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Gaussian beams and wave packets are formally equivalent to high-frequency solutions of the
linear wave equation with complex-valued phase functions. The theory of weakly nonlinear
high-frequency waves is extended in this paper to allow for complex phase solutions. The
procedure is similar to nonlinear geometrical optics and the nonlinearity causes the phase to
vary, leading to the development of weak shocks. However, unlike standard geometrical optics
that describes the evolution of wave fronts, complex phase solutions correspond to Gaussian
decay away from a central ray, and the associated curvatures are complex valued. Geometrical
singularities due to caustics and foci do not occur, and the only singularities in the theory are
purely nonlinear. The theory is developed specifically for nonlinear acoustic waves in a
homogeneous inviscid fluid. The time taken for nonlinear singularities to develop is compared
for a real spherical wave front and a Gaussian beam with Gaussian radius equal to the real
radius of curvature of the wave front. The time to blowup for the Gaussian beam is
intermediate between the shortest possible, which is for the converging wave front, and the

longest possible, for the diverging front.

PACS numbers: 43.25.Ba

INTRODUCTION

Nonlinear acoustics of focused beams has been analyzed
in depth over the past few decades, with most of the empha-
sis on the study of solutions to model equations such as the
KZK equation. There is a particularly large literature on the
subject within this journal, see for instance Refs. 1-3, and
elsewhere, e.g., Refs. 4 and 5. An alternative approach is to
start from the exact, underlying equations but to assume that
the solution depends upon a small parameter and use appro-
priate asymptotic methods of analysis. This procedure is
well developed for the evolution of high-frequency, weakly
nonlinear waves. The basic mathematical methods were out-
lined by Choquet-Bruhat® with subsequent development by
Hunter and Keller,” and independently by Parker.® These
methods are closely related to the theory of acceleration
waves,” and also to the linear theory of geometrical
optics.'®!? The effects of refraction enter the weakly nonlin-
ear theories through the rays of geometrical optics while
nonlinear effects enter via the transport equation for the am-
plitude. In both the model equation approach, e.g., the KZK
equation, and the weakly nonlinear methods, solutions can
develop from initially continuous data into discontinuous
solutions, or weak shocks. This is an inevitable consequence
of nonlinear terms in the equations of motion and is dis-
played by both the unidirectional theory, such as the Burgers
equations, and also by the more general theories which take
refraction effects into account. Weakly nonlinear theories
can also develop geometrical singularities associated with
the convergence of rays at caustics. These are quite distinct
from nonlinear effects, but signify a breakdown of the geo-
metrical optics ansatz, and may be treated by boundary layer
techniques. Hunter and Keller'? have shown that the evolu-
tion of weakly nonlinear solutions is governed by linear theo-
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ry near caustics, and hence there is no physical singularity
associated with caustics, in contrast to the purely nonlinear
generation of shocks.

The focus of this paper is on the development and gener-
alization of the weakly nonlinear theory to account for not
only the possibility of curved wave fronts but also the decay
of the amplitude away from a central ray. The types of gen-
eral solutions include, but are not restricted to, Gaussian
beams and Gaussian wave packets, which have been dis-
cussed at great length as solutions to the linear equations of
acoustics and elasticity.'*'* The motivation for the present
work comes from previous work on the propagation of
Gaussian beams and wave packets within the context of lin-
ear equations of motion.!>'7 In these references the beam
and wave packets solutions were derived as asymptotic solu-
tions in the sense of geometrical optics; not as solutions to a
parabolic equation but as solutions to the standard eiconal
and transport equations of hyperbolic wave equations. The
point of departure with “standard’ geometrical optics is that
the phase function is allowed to be complex valued, with the
result that the curvature matrix normally associated with
curved wave fronts may be complex, yielding Gaussian de-
cay about the central ray. The evolution and formal descrip-
tion of the solutions with complex phase is identical in many
respects to the theory for curved wave fronts. There are some
important differences, of course; one of the most significant
being that the complex phase solutions do not exhibit the
usual breakdown of geometrical optics solutions at caustics.
This feature, which will be discussed later, means we do not
need to provide boundary layer corrections near caustics,
and it also means that the only singularities that arise are
those associated with purely nonlinear effects.

As mentioned in the beginning, the present approach is
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quite distinct from that of many previous articles in this
Journal dealing with the KZK equation, e.g., Refs. 1-3 and
references therein. For instance, Du and Breazeale! discuss a
series solution to the KZK equation in the form
P=D,+D,+ -, where p, is a uniformly smooth Gaussian
solution to the linearized equation, and p, a regular pertur-
bation which describes nonlinear effects. Numerical algor-
ithms for solving the KZK equation®* are based upon a sim-
ilar perturbation scheme extended to higher orders. The
weakly nonlinear theory, however, deals with a single Gaus-
sian term p = p,, where p, is not uniformly smooth but can
become discontinuous as the wave progresses. The asympto-
tics, or perturbation analysis, is performed on the phase of
D,- Cates and Crighton® provide an informative discussion
on the connection between the KZK equation and geometri-
cal techniques, as exemplified by Hunter and Keller.” The
other major differences are that no model equations are used
here, everything follows from the primitive equations and a
high-frequency ansatz, and finally, it will become clear that
the present approach is above all else a simple way to look at
a fairly complex phenomenon.

The motivation for the weakly nonlinear theory is dis-
cussed in the next section, where the scaling between the
amplitude and frequency is outlined in detail. In Sec. II the
weakly nonlinear theory is developed for solutions with real
phase functions, similar to the theory of Hunter and Keller.’
Then in Sec. III the results of the Sec. II are generalized to
allow for the possibility of complex phase solutions. The pre-
cise conditions required for initially smooth solutions to
evolve into shocks are outlined and illustrated by several
examples, including Gaussian beams. A relatively simple
formula is derived that gives the time to shock for an initial
wave that may be either a plane wave, a curved wave front, or
a Gaussian beam, and any intermediate wave type.

. BASIC EQUATIONS AND SCALING

The equations of motion for a homogeneous, isentropic,
compressible, and inviscid fluid are

P+ Vpv=0, pv, +pv¥v+Vp=0, p=p(p),
(n
where g, p, and v are the density, pressure, and fluid velocity,
respectively. The independent variables are position x and
time ¢, and the subscript ¢, or any other variable, indicates a
partial derivative. The equation of state (1), will be left un-
specified, but we assume that the density and pressure are
within the range for which the relation is uniquely invertible,
i.e.,, p=p(p). The base state in which the fluid is at rest
under constant pressure p,is v=_0, p = p: = p(py). In or-
der to motivate the subsequent analysis, suppose that the
equilibrium state is disturbed in such a way that at ¢ = 0,

p(x,0) =p,{1 + Re A4, exp [io(nx/c + jx-D-x) ]} ,
v(x,0) =cnRe 4, exp[iw(n-x/c+%x-D-x)] , (2)
where 4, is a complex number of magnitude |4,| = e<1,nis

a unit vector, and c is the sound speed of infinitesimal waves

—_3 dp
c =L . 3
dp lp=p,
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The initial disturbance (2) represents a wave that would
propagate in the n direction according to standard linear
acoustics. The wave is modulated by the quadratic phase
term x-Dx, which if D were real and symmetric with
D+n = 0, would represent an initially curved wave front. We
take D symmetric with no loss in generality, and further-
more, we permit D to be complex valued such that Im D
remains positive definite. Then (2) represents a localized
disturbance that decays as a Gaussian away from the center
x = 0. Within the realm of linear acoustics this set of initial
conditions would generate a propagating Gaussian wave
packet.'® Alternatively, if we loosen the restrictions upon D
so that Im x-D-x >0 only for those x perpendicular to n,
then(2)is localized only in the direction perpendicular to n
but is of infinite extent in the n direction. This may be viewed
as a particular limiting case of a GWP, and is known as a
Gaussian beam. 131718

We are concerned with the evolution of initial wave pro-
files like (2) for times and distances of propagation such that
nonlinear effects are significant. The units of time and length
are T and L, defined as

T=1/ew, L=cT=(ek) ", 4)

where € €1 is defined by the initial density perturbation, i.e.,
for the example (2), € = |4,], and k = w/c is the acoustic
wave number. The weakly nonlinear wave theory is valid for
times on the order of T and propagation distances on the
order of L, which in turn is (2m€) ~! times the central wave-
length of the initial disturbance.

We close this section by defining dimensionless vari-
ables x' = x/L and t' =t /T, so that (1) becomes

cp + Ve(pv) =0,
cpv, +pvV'v+Vp=0. (5)
The following ansatz is assumed:

p=poll+eRPx',t",0) + E€RV(x',t",0) + -],
v=c[eVO(x',t",8) + EVI(x,t,0) + -], 6)

where fis a “fast” phase function that is related to the phase
function ¢ of order unity by

=€ 'g(x',t'). (7

The remainder of this paper concentrates on developing so-
lutions in the form of (6) and (7), subject to general initial
conditions discussed later. For the moment we note that by
necessity R @, V@ etc., must be real-valued functions;
however, the phase § may be complex depending upon the
initial conditions. We will first consider the phase to be real
valued, as this case corresponds closely to many previous
treatments of weakly nonlinear waves, and defer until Sec.
III the possibility of & being complex valued.

Il. REAL PHASE SOLUTIONS

The results of this section are essentially the same as
those of Hunter and Keller,” but are necessary in order to
develop the general theory for complex-valued phase func-
tions in the next section.
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A. The eiconal equation

Substitution of (6) and (7) into the equations of motion
(5) and setting € = O yields the first of a hierarchy of equa-
tions

RP$, +ViPV$ =0,
R{PVO+ V"4, =0. (8)

In (8) and subsequent equations the primes on ¢’ and x’ are
omitted. We deduce from (8) the eiconal equation

¢: — (V$)> =0, (9)

which has two roots, corresponding to waves propagating in
opposite directions. We focus our attention on one root,

¢, + (VgVg)'? =0. (10)

The PDE (10) for ¢ may be solved by considering the
Hamilton—Jacobi equations, which possess parametric solu-
tions along one-parameter curves in space-time, or rays. Let
the initial value of ¢ be

#(x,0) = d(x), (1)
and select a starting point x,. With no less generality, let

n=Vd(x,), (12)
then for ¢ > O the central ray (X(7),7) is

|n[ =1,
X(7) =%+ n7, (13)

where 7 is the ray-length parameter. Along the ray we have
the usual solutions for a homogeneous medium,

HX(7),7) = o = P(x,),
¢t(i(7')’r) = - 1 »
Vé(x(r),7)=n.

Note that 7 is identical to the elapsed time ¢ along the ray.
Away from the central ray we expand ¢ in a Taylor
series,

OH(X(7) + Ax,7 + A7)
= ¢o + Vo-Ax + ¢, At + J¢,, (A1)? + Vg, Ax At

(14)

+ JAxVVh-Ax + -+ . (15)
Define the second-order symmetric tensor M by
M(71) = VVg(x(7),7), (16)

then using (14) and the following relations that result from
differentiating (10):

Vo, (x(7),7) = — M,
Eq. (15) simplifies to
¢ = ¢y + (n-Ax — Ar)

+ J(Ax — n Af)*M(7)«(Ax —n A7) + . (18)

If we retain only the terms shown in (18), i.e., up to and
including quadratic, the resulting approximation to the
phase may be called the paraxial approximation.

The evolution equation for M(r) can be derived from
the eiconal equation (10) as'®

1
d(L)_ =I—nXn=P,,
dr

with solution

¢, . (X(T),7)=nMn, (17)

(19)
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M(r) = M(0) [I + 7P, M(0)] ~". (20)

where I is the identity, and P, is a tensor that projects vec-
tors onto the plane perpendicular to the ray direction n.

B. The transport equation

The next in the sequence of asymptotic equations is ob-
tained by substituting (6) and (7) into (5) and then setting
to zero d /de of the resulting equations at € = 0. This gives

R4, +VE"Vg+ RO 4+ V-V
+ (R OV®) ¥4 =0,
R'VH+ V4, + VO + VRO + R OV,4,

B

4 (V‘O)-V¢)V§°) +7R OR t5)0)v¢=()’ (21)

where 4 and B are the usual parameters encountered in non-
linear acoustics'®

d?p

dp2 P=Po
The unknown quantities R " and V'V can be eliminated
from (21) by using the eiconal equation, to yield

V¢-[VEO) + VR ) +R <0)V§,0)¢, + (v¢,v(0))v2’0)
+ (B/24)(R ©)}V9] — 6, [R @ + V-V©
+ (ROV@),¥p] =0. (23)

The total derivative along the central ray (x(7),7) is

(22)

A=py®, B=p;

rn =3 + v (24)
The velocity follows from (8) as

VO =R @p, (25)
and its divergence is, from (12) and (16),

VVO =nVYRO® L RO tr(P,M). (26)

Therefore, when evaluated along the ray the transport equa-
tion (23) becomes the PDE

R ©

2 FROt(P,M) +BR ™), =0, (27
T
where f is the nonlinearity parameter'®
f=1+B/24. (28)

For example, = (1 + ¥)/2 for an adiabatic perfect gas,
P =polp/po)’-

C. The general solution to the nonlinear transport
equation

The transport equation (27) may be rewritten as an or-
dinary differential equation in 7

)
28R L RO (P, M(7)) =0, (29)
T
along the characteristic
49 _pgro. (30)
dr

Equation (29) is the usual transport equation of linear geo-
metrical acoustics, modified in the present circumstances by
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the relation (30), which implies that the phase 8 varies as
the ray position moves. The general solution to (29) follows
from (20),

R@ =g(n)b(8), (31

where g(7) is the geometrical spreading factor for a homoge-
neous medium,

g(7) = {det[I + 7P, M(0)]}'7, (32)

b(-) is a function defined by the initial amplitude of the den-
sity perturbation, discussed below, and £ is a phase variable
related to 6. To be more specific, we choose the initial value
such that £ = @ at = 0, then Eqs. (30) and (31) imply the
following nonlinear equation for £ as a function of 8 for 7> 0:

E+pb(5)G(1) =0, (33)
where G(7) is the integral of g{), with initial condition
G(0) =0.

