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Abstract—Three coupled integral equations are formulated for the direct problem of scattering of
obliquely incident longitudinal plane waves from a rectangular crack. Chebyshev functions are used
to expand the unknown crack opening displacements and to convert the integral equations into an
infinite linