = p/p h. The impedance
condition was motivated by identifying the terms in the left
member of Eq. (5) which are largest under the assumption
of high-frequency, subject to (16), but all the while ignoring
bending effects. One result of this particular asymptotic scal-
ing was that the terms dependent upon the in-surface dis-
placement were ignored, as was the term
— pshci H “%*b,4b,, w. By including this term, which is lin-
ear in w, but still ignores membrane effects, we obtain a
slightly different impedance, i.e., 7 -, where

7
>17. (cn
L — (RY/QY)H b b, 7

ﬁ:

The inequality (C1) follows from the positive definite na-
ture of the elasticity tensor, and the equality prevails only at
a locally flat region.

The difference between 7 and 7 is small, of order 1/07,
on account of the high-frequency assumption. Therefore, the
modified impedance # will not differ much from 7. It is pos-
sible to simplify the term in the denominator of (Cl) by
choosing the local coordinates to coincide with the principal
directions of curvature. Let the signed principal radii of cur-
vature be R, and R,, then it follows from the definition of
H*%*in (A7) that

1 1 2v

— (C2)
RY R;

H%%%b,gb,, =
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The values for the sphere (R, = R,) and the cylinder
(1/R, = 0) follow immediately.
APPENDIX D: SOME USEFUL IDENTITIES

The surface integrals for the spherical shell simplify us-
ing the following identities®

! dP, \} 2m(m + 1)

(1— 2)( “) du = , Dl
J‘fl a du a 2m +1 (OD
! 2

Pldy=——° D2
Jll m Ot 2m+1 (D2)

The Wronskian relation for the spherical Bessel functions is
J. (2 (2) —ji(2)h, (2) = i/2% (D3)

The asymptotic behavior of spherical Hankel functions of
large argument is also used,

h,(z) = (— )"+ '(e/2) + O(1/2%). (D4)
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