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Gaussian beams and wave packets are formally equivalent to high-frequency solutions of the 
linear wave equation with complex-valued phase functions. The theory of weakly nonlinear 
high-frequency waves is extended in this paper to allow for complex phase solutions. The 
procedure is similar to nonlinear geometrical optics and the nonlinearity causes the phase to 
vary, leading to the development of weak shocks. However, unlike standard geometrical optics 
that describes the evolution of wave fronts, complex phase solutions correspond to Gaussian 
decay away from a central ray, and the associated curvatures are complex valued. Geometrical 
singularities due to caustics and loci do not occur, and the only singularities in the theory are 
purely nonlinear. The theory is developed specifically for nonlinear acoustic waves in a 
homogeneous inviscid fluid. The time taken for nonlinear singularities to develop is compared 
for a real spherical wave front and a Gaussian beam with Gaussian radius equal to the real 
radius of curvature of the wave front. The time to blowup for the Gaussian beam is 
intermediate between the shortest possible, which is for the converging wave front, and the 
longest possible, for the diverging front. 

PACS numbers: 43.25.Ba 

INTRODUCTION 

Nonlinear acoustics of focused beams has been analyzed 
in depth over the past few decades, with most of the empha- 
sis on the study of solutions to model equations such as the 
KZK equation. There is a particularly large literature on the 
subject within this journal, see for instance Refs. 1-3, and 
elsewhere, e.g., Refs. 4 and 5. An alternative approach is to 
start from the exact, underlying equations but to assume that 
the solution depends upon a small parameter and use appro- 
priate asymptotic methods of analysis. This procedure is 
well developed for the evolution of high-frequency, weakly 
nonlinear waves. The basic mathematical methods were out- 

lined by Choquet-Bruhat 6 with subsequent development by 
Hunter and Keller,* and independently by Parkertl These 
methods are closely related to the theory of acceleration 
waves, 9 and also to the linear theory of geometrical 
optics. m-12 The effects of refraction enter the weakly nonlin- 
ear theories through the rays of geometrical optics while 
nonlinear effects enter via the transport equation for the am- 
plitude. In both the model equation approach, e.g., the KZK 
equation, and the weakly nonlinear methods, solutions can 
develop from initially continuous data into discontinuous 
solutions, or weak shocks. This is an inevitable consequence 
of nonlinear terms in the equations of motion and is dis- 
played by both the unidirectional theory, such as the Burgers 
equations, and also by the more general theories which take 
refraction effects into account. Weakly nonlinear theories 
can also develop geometrical singularities associated with 
the convergence of rays at caustics. These are quite distinct 
from nonlinear effects, but signify a breakdown of the geo- 
metrical optics ansatz, and may be treated by boundary layer 
techniques. Hunter and Keller •3 have shown that the evolu- 
tion of weakly nonlinear solutions is governed by linear thee- 

ry near caustics, and hence there is no physical singularity 
associated with caustics, in contrast to the purely nonlinear 
generation of shocks. 

The focus of this paper is on the development and gener- 
alization of the weakly nonlinear theory to account for not 
only the possibility of curved wave fronts but also the decay 
of the amplitude away from a central ray. The types of gen- 
eral solutions include, but are not restricted to, Gaussian 
beams and Gaussian wave packets, which have been dis- 
cussed at great length as solutions to the linear equations of 
acoustics and elasticity. •*-t8 The motivation for the present 
work comes from previous work on the propagation of 
Gaussian beams and wave packets within the context of lin- 
ear equations of motion. •s-•* In these references the beam 
and wave packets solutions were derived as asymptotic solu- 
tions in the sense of geometrical optics; not as solutions to a 
parabolic equation but as solutions to the standard eiconal 
and transport equations of hyperbolic wave equations. The 
point of departure with "standard" geometrical optics is that 
the phase function is allowed to be complex valued, with the 
result that the curvature matrix normally associated with 
curved wave fronts may be complex, yielding Gaussian de- 
cay about the central ray. The evolution and formal descrip- 
tion of the solutions with complex phase is identical in many 
respects to the theory for curved wave fronts. There are some 
important differences, of course; one of the most significant 
being that the complex phase solutions do not exhibit the 
usual breakdown of geometrical optics solutions at caustics. 
This feature, which will be discussed later, means we do not 
need to provide boundary layer corrections near caustics, 
and it also means that the only singularities that arise are 
those associated with purely nonlinear effects. 

As mentioned in the beginning, the present approach is 
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quite distinct from that of many previous articles in this 
Journal dealing with the KZK equation, e.g., Refs. 1-3 and 
references therein. For instance, Du and Breazeale • discuss a 
series solution to the KZK equation in the form 
p = p• +,g: + "', where,g I is a uniformly smooth Gaussian 
solution to the linearized equation, and •2 a regular pertur- 
bation which describes nonlinear effects. Numerical algor- 
ithms for solving the KZK equation 2'3 are based upon a sim- 
ilar perturbation scheme extended to higher orders. The 
weakly nonlinear theory, however, deals with a single Gaus- 
sian term p = p•, where • is not uniformly smooth but can 
become discontinuous as the wave progresses. The asympto- 
tics, or perturbation analysis, is performed on the phase of 
fi•. Cates and Crighton • provide an informative discussion 
on the connection between the KZK equation and geometri- 
cal techniques, as exemplified by Hunter and Keller. ? The 
other major differences are that no model equations are used 
here, everything follows from the primitive equations and a 
high-frequency ansatz, and finally, it will become clear that 
the present approach is above all else a simple way to look at 
a fairly complex phenomenon. 

The motivation for the weakly nonlinear theory is dis- 
cussed in the next section, where the scaling between the 
amplitude and frequency is outlined in detail. In Sec. II the 
weakly nonlinear theory is developed for solutions with real 
phase functions, similar to the theory of Hunter and Keller.7 
Then in Sec. III the results of the Sec. II are generalized to 
allow for the possibility of complex phase solutions. The pre- 
cise conditions required for initially smooth solutions to 
evolve into shocks are outlined and illustrated by several 
examples, including Gaussian beams. A relatively simple 
formula is derived that gives the time to shock for an initial 
wave that may be either a plane wave, a curved wave front, or 
a Gaussian beam, and any intermediate wave type. 

I. BASIC EQUATIONS AND SCALING 

The equations of motion for a homogeneous, isentropic, 
compressible, and inviscid fluid are 

,0 t q- •"pV •-• O, pV t +pv'Vv q- Vp = 0, p =p(p), 
(1) 

wherep, p, and v are the density, pressure, and fluid velocity, 
respectively. The independent variables are position x and 
time t, and the subscript t, or any other variable, indicates a 
partial derivative. The equation of state ( 1 )3 will be left un- 
specified, but we assume that the density and pressure are 
within the range for which the relation is uniquely invertible, 
i.e., p =p(p). The base state in which the fluid is at rest 
under constant pressurepo is v ---- 0, p = Po: = P(Po). In or- 
der to motivate the subsequent analysis, suppose that the 
equilibrium state is disturbed in such a way that at t ----- 0, 

p(x,0) =po{1 + ReAo exp[io(n.x/c + «x.D.x) ] }, 
v(x,0) = cn ReAo exp[ico(n.x/c + lx.D.x) ] , (2) 
whereA o is a complex number of magnitude IAol = •< l, n is 
a unit vector, and c is the sound speed of infinitesimal waves 

c_2_ dp ,= (3) 

The initial disturbance (2) represents a wave that would 
propagate in the n direction according to standard linear 
acoustics. The wave is modulated by the quadratic phase 
term x.D.x, which if D were real and symmetric with 
D.n = 0, would represent an initially curved wave front. We 
take D symmetric with no loss in generality, and further- 
more, we permit D to be complex valued such that Im D 
remains positive definite. Then (2) represents a localized 
disturbance that decays as a Gaussian away from the center 
x = 0. Within the realm of linear acoustics this set of initial 

conditions would generate a propagating Gaussian wave 
packet. 16 Alternatively, if we loosen the restrictions upon D 
so that Im x.D.x > 0 only for those x perpendicular to n, 
then(2)is localized only in the direction perpendicular to n 
but is of infinite extent in the n direction. This may be viewed 
as a particular limiting case of a GWP, and is known as a 
Gaussian beam. •4.15. r7,• 8 

We are concerned with the evolution of initial wave pro- 
files like (2) for times and distances of propagation such that 
nonlinear effects are significant. The units of time and length 
are T and L, defined as 

T= l/ew, L=cT=(ek)-•, (4) 

where e,• 1 is defined by the initial density perturbation, i.e., 
for the example (2), e = 1•/ol, and k = o/c is the acoustic 
wave number. The weakly nonlinear wave theory is valid for 
times on the order of T and propagation distances on the 
order of L, which in turn is (2rre) - • times the central wave- 
length of the initial disturbance. 

We close this section by defining dimensionless vari- 
ables x' = x/L and t' = t/T, so that (1) becomes 

ClO t, q- V"(,OV) = O, 

cpv,, + pv.V'v + V'p = 0. (5) 

The following ansatz is assumed: 

p =po[l + eR rm(x',t',O) + ear t•)(x',t',O) + '"] , 
v = c[eV(ø)(x',t',O) q- eaVt•)(x',t',O) + '" ] , (6) 

where 0 is a "fast" phase function that is related to the phase 
function •b of order unity by 

O= ß tq•(x',t') . (7) 

The remainder of this paper concentrates on developing so- 
lutions in the form of (6) and (7), subject to general initial 
conditions discussed later. For the moment we note that by 
necessity R (o>, V•o), etc., must be real-valued functions; 
however, the phase 0 may be complex depending upon the 
initial conditions. We will first consider the phase to be real 
valued, as this case corresponds closely to many previous 
treatments of weakly nonlinear waves, and defer until Sec. 
III the possibility of 0 being complex valued. 

II. REAL PHASE SOLUTIONS 

The results of this section are essentially the same as 
those of Hunter and Keller, v but are necessary in order to 
develop the general theory for complex-valued phase func- 
tions in the next section. 
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A. The eiconal equation 

Substitution of (6) and (7) into the equations of motion 
(5) and setting ß = 0 yields the first of a hierarchy of equa- 
tions 

R (oø,4, + v(oø,.v4 = o, 

R (oø)vo + v(oø% = o. (8) 

In (8) and subsequent equations the primes on t' and x' are 
omitted. We deduce from (8) the eiconal equation 

4•-- (¾4) 2 = 0, (9) 

which has two roots, corresponding to waves propagating in 
opposite directions. We focus our attention on one root, 

The PDE (10) for 4 may be solved by considering the 
Hamilton-Jacobi equations, which possess parametric solu- 
tions along one-parameter curves in space-time, or rays, Let 
the initial value of 4 be 

4(x,O) -=•(x), (11) 

and select a starting point x o. With no less generality, let 

n=¾•(Xo), In[=1, (12) 

then for t)0 the central ray (•(•-),•-) is 

•(J') = x o + n•-, (13) 

where o- is the ray-length parameter. Along the ray we have 
the usual solutions for a homogeneous medium, 

= 40: = 

4,(•.(•-),'r) = -- 1, (14) 

¾4(i(•'),'r} = n. 

Note that r is identical to the elapsed time t along the ray. 
Away from the central ray we expand 4 in a Taylor 

series, 

4(i(•') + Ax,v + 

+ «Ax.¾V 4' Ax + '". (15) 
Define the second-order symmetric tensor M by 

M(r) = ¾¾4{i(r),r), (16) 

then using (14) and the following relations that result from 
differentiating (10): 

V4,(i(r),r ) = -- M.n, 4,(•(r),O = n-M.n, (17) 

Eq. (15) simplifies to 

4 = 40 + (max- At) 

+ «(Ax-- n At).M(r).(Ax-- n At) + '-'. (18) 
If we retain only the terms shown in (18), i.e., up to and 
including quadratic, the resulting approximation to the 
phase may be called the paraxial approximation. 

The evolution equation for M(r) can be derived from 
the eiconal equation (10) as •6 

d(M -•) -- I-- nXn: = Pl , (19) 
dr 

with solution 

M(r) = M(0) [I + rP•M(0) ] - ' (20) 
where I is the identity, and Pl is a tensor that projects vec- 
tors onto the plane perpendicular to the ray direction n. 

B. The transport equation 

The next in the sequence of asymptotic equations is ob- 
tained by substituting (6) and (7) into (5) and then setting 
to zero d/dß of the resulting equations at ß = 0. This gives 

a '0"4, + v'o".v4 + a + v.v,o, 
+ (R (ø)V(ø))o'V 4 = 0, 

R ?V 4 + V<o•4, + V• m + VR (o• + R {ø•Vo4, 

+ (V'ø'.V4)V{oø' + B--- a 'ø'R <oø'¾4 = 0 , (21) 
where,4 and B are the usual parameters encountered in non- 
linear acoustics •9 

,4 =po c2, B =p• • .=.,, (22) 
The unknown quantities R (• and V t" can be eliminated 
from (21 ) by using the eiconal equation, to yield 

V4.[V•ø' + VJZ ,o, + a (ø'V•oø'4, + 
--J- (B/2,4) (.R (ø))•V4] -- 4t [R •0) q- 
+ (R (ø)V(ø))o'V4] = 0. (23) 
The total derivative along the central ray (i(r),v) is 

- + n.Y. (24) 
0•- c•t 

The velocity follows from (8) as 

V (ø• = R (ø)n, (25) 

and its divergence is, from (12) and (16), 

V.V © = n.VR (o) + R (o) tr(P•M) . (26) 

Therefore, when evaluated along the ray the transport equa- 
tion (23) becomes the PDE 

2 0Rtø) +R(ø)tr(PiM)+lS•R(m:)o=O, (27) 
where/• is the nonlinearity parameter •ø 

•g= 1 + B /• . (28) 

For example,/• = ( 1 + 7)/2 for an adiabatic perfect gas, 
P = Po (P/Po) r. 

C. The general aolution to the nonlinear transport 
equation 

The transport equation (27) may be rewritten as an or- 
dinary differential equation in r 

2 dR (o> + R to> tr(PiM(•')) = 0, (29) 
dr 

along the characteristic 

d.•_0 =/•R (o• (30) 

Equation (29) is the usual transport equation of linear geo- 
metrical acoustics, modified in the present circumstances by 
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the relation (30), which implies that the phase 0 varies as 
the ray position moves. The general solution to (29) follows 
from (20), 

R •o) = g(;.)b(•') , (31 ) 

where g(;.) is the geometrical spreading factor for a homoge- 
neous medium, 

g(;.) ---- {det[I + ;.PxM(O) ] }t/2, (32) 
b (.) is a function defined by the initial amplitude of the den- 
sity perturbation, discussed below, and • is a phase variable 
related to 0. To be more specific, we choose the initial value 
such that • = 0 at ;. = 0, then Eqs. (30) and (31 ) imply the 
following nonlinear equation for •'as a function of 0 for •- > 0: 

• +/?b(•)G(;.) = 0, (33) 

where (7(;-) is the integral of g(;.), with initial condition 
G(0) = 0. 

The function g(;.) represents the growth or decay in 
amplitude of a curved wave front and is in agreement with 
the amplitude obtained by considering the conservation of 
energy flux in a ray tube bundle. By assumption, the phase •b 
is real valued and therefore the matrix M(0) is also. The 

rank 2 matrix P, M (0) P, represents the initial wave-front 
curvature. Hence, unless the initial wave front is flat, corre- 
sponding to a plane wave and PiM(0)Px = 0, there will be 
at least one value of;., -- •o < ;.< •o, for which g(;.) of Eq. 
(32) becomes singular. These are the times at which the 
wave front focuses down to a point or a line, and the geomet- 
rical singularity in the ray amplitude signifies the breakdown 
of the original ray ansatz, which must be replaced by a local 
boundary layer analysis. This can be done, but at the cost of 
significant effort and a loss of simplicity. 23 We will see in the 
next section that this problem does not arise for Gaussian 
beam solutions, which is one of the major factors in their 
favor. 14- I ? 

The integral of g(;-) may be easily evaluated to find 
G(r) as follows. The initial curvature matrix, although it 
need not have n as a principal direction, defines two real 
numbers cq and a2 such that P,M(ø)P•=a,m ø) 
X m ( • ) + a2m (•) X m (•'), where ( m ( • ),m(2),n) form an ortho- 
normal triad of vectors, and so from (32) 

g(;.) = [(1 + Otl;.)(l + af2;.) ] -•/2 (34) 

This integrates to yield 

;., (•1 = (]'2 = 07 

(2/a•)[l+a,;.) I/2--I], a•0, a2=0, (35) 

Each case describes a different type of wave front: 
a• = a2 = 0 corresponds to a plane wave front: a• %a• = 0 
is a cylindrical wave front; a• = a: % 0 is a spherical wave 
front, and when a• •a: with a•a:•O, the principle wave- 
front curvatures are distinct and nonzero. The forms given in 
(35) for G(;.) are valid only until the earliest times rr > 0 at 
which g(;.) is singular. The time to focusing is finite only if 
either of a• or tz: is negative in which case rr 
= -- 1/min(al,a:), otherwise focusing does not occur and 
(34) and (35) are valid for 0<;.< oo. We note that G(;.) is 
monotonically increasing for 0<;.<;.F- The solution for 
times after focusing may be considered within the more gen- 
eral theory of Sec. III, which permits the phase to be com- 
plex valued. 

Finally we return to the amplitude function in the gen- 
eral solution (31 ). By assumption, the initial conditions de- 
pend upon both the phase <b (x) and the amplitude function, 
such that the initial density perturbation is of the general 
form 

p(x,0)--po=•pob(--• e (x)), (36a) 
with corresponding velocity 

v(x,0) =ecb(-?-(X))v•(x). (36b) 
The functions <b and b are independent in general: the for- 
mer determines the ray direction and the initial values for the 
elements of the wave-front curvature matrix M (0). The am- 
plitude function b is normally assumed to be sinusoidal, cor- 
responding to time harmonic waves, but it may take on any 
form in the present theory. Some examples of different func- 
tional forms for b are discussed in subsection E where it is 

shown that the amplitude function strongly influences the 
development of shocks. 

D. Summary of the theory for real phase 

The procedure for applying the present theory is thus: 
for a given starting point at x = Xo, find the central ray • ( 
of (12) and (13) and the initial curvature tensor 
M(0) = ?Vq>(xo), from which the geometrical functions 
g(;.) and G(;.) are determined by (32) and (35). Then for 
each 0<;.<;.f, (33) is solved for õ, with initial phase 
0 = 0o: = e - i q>(Xo) ' The quantities R •o• and V •ø• associat- 
ed with density and velocity are given by (31) and (25), 
where g(;.) defines the refraction of the wave front and b( 
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is the amplitude function, defined by the initial data through 
Exls. (36). It is interesting to note that the particle accelera- 
tion is of order unity, 

pv, = a(•')pocn + O(e), (37) 
where 

a = --R •o• 

= --g(r)b'(g) (38) 
1 +l•G(r)b'(•) ' 

which follows from (31) and (33). 

E. Development of discontinuities and examples 

Although the present theory is premised on the assump- 
tion that the solutions remain smooth, it may under certain 
circumstances predict the onset of a discontinuous solution. 
This is a purely nonlinear effect in contrast to the possibility 
of geometrical singularities associated with focusing in the 
linear theory, discussed above. The latter is an artifact of the 
asymptotic ansatz and may be corrected for, but the emer- 
gence of discontinuities indicates a significant change in the 
physical nature of the solution. The subsequent evolution of 
discontinuities can be analyzed by the theory of weak 
shocks. 7're't2 A discontinuity or weak shock will arise when 
(33) admits multivalued solutions. Therefore, the require- 
ment for a shock is that there is a simultaneous solution to 

(33) and the condition obtained by equating its derivative 
with respect to • to zero, viz. 