The function g(7) represents the growth or decay in

amplitude of a curved wave front and is in agreement with
the amplitude obtained by considering the conservation of

rank 2 matrix P, M(0)P, represents the initial wave-front
curvature. Hence, unless the initial wave front is flat, corre-
sponding to a plane wave and P, M(0)P, = 0, there will be
at least one value of 7, — o0 <7< o0, for which g(+) of Eq.
{32) becomes singular. These are the times at which the
wave front focuses down to a point or a line, and the geomet-
rical singularity in the ray amplitude signifies the breakdown
of the original ray ansatz, which must be replaced by a local
boundary layer analysis. This can be done, but at the cost of
significant effort and a loss of simplicity.'* We will see in the
next section that this problem does not arise for Gaussian
beam solutions, which is one of the major factors in their
favor.'+1?

The integral of g(7) may be easily evaluated to find
G(7) as follows. The initial curvature matrix, although it
need not have n as a principal direction, defines two real
numbers «a, and a, such that P, M@P, =am"
Xm' + a,m® xm'>, where (m*,m®,n) form an ortho-
normal triad of vectors, and so from (32)

— — 12
energy flux in a ray tube bundle. By assumption, the phase ¢ g(n =11 +anl+am] ) (34
is real valued and therefore the matrix M(0) is also. The  This integrates to yield
-1
7, a,=a,=0,
2/a)[1+a,n)'?—1], a;#0, a,=0, (35)
(Va)log(1l + a;7), a,=a,#0
_r ~l[a|+a2+2a|a2T]_ch_l[M] . @,y a,a>0,
G(1) =4 (a,a,)'? a —a, a, —a,
o1 [a| +a, + 2a1a21'] cos- .[M] . a ta, a, <0
|la,a,|'? a,—a, a, —a,
I
Each case describes a different type of wave front: P (x)
a, = a, = 0 corresponds to a plane wave front: a,7#a, =0 v(x,0) = ech " VoO(x) . (36b)

is a cylindrical wave front; a, = a,#0 is a spherical wave
front, and when a, #a, with a,a,7#0, the principle wave-
front curvatures are distinct and nonzero. The forms given in
(35) for G(7) are valid only until the earliest times 7. >0 at
which g(7) is singular. The time to focusing is finite only if
either of a, or «, is negative in which case 7
= — 1/min(a,,a,), otherwise focusing does not occur and
(34) and (35) are valid for 0<7 < «o. We note that G(7) is
monotonically increasing for 0 <7< 7. The solution for
times after focusing may be considered within the more gen-
eral theory of Sec. III, which permits the phase to be com-
plex valued.

Finally we return to the amplitude function in the gen-
eral solution (31). By assumption, the initial conditions de-
pend upon both the phase ¢ (x) and the amplitude function,
such that the initial density perturbation is of the general
form

p(x,0) — py = eppb (% (X)) ,

with corresponding velocity

(36a)
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The functions ® and b are independent in general: the for-
mer determines the ray direction and the initial values for the
elements of the wave-front curvature matrix M(0). The am-
plitude function b is normally assumed to be sinusoidal, cor-
responding to time harmonic waves, but it may take on any
form in the present theory. Some examples of different func-
tional forms for b are discussed in subsection E where it is
shown that the amplitude function strongly influences the
development of shocks.

D. Summary of the theory for real phase

The procedure for applying the present theory is thus:
for a given starting point at x = x,, find the central ray x(7)
of (12) and (13) and the initial curvature tensor
M(0) = VV®P(x,), from which the geometrical functions
g(7) and G(7) are determined by (32) and (35). Then for
each O <7< 7, (33) is solved for &, with initial phase
8 = 6,: = € ~' P(x,). The quantities R ‘* and V@ associat-
ed with density and velocity are given by (31) and (25),
where g(7) defines the refraction of the wave front and b(£)
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is the amplitude function, defined by the initial data through
Egs. (36). It is interesting to note that the particle accelera-
tion is of order unity,

pv, =a(7t)peen + O(e) , 37
where
a= —R$

T+ A6
which follows from (31) and (33).

E. Development of discontinulties and examples

Although the present theory is premised on the assump-
tion that the solutions remain smooth, it may under certain
circumstances predict the onset of a discontinuous solution.
This is a purely nonlinear effect in contrast to the possibility
of geometrical singularities associated with focusing in the
linear theory, discussed above. The latter is an artifact of the
asymptotic ansatz and may be corrected for, but the emer-
gence of discontinuities indicates a significant change in the
physical nature of the solution. The subsequent evolution of
discontinuities can be analyzed by the theory of weak
shocks.™'®!? A discontinuity or weak shock will arise when
(33) admits multivalued solutions. Therefore, the require-
ment for a shock is that there is a simultaneous solution to
(33) and the condition obtained by equating its derivative
with respect to £ to zero, viz.