[•G(r)b'(•) + 1 = 0. (39) 

For a given 0 ---- 0o, let r = r o be the earliest time for which 
( 33 ) and (39) possess a simultaneous solution. Because the 
left member of (39) is the denominator in (38), it is dear 
that the acceleration becomes unbounded as r-•ro. More 
precisely, eliminating/•'(•) between (38) and (39), and as- 
suming g(r) is sufficiently smooth as •' approaches •'o, im- 
plies 

a-- l/•(r o -- r), •'--'•'o- (40) 

The first shock appears for that value •o which both 
satisfies (33) and (39) and maximizes Ib'(o)l, such that 
sgn b '(•o) = - sgn/•G(ro). This follows from the mono- 
tonic property of G(•'), and since/• is usually positive,•9 the 
two conditions b '(•'o) < 0 and b "(•o) = 0 must be simulta- 
neously satisfied. If multiple values of • exist for which 
b '(•o) <0, the one selected is that which makes b '(g) an 
absolute minimum. The associated time then follows from 

(39) and the initial phase from (33). For example, if 
b(•) = cos• and/•>0, the critical value of• is •o = •r/2 
corresponding to the point on the initial velocity profile of 
greatest slope, since 0 = •o for this initial profile. Also, the 
time to shock is r o, where G(ro) __fi-1. Alternatively, if 
b(•) = exp( -- •2/2), then •o = 1, 0 ---- 2, and the time to 
shock is given by the solution to G(%) = fi - •e t/•, which is 
e •/2 times larger than the previous case, with corresponding 
larger %. Finally, suppose b(•) = -- •h ( -- •), where h (x) 
is zero for x<0, h(x) = I for x> 1, and h(x) is smoothly 
varying for x between 0 and 1. It follows from (38) that the 
initial acceleration at r = 0 + is in the form of a step rune- 

tion of width eL in dimensional coordinates. This is a 

smoothened version of an acceleration wave 9 which is by 
definition a traveling discontinuity. The solution to (33) for 
this particular amplitude function is simply 

0, O>0, •= 0 , 0<-1, (41) 
1 - l•lG(r) 

and is smooth for -- I<0<0. The time to shock is again r o 
where G(ro) --/•- •, but in this case all values of 0< -- 1 
develop a shock simultaneously at r = to. 

The results for these examples of different initial ampli- 
tude functions are valid for any initial wave-front curvature 
M(0). Suppose, for instance, that the initial curvature is 
spherical, i.e., M(0) ---- aP•, a real. Then the time at which 
the sinusoidal wave b(•) = cos • develops a discontinuity is 
ro such that G(ro) =/•- l (assuming again that •> 0), or 
from (35), ro ---- a - • [e <am• -- 1 ]. This value off o is positive 
and finite independent of whether the wave diverges (a > 0) 
or converges (a <0), and for a given magnitude of a, the 
time ro is shortest for the converging wave. Comparison of 
Eqs. (2), ( 14),and (36) shows that lal = eL •/a•,whereais 
the initial wave-front radius of curvature. Taking the present 
example of a sinusoidal wave with spherical curvature as a 
canonical case, it may be stated that the role played by non- 
linear effects versus geometrical effects is governed by the 
magnitude of lalm = (etak -', where k = •o/c is the 
wave number. Thus, if la l, then ro is either very large, if 
ct > 0, or it is approximately r o = - l/a ira < 0. In the for- 
mer case the discontinuity does not develop until the wave 
has diverged significantly, and in the latter case it develops 
only just before geometrical focusing occurs. Conversely, if 
lal/• 1, then %•/•-• independent of a, which means 
that the discontinuity develops before any geometrical 
spreading or focusing occurs. 

The parameters used here can also be related to the non- 
linearity parameter N of Bakhvalov et al., 4 defined as a 
N = Lull •, where L a is the diffraction length and L• the 
plane wave discontinuity length. The former is La ---- ka •, 
where a is a typical radius of curvature for the initial data. 
Bakhvalov et al. 4 were specifically concerned with initial 
data of the form exp( -- r•/2a2), which generates a Gaus- 
sian beam and is really outside the purview of real phase 
solutions, but will be considered in the next Section. If the 
initial dimensionless complex curvature matrix is 
M(0) = a(I - nXn), where a is real, then the initial data 
corresponds to a spherically curved wave front with radius 
of curvature a, where a 2 = eL •/[a I and L is the basic length 
defined in (4). The distance to shock for a plane wave is 
Lv = (/•ke) - • = L//•, where//is the nonlinearity param- 
eter of order unity, defined in (28). The number N is 
therefore N = •/la[ = e•tk •a •. Since/• is typically of order 
unity, and by assumption, a is also, we conclude that the 
present analysis is relevant to initial data for which 
N = O( 1 ). Another way of looking at it is that the number of 
wavelengths in the distance to shock is of order 
kL• = (e]•) - •. Alternatively, let 8 be the inverse of the 
number of wavelengths in L,,, then the present scaling corre- 
sponds to 6 • e. 
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The earlier observations about the time to shock may be 
summarized as follows. If 

N,• 1, geometrical effects dominate shock evolution, 
(42) 

and if 

N• 1, nonlinear effects dominate, (43) 

and if N is of order unity, then the two effects are intimately 
coupled. 

III. COMPLEX PHASE SOLUTIONS 

The formalism for real phase solutions is now general- 
ized to allow the possibility that the phase is complex valued. 
This permits us to include Gaussian beam and wave packet 
solutions among the general class of weakly nonlinear high- 
frequency waves, and to discuss the development of shocks 
for these wave types. 