BG(T)b'(§) +1=0. (39)

For a given 8 = 8, let T = 1, be the earliest time for which
(33) and (39) possess a simultaneous solution. Because the
left member of (39) is the denominator in (38), it is clear
that the acceleration becomes unbounded as 7—7,. More
precisely, eliminating 7 (£) between (38) and (39), and as-
suming g(7) is sufficiently smooth as 7 approaches 7,, im-
plies

a~1/8(ro — 1), (40)

The first shock appears for that value £, which both
satisfies (33) and (39) and maximizes |b&'(£,)|, such that
sgn b'(£,) = — sgn BG(7,). This follows from the mono-
tonic property of G(7), and since /3 is usually positive,'® the
two conditions b '(£,) <0and b " (£,) = 0 must be simulta-
neously satisfied. If multiple values of £ exist for which
b'(&,;) <0, the one selected is that which makes 4'(£) an
absolute minimum. The associated time then follows from
(39) and the initial phase from (33). For example, if
b(£) =cos £ and B> 0, the critical value of £ is £, = 7/2
corresponding to the point on the initial velocity profile of
greatest slope, since 8 = £, for this initial profile. Also, the
time to shock is 7,, where G(7,) =~ '. Alternatively, if
b(&) = exp( — £%/2), then £, =1, 8 =2, and the time to
shock is given by the solution to G(7,) = 8 ~ 'e!2, which is
' times larger than the previous case, with corresponding
larger 7, Finally, suppose (&) = — £h( — &), where h(x)
is zero for x <0, A(x) = 1 for x > 1, and A(x) is smoothly
varying for x between O and 1. It follows from (38) that the
initial acceleration at 7 =0 + is in the form of a step func-

T>Ty.
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tion of width €L in dimensional coordinates. This is a
smoothened version of an acceleration wave® which is by
definition a traveling discontinuity. The solution to (33) for
this particular amplitude function is simply

g, 9>0,
E= 6
1-8G()’

and is smooth for — 1<8<0. The time to shock is again 7,
where G(7,) =", but in this case all values of 8 < — 1
develop a shock simultaneously at 7 = 7,

The results for these examples of different initial ampli-
tude functions are valid for any initial wave-front curvature
M(0). Suppose, for instance, that the initial curvature is
spherical, i.e., M(0) = aP,, a real. Then the time at which
the sinusoidal wave b(£) = cos £ develops a discontinuity is
7o such that G(7,) =~ ' (assuming again that 8> 0), or
from (35), 7o = &~ '[e®® — 1]. This value of 7, is positive
and finite independent of whether the wave diverges (a > 0)
or converges (a <0), and for a given magnitude of a, the
time T, is shortest for the converging wave. Comparison of
Eqgs. (2), (14),and (36) shows that |a| = €L */a? whereais
theinitial wave-front radius of curvature. Taking the present
example of a sinusoidal wave with spherical curvature as a
canonical case, it may be stated that the role played by non-
linear effects versus geometrical effects is governed by the
magnitude of |a|/B = (Bk?a®) ~', where k = w/c is the
wave number. Thus, if |a|#> 1, then 7, is either very large, if
a >0, or it is approximately 7y~ — 1/a if a <0. In the for-
mer case the discontinuity does not develop until the wave
has diverged significantly, and in the latter case it develops
only just before geometrical focusing occurs. Conversely, if
|a|/B <1, then 7,~B~' independent of @, which means
that the discontinuity develops before any geometrical
spreading or focusing occurs.

The parameters used here can also be related to the non-
linearity parameter N of Bakhvalov et al.,* defined as a
N=L,/L,, where L, is the diffraction length and L, the
plane wave discontinuity length. The former is L, = ka?,
where a is a typical radius of curvature for the initial data.
Bakhvalov et al.* were specifically concerned with initial
data of the form exp( — 72/2a?), which generates a Gaus-
sian beam and is really outside the purview of real phase
solutions, but will be considered in the next Section. If the
initial dimensionless complex curvature matrix is
M(0) = a(I — nXn), where « is real, then the initial data
corresponds to a spherically curved wave front with radius
of curvature a, where a* = €L /|| and L is the basic length
defined in (4). The distance to shock for a plane wave is
L, = (Bke) ~' = L /B, where B is the nonlinearity param-
eter of order unity, defined in (28). The number N is
therefore N = 8 /|a| = Bk *a. Since B is typically of order
unity, and by assumption, a is also, we conclude that the
present analysis is relevant to initial data for which
N = O(1). Another way of looking at it is that the number of
wavelengths in the distance to shock is of order
kL, = (B) ~'. Alternatively, let & be the inverse of the
number of wavelengths in L, then the present scaling corre-
sponds to 5 ~¢.

0< —1, 41
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The earlier observations about the time to shock may be
summarized as follows. If

N<]1, geometrical effects dominate shock evolution,
(42)
and if
N> 1, nonlinear effects dominate, (43)

and if NV is of order unity, then the two effects are intimately
coupled.

lil. COMPLEX PHASE SOLUTIONS

The formalism for real phase solutions is now general-
ized to allow the possibility that the phase is complex valued.
This permits us to include Gaussian beam and wave packet
solutions among the general class of weakly nonlinear high-
frequency waves, and to discuss the development of shocks
for these wave types.

A. Evolution equation for the complex phase

The types of solution discussed in Sec. II do not include
solutions corresponding to initial conditions in the form of a
localized Gaussian beam or Gaussian wave packet, i.e., ini-
tial data of the form (2) with Im D positive semi-definite or
definite, respectively. We therefore generalize the ansatz (6)
to

p=poll +€eReRO(x,1,0) + €Re RV (x,t,8) + -],

(44)
v=c[eRe VO (x,1,8) + ERe VI (x,4,0) + -],

where @ is complex and R @, RV, .., V©@ v are
complex-valued functions. The complex-valued fast phase 8
is related to ¢ by (7), where again € is real and small.

Substituting (44) into the equations of motion (5)
again produces an asymptotic hierarchy of equations in €.
We consider ¢ and its complex conjugate ¢ as independent
variables, implying that the first set of equations reduces to
(9), which gives the eiconal equation, and we again concen-
trate upon the root (10). The ray equations (12) and (13)
follow once an initial phase ®(x) is given, although ¢ must
be such that the ray direction, V& (x), at x = x, is real. This
is always true for Gaussian beams and Gaussian wave pack-
ets if x, is the central point. One could develop the present
theory to include rays in complex space, as has been done
over the past 20 years by numerous authors for the linear
theory, but it will be assumed for simplicity that the ray is
real in this paper.

The phase ¢ can be locally expanded about the central
ray by defining the complex valued tensor, M(7), through
(16). The evolution of M(7) is again given by (20) and
some general properties of M () are proved in the Appen-
dix. In particular, it is shown that the imaginary part of M
definite. A Gaussian wave packet corresponds to the imagi-
nary part of M being positive definite. On the other hand, in
a Gaussian beam only that part of Im M associated with
lateral dependence is positive definite, i.e., Im M may only
be positive semidefinite of rank 2. In this case the results of
the Appendix also imply that a beam with initial conditions
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of this type maintains these conditions. Thus, Gaussian wave
packets and beams remains localized about the moving cen-
tral point X(7).

The other important conclusion to be drawn from the
Appendix is that neither Gaussian wave packets nor Gaus-
sian beams can develop the type of geometrical singularities
common to real phase solutions, i.e., singularities associated
with caustics and foci. This is a well-known result for Gaus-
sian beams and may be explained in terms of real and com-
plex rays. Real phase solutions propagate as a bundle of adja-
cent rays in real space, caustics and foci occurring when
congruent rays coalesce at a point. Gaussian beams and
wave packets, on the other hand, have only a single real ray
associated with them, which is the central ray. The adjacent
rays define curves in complex space and are accordingly
called complex rays. They remain in complex space, and
whether or not they form caustics in complex space, they
cannot produce geometrical singularities in real space, the
space in which the physical quantities are defined.

Transport equations similar to, but not quite the same
as, (21) follow from the next order in € by invoking the
linear independence of ¢ and ¢

R§V, + V{9 + RO 4+ V-V 4 (VDV4)
XReR © + V$R P Re V® =0,
R{OVH+ VIS, + VO L VRO 4 (Re R )V,

+ VOVSRe VO + B /4 (Re R @)RPVp=0.
(45)

These may be combined to form a single equation similar to
(23)

Vg [V? + VR 4+ (Re R ©)V{g,
+ (Re V'9)-VgV{® 4 (B /4)(Re R )R V]
~ ¢ [R® + V-V 4 (Re R ©)VgVY
+ (Re V'9).VgR ] =0, (46)

and this simplifies along the ray to become, analogous to
(37), ‘

(@
5 dR

+R© tr(P,M) +28(Re R )R =0.
(47)

This PDE may in turn be written in the same form as the
ODE (29) along the characteristic

do

— =fReR?. (48)
dr

The solution to the transport equation is
R®@ =g(n)b(&), (49)

where b(#) is the complex valued initial amplitude function.
Integration of (48) implies

E+BRe[b(5)G()] =1, (50)

where G(7) is the integral of g() such that G(0) = 0. Note
the similarity of the phase equations (50) and (33). In par-
ticular, (50) implies that the change in phase is real, inde-
pendent of the initial pulse profile.