A. Evolution equation for the complex phase 

The types of solution discussed in Sec. II do not include 
solutions corresponding to initial conditions in the form of a 
localized Gaussian beam or Gaussian wave packet, i.e., ini- 
tial data of the form (2) with Im D positive semi-definite or 
definite, respectively. We therefore generalize the ansatz (6) 
to 

P =po[1 + ßReR (ø)(x,t, 0) + e • ReR (•)(x,t,0) + ...] , 
(44) 

v = c[ßRe V(ø)(x,t, 0) + e a Re V(l•(x,t, 0) + '" ] , 

where 0 is complex and R •o•, R <•) ..... V ©, V <• ..... are 
complex-valued functions. The complex-valued fast phase 0 
is related to • by (7), where again ß is real and small. 

Substituting (44) into the equations of motion (5) 
again produces an asymptotic hierarchy of equations in ß. 
We consider •b and its complex conjugate • as independent 
variables, implying that the first set of equations reduces to 
(9), which gives the eiconal equation, and we again concen- 
trate upon the root (10). The ray equations (12) and (13) 
follow once an initial phase 4•(x) is given, although (b must 
be such that the ray direction, V(1) (x), at x = x o is real. This 
is always true for Gaussian beams and Gaussian wave pack- 
ets if xo is the central point. One could develop the present 
theory to include rays in complex space, as has been done 
over the past 20 years by numerous authors for the linear 
theory, but it will be assumed for simplicity that the ray is 
real in this paper. 

The phase • can be locally expanded about the central 
ray by defining the complex valued tensor, M(•-), through 
(16). The evolution of M(t) is again given by (20) and 
some general properties of M(r) are proved in the Appen- 
dix. In particular, it is shown that the imaginary part of M 
remains positive definite for all •- > 0 if it is initially positive 
definite. A Gaussian wave packet corresponds to the imagi- 
nary part of M being positive definite. On the other hand, in 
a Gaussian beam only that part of Im M associated with 
lateral dependence is positive definite, i.e., Im M may only 
be positive semidefinite of rank 2. In this case the results of 
the Appendix also imply that a beam with initial conditions 

of this type maintains these conditions. Thus, Gaussian wave 
packets and beams remains localized about the moving cen- 
tral point i(•-). 

The other important conclusion to be drawn from the 
Appendix is that neither Gaussian wave packets nor Gaus- 
sian beams can develop the type of geometrical singularities 
common to real phase solutions, i.e., singularities associated 
with caustics and foci. This is a well-known result for Gaus- 

sian beams and may be explained in terms of real and com- 
plex rays. Real phase solutions propagate as a bundle of adja- 
cent rays in real space, caustics and foci occurring when 
congruent rays coalesce at a point. Gaussian beams and 
wave packets, on the other hand, have only a single real ray 
associated with them, which is the central ray. The adjacent 
rays define curves in complex space and are accordingly 
called complex rays. They remain in complex space, and 
whether or not they form caustics in complex space, they 
cannot produce geometrical singularities in real space, the 
space in which the physical quantities are defined. 

Transport equations similar to, but not quite the same 
as, (21) follow from the next order in ß by invoking the 
linear independence of'• and • 
R + vo".v + R + v.v(o, + 

X Re R (o) + V•.R (o ø) Re V © = 0, 

R (o'•¾• + V•')•, + V• ø' + VR (o, + (ReR (ø))V•ø)•, 

+ V(oø)Vd. Re V © + B/A (Re R (ø))R (oø)Vd = 0. 
(45) 

These may be combined to form a single equation similar to 
(23) 

V•'[V• ø) + VR (o) + (ReR (ø))V(oø)•, 
+ (Re Vtø)).V•V(oø) + (B/A)(Re R (ø))R 
_ + v.v(o, + (Re ø' 
+ (Re Vtø)).VqSR (o ø) ] = 0, (46) 

and this simplifies along the ray to become, analogous to 
(37), 

2 •R (o) + R (o) tr(P•M) + 2/•(Re R (ø))R (o ø) = 0. 
3•- 

(47) 

This PDE may in turn be written in the same form as the 
ODE (29) along the characteristic 

dO 
--/•ReR (o) (48) 

dr 

The solution to the transport equation is 

R (02 = g(v)b(•) , (49) 

where b (0) is the complex valued initial amplitude function. 
Integration of (48) implies 

• + l• Re[b(•)G(,r) ] = 0, (50) 

where G(•-) is the integral of gO') such that G(0) = 0. Note 
the similarity of the phase equations (50) and (33). In par- 
ticular, (50) implies that the change in phase is real inde- 
pendent of the initial pulse profile. 