The condition for the development of weak shocks is
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that d6 /dé = 0, i.e., in addition to (50), the following must
be satisfied

1+ B Re[b'(£)G(7)] =0. (1)

B. Example: Gaussian wave packets

The initial amplitude function for a Gaussian beam or
wave packet is b(£) = €%, and thus both of the real valued
equations (50) and (51) can be combined into a single com-
plex-valued condition

BG(r)e*=0—&E+1i, (52)
with the constraint that £ — 8 is real. Now, G(0) =0, and
as 7 increases the magnitude of G(7) will increase. At the
same time, the positive definite requirements on M(7) imply

|e"g |<1, and therefore, a shock cannot occur until 7, such
that

BG(7p)| =1. (53)

At the time that the shock develops (52) and (53) imply the
dual relations

£=6, BG(ry)e®=i. (54)

Further, since (53) holds, the identities (54) are satisfied
only if the initial phase & is real and

8= (m/2)sgn B — arg G(71,) . (55)

In summary, the part of a GWP or a Gaussian beam that first
develops a shaock is initially at the position x, which has
given by (55) where 7, satisfies the shock condition (53).

To be more specific, assume the wave is propagating in
the x; direction with

M(0) = diag[a,a,y] . (56)

This represents an axially symmetric initial disturbance, and
it is assumed that Im a>0, Im ¢>0. A Gaussian beam corre-
sponds to ¥ = 0, and the beam or wave packet is tapered in
the x, and x, directions only if Im @ >0. A non-Gaussian
wave-front results if a is real and the wave front is initially
convergent (divergent) if @ < (a >0). A plane wave front is
given by @ = 0. The function G(7) is

G(r) =(1/a)log(l + ar), (57)

and the earliest blowup time is 7, of (53), which is the earli-
est root of

[log(1 + a7y)| = |a/B] . (58)

Equation (58) is a very general result for spherically sym-
metric weakly nonlinear high-frequency waves of complex
phase, and includes, of course, real phase solutions with
curved wave fronts, and also includes the case of a plane
wave as the special limit of @ — 0. The equation may be trans-
formed to a more canonical form by eliminating the explicit
dependence of the nonlinearity parameter # through the in-
troduction of characteristic parameters,

%= 1Blm @=a/|B]. (59)

Both parameters are still dimensionless and @ may be com-
plex valued such that its imaginary part is positive semide-
finite. Equation (58) becomes

llog(1 + 2%y | = |a| . (60)
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The plane wave solution, for @ =0, is 7, = lor 7, = 1/|8|,
and for a real (60) admits the explicit solution seen in Sec.
111

Fo=(1/2)(f —1). (61)

Thus, as might be expected, the dimensionless blowup time
satisfies

0<7,<1, for a converging wave front

(@ real, negative) , (62)

75>1, for a diverging wave front

(@ real, positive) .

Figure 1 compares the minimum blowup time for
spherically converging and diverging waves and for a Gaus-
sian beam. For a given || the converging wave always blows
up first, the diverging wave last, and the Gaussian beam is
intermediate between a plane wave (@ = 0) and a divergent
spherical wave. Note that for small , the Gaussian beam
solution is like the plane wave, i.e., 7= 1. Generally, @ may
be complex valued such that Im a>0. If we write @ = |a|e®,
0<¢<, then it is a simple matter to show

%=1+ (|@|/2)cos ¥ + O(|2|?), (63)

and thus spherically converging (¢ = #) and spherically di-
verging (1 = 0) waves bound the initial slopes of curves like
those of Fig. 1 for arbitrary complex a.

The relationships of @ and #, to the actual physical
quantities are

%o = €|B |kety,

lal <1,

(64)
where ¢, is the actual time to blowup and k = w/¢c. Also,
a= + (¢|Blk%a*) ", (65)

for a spherically convergent ( — ) or divergent ( + ) wave,
where a is the initial radius of curvature. Finally, for a Gaus-
sian beam or wave packet, if the initial lateral decay is of the
form exp( — 4r°/a?), then

a=i(elflk%a*) ~". (66)

(V. CONCLUSIONS

The weakly nonlinear theory of high-frequency waves
was originally developed with the explicit assumption that
the phase function is real valued.®” This is by no means a
severe restriction, since it includes the possibility of consid-

6 r

5r DIVERGING o = |¢|

a = ilo|
GAUSSIAN

CONVERGING a = -|¢f

0 " " . 1 N N
0 1 jal/B 2 3

FIG. 1. The time to blowup for three types of spherical wave frounts.
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ering both plane waves and waves with arbitrarily curved
wave fronts. In this paper we have seen that the same theory
can be quite easily adapted to include the possibility of solu-
tions with complex-valued phase functions. This enables us
to extend many of the results of weakly nonlinear geometri-
cal optics to include Gaussian beams and wave packets, in
the same way that consideration of complex phase in the
linear theory leads to beams and wave packets.

The formal application of the theory is almost identical
to the treatment of classical high-frequency waves, but some
of the final results are not at all obvious, to the author at
least. For instance, the generalization of the phase modula-
tion equation (33) to its complex counterpart, Eq. (50), is
remarkably simple. This is one of the major results of the
paper, since it provides the basis for discussing the condi-
tions for development of weak shocks, which are contained
in Egs. (53) and (55). These are relatively simple conditions
and may be applied to initial data which are either a plane
wave, a curved wave front, a purely Gaussian beam, or a
combination of a Gaussian beam with initial wave-front cur-
vature. For instance, the shock condition for an axially sym-
metric disturbance is given in Eq. (58). The simplicity of the
final results, such as (58), should be stressed as one of the
foremost advantages of the weakly nonlinear theory. It is
capable of providing insight into difficult nonlinear phenom-
ena through the use of geometrical techniques.