The condition for the development of weak shocks is 
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that dO/dS = 0, i.e., in addition to (50), the following must 
be satisfied 

1 +fiRe[b'(•)G(r)] = 0. (51) 

B. Example: Gaussian wave packets 

The initial amplitude function for a Gaussian beam or 
wave packet is b(•): e ig, and thus both of the real valued 
equations (50) and (51 ) can be combined into a single com- 
plex-valued condition 

fiG( r)e '• = 0 - • + i, (52) 

with the constraint that • - 0 is real. Now, G(0) = 0, and 
as r increases the magnitude of G(r) will increase. At the 
same time, the positive definite requirements on M (r) imply 
leVI< 1, and therefore, a shock cannot occur until r o such 
that 

IfiG(ro) ] -- 1. (53) 

At the time that the shock develops (52) and (53) imply the 
dual relations 

• = 0, fiG(To)e gø = i . (54) 
Further, since (53) holds, the identities (54) are satisfied 
only if the initial phase 0 is real and 

0 = (rr/2)sgn fi - arg G(r o) . (55) 

In summary, the part ofa GWP or a Gaussian beam that first 
develops a shock is initially at the position x, which has 0 
given by (55) where r o satisfies the shock condition (53). 

To be more specific, assume the wave is propagating in 
the x 3 direction with 

M(0) = diag[a,a,y]. (56) 

This represents an axially symmetric initial disturbance, and 
it is assumed that Im a>0, Im y>0. A Gaussian beam corre- 
sponds to 7/= 0, and the beam or wave packet is tapered in 
the Xl and x2 directions only if Im a > 0. A non-Gaussian 
wave-front results if a is real and the wave front is initially 
convergent (divergent) ifs < (at > 0). A plane wave front is 
given by a = 0. The function G(r) is 

G(r) = ( 1/a)log( 1 + at), (57) 

and the earliest blowup time is ro of (53), which is the earli- 
est root of 

[log(1 +aro) I --la/fi I . (58) 

Equation (58) is a very general result for spherically sym- 
metric weakly nonlinear high-frequency waves of complex 
phase, and includes, of course, real phase solutions with 
curved wave fronts, and also includes the case of a plane 
wave as the special limit ofct • 0. The equation may be trans- 
formed to a more canonical form by eliminating the explicit 
dependence of the nonlinearity parameter/3 through the in- 
troduction of characteristic parameters, 

Ifi I,-o, -- a?lfil ß (59) 
Both parameters are still dimensionless and • may be com- 
plex valued such that its imaginary part is positive Semide- 
finite. Equation (58) becomes 

Ilog(1 q- 8•o)1 -- lal ß (60) 

The plane wave solution, for a = 0, is '7' 0 = 1 or ro = 1/Ifi I, 
and for a real (60) admits the explicit solution seen in Sec. 
III 

•o = (1/•) ( es-- 1) . (61) 
Thus, as might be expected, the dimensionless blowup time 
satisfies 

0 < •'o < 1, for a converging wave front 

(2 real, negative), (62) 

•o> 1, for a diverging wave front 

(• real, positive). 

Figure 1 compares the minimum blowup time for 
spherically converging and diverging waves and for a Gaus- 
sian beam. For a given l a[ the converging wave always blows 
up first, the diverging wave last, and the Gaussian beam is 
intermediate between a plane wave (a = 0) and a divergent 
spherical wave. Note that for small a, the Gaussian beam 
solution is like the plane wave, i.e., q'om 1. Generally, a may 
be complex valued such that Im a•>0. If we write a = 
0<•b<rr, then it is a simple matter to show 

= 1 + ([1/2)c0s + O(112), Il<l, (63) 
and thus spherically converging (•b = rr) and spherically di- 
verging (tp = 0) waves bound the initial slopes of curves like 
those of Fig. 1 for arbitrary complex a. 

The relationships of • and •'o to the actual physical 
quantities are 

•o = el/3 Ikcto , (64) 

where t o is the actual time to blowup and k = role. Also, 

•__ _+ (elfilk2a 2)-1, (65) 
for a spherically convergent ( - ) or divergent ( + ) wave, 
where a is the initial radius of curvature. Finally, for a Gaus- 
sian beam or wave packet, if the initial lateral decay is of the 
form exp( - «r:/a2), then 

• =/(el/? Ik 2a2) -l (66) 

IV. CONCLUSIONS 

The weakly nonlinear theory of high-frequency waves 
was originally developed with the explicit assumption that 
the phase function is real valued. 6'? This is by no means a 
severe restriction, since it includes the possibility of consid- 

6 

5 DIvERGING• 3 

2 • GAUSSIAN I CONVERGING c• = -Ic•l 

0 I lal/B 2 3 

FIG. I. The time to blowup for three types of spherical wave fronts. 
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ering both plane waves and waves with arbitrarily curved 
wave fronts. In this paper we have seen that the same theory 
can be quite easily adapted to include the possibility of solu- 
tions with complex-valued phase functions. This enables us 
to extend many of the results of weakly nonlinear geometri- 
cal optics to include Gaussian beams and wave packets, in 
the same way that consideration of complex phase in the 
linear theory leads to beams and wave packets. 

The formal application of the theory is almost identical 
to the treatment of classical high-frequency waves, but some 
of the final results are not at all obvious, to the author at 
least. For instance, the generalization of the phase modula- 
tion equation (33) to its complex counterpart, Eq. (50), is 
remarkably simple. This is one of the major results of the 
paper, since it provides the basis for discussing the condi- 
tions for development of weak shocks, which are contained 
in Eqs. (53) and (55). These are relatively simple conditions 
and may be applied to initial data which are either a plane 
wave, a curved wave front, a purely Gaussian beam, or a 
combination of a Gaussian beam with initial wave-front cur- 

vature. For instance, the shock condition for an axially sym- 
metric disturbance is given in Eq. (58). The simplicity of the 
final results, such as (58), should be stressed as one of the 
foremost advantages of the weakly nonlinear theory. It is 
capable of providing insight into difficult nonlinear phenom- 
ena through the use of geometrical techniques. 

Some remarks were made in the Introduction about the 

distinctions between the present approach and that of model 
equations, such as the KZK equation. A few further com- 
ments are in order. In their paper Cates and Crighton s ob- 
tained similarity solutions of the KZK equation and general- 
izations of it. These solutions exhibit, among other things, 
the phenomenon of ray curvature due to transverse ampli- 
tude variation, and Cates and Crighton note, correctly, that 
this type of ray path curvature cannot be obtained within the 
framework of the geometrical theory of Hunter and Keller, 7 
which explicitly assumes the amplitude is slowly varying 
along the wave front. Cotes and Crighton summarize their 
view of the limits of geometrical methods with the comment 
that "there seems to be no obvious way of extending the 
geometrical optics scheme to cover cases when amplitude 
variation along wave fronts contributes to signal modula- 
tion .... "The present results, however, appear to offer a sim- 
ple means of including transverse amplitude variation that is 
sufficient to provide modulation. Gaussian beams and wave 
packets vary on length scales of the order ofe •/• in the trans- 
verse direction, in agreement with the lateral dependence 
that Cates and Crighton noted would be necessary for wave- 
front amplitude variations to influence modulation over 
long distances. It must be pointed out that the present theory 
does not provide a means for the rays to bend, since the 
solutions are paraxial in nature. Any amplitude variation in 
the transverse direction is Gaussian in form and must there- 

fore be symmetric. 

APPENDIX: PROPERTIES OF M FOR GAUSSIAN BEAM 
SOLUTIONS 

The two main results are derived here, both related to 

the evolution of Gaussian wave packets. The decay of the 

initial Gaussian away from its center depends upon 
Im M (0), which is assumed to be positive definite. Actually, 
in order to include Gaussian beams we need not be this re- 

strictive about the initial data, but just require that the rank 2 
matrix PxM(0)Px have positive definite imaginary part. 
This is equivalent to the requirement that 

x-ImM(0)-x>0, with x-ImM(0)-x>0, for all x•0 

such that x.n = 0. (A 1 ) 

We will now show that the following are direct conse- 
quences of (A 1 ): For any value of the time parameter r, 

x.lmM(T)-x>0, with x-ImM(T)'x>0, for all x•0 

such that x.n = 0, (A2) 

g(•-) is finite. (A3) 

We will derive (A3) first. Let 

A(r) = I + rP•M(0) , (A4) 

then the condition (A3) is equivalent to 

det A(r)•0. (A5) 

This in turn is equivalent to the requirement that the deter- 
minant of the 2 X 2 matrix with complex-valued elements, 

[1 d- rMl,(0) TMi2(0) ] •'M•2(0) 1 + rM22(0) 1 ' (A6) 
be non-zero. Let the real 2 X 2 matrix Q be the imaginary 
part of this matrix. Then, by the initial condition (A1) Q 
must be positive definite, with eigenvalues ql • and q•, say. Let 
us now rotate the coordinate axes to the principal axes of Q, 
so that the matrix (A6) is of the form 

al2 a•2 + iq] l ' (A7) 
where the elements a• •, a•, and a22 are real and arbitrary. 
Setting the determinant of (A7) to zero gives 

a,a2• -- al•z -- q• + i(a•ql • d- aHq• ) = 0. (A8) 
Both the real and imaginary pans of the left member must be 
zero, implying the identity 

a• ----- -- (q•q• + a•/•) <0. (A9) 
But this implies that al2 cannot be real, and we have there- 
fore shown by contradiction that ( A5 ), and hence (A3), are 
indeed true. 

We now turn to the proof of (A2}, first noting the iden- 
tity 

where the bar denotes the complex conjugate. The derivative 
of the right-hand side of (A10) with respect to r is zero, 
since P. in ( 19} is real. Therefore, 

Im M(r) ---- M(r)M- •(0) [Im M(0) ]M- • (0)M(r) . 
(All) 

This may be simplified using the identity, which follows 
from Eqs. (20) and (A4), 

M- I(0)M(T) = A- I(T) . (A12) 

In particular, (A11) and (A12) imply that (A2) follows 
from (AI) ifand only if the matrix P•A(r)Px is of rank 2. 
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But this is tantamount to the result (A3), and hence we have 
proved (A2). 

We note that the initial constraint (A1) is obviously 
true œor Gaussian wave packets, œor which the stronger con- 
dition Im M(0) p.d. holds. Thereœore, the results (A2) and 
(A3) imply that an initial disturbance in the form of a Gaus- 
sian beam or a Gaussian wave packet, i.e., which satisfies 
(A1), remains a Gaussian for all time, - • < • < •, and as 
it evolves its amplitude cannot develop geometrical singular- 
ities. 
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