Some remarks were made in the Introduction about the
distinctions between the present approach and that of model
equations, such as the KZK equation. A few further com-
ments are in order. In their paper Cates and Crighton® ob-
tained similarity solutions of the KZK equation and general-
izations of it. These solutions exhibit, among other things,
the phenomenon of ray curvature due to transverse ampli-
tude variation, and Cates and Crighton note, correctly, that
this type of ray path curvature cannot be obtained within the
framework of the geometrical theory of Hunter and Keller,’
which explicitly assumes the amplitude is slowly varying
along the wave front. Cates and Crighton summarize their
view of the limits of geometrical methods with the comment
that “there seems to be no obvious way of extending the
geometrical optics scheme to cover cases when amplitude
variation along wave fronts contributes to signal modula-
tion... .”” The present results, however, appear to offer a sim-
ple means of including transverse amplitude variation that is
sufficient to provide modulation. Gaussian beams and wave
packets vary on length scales of the order of €'/? in the trans-
verse direction, in agreement with the lateral dependence
that Cates and Crighton noted would be necessary for wave-
front amplitude variations to influence modulation over
long distances. It must be pointed out that the present theory
does not provide a means for the rays to bend, since the
solutions are paraxial in nature. Any amplitude variation in
the transverse direction is Gaussian in form and must there-
fore be symmetric.

APPENDIX: PROPERTIES OF M FOR GAUSSIAN BEAM
SOLUTIONS

The two main results are derived here, both related to
the evolution of Gaussian wave packets. The decay of the
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initial Gaussian away from its center depends upon
Im M(0), which is assumed to be positive definite. Actually,
in order to include Gaussian beams we need not be this re-
strictive about the initial data, but just require that the rank 2
matrix P, M(0)P, have positive definite imaginary part.
This is equivalent to the requirement that

x-Im M(0)-x>0, with x-ImM(0)x>0, for all x#0

(A1)

We will now show that the following are direct conse-
quences of (A1): For any value of the time parameter 7,

xIm M(7)x>0, with xImM(7)x>0, for all x#0

such that xn=0.

such that x’n=0, (A2)
g(r) is finite . (A3)
We will derive (A3) first. Let
A(r) =14 7P, M), (A4)
then the condition (A3) is equivalent to
det A(7)#0. (A5)

This in turn is equivalent to the requirement that the deter-
minant of the 2 X 2 matrix with complex-valued elements,

1+ 7M,,(0) ™ ,(0)

R A6
™ ,(0) 1+ 7M,,(0) (A8)

be non-zero. Let the real 2X2 matrix Q be the imaginary
part of this matrix. Then, by the initial condition (A1) Q
must be positive definite, with eigenvalues g7 and ¢2, say. Let
us now rotate the coordinate axes to the principal axes of Q,
so that the matrix (A6) is of the form

[au + iq; a2
a,, a, + iqg ’

where the elements a,,, a,,, and a,, are real and arbitrary.
Setting the determinant of (A7) to zero gives

anay; —an — iqs + iang, +a,43) =0. (A8)
Both the real and imaginary parts of the left member must be
zero, implying the identity

@ = — (gig; + 2. q3/q1) <0, (A9)

But this implies that a,, cannot be real, and we have there-
fore shown by contradiction that (A5), and hence (A3), are
indeed true.

We now turn to the proof of (A2), first noting the iden-
tity

(A7)

M-'(ImMM~'=(172h(M~'—M~Y), (Al10)

where the bar denotes the complex conjugate. The derivative
of the right-hand side of (A10) with respect to r is zero,
since P, in (19) is real. Therefore,

Im M(7) = M(m)M ~ '(0) [Im M(0) M ~*(0O)M(7) .
(A11)

This may be simplified using the identity, which follows
from Egs. (20) and (A4),

M-Y(O)M(1) =A~ (7). (A12)

In particular, (A11) and (A12) imply that (A2) follows
from (A1) if and only if the matrix P, A(7)P, is of rank 2.
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But this is tantamount to the result (A3), and hence we have
proved (A2).

We note that the initial constraint (Al) is obviously
true for Gaussian wave packets, for which the stronger con-
dition Im M(0) p.d. holds. Therefore, the results (A2) and
(A3) imply that an initial disturbance in the form of a Gaus-
sian beam or a Gaussian wave packet, i.e., which satisfies
(A1), remains a Gaussian for all time, — o0 <7 < o0, and as
it evolves its amplitude cannot develop geometrical singular-
ities.
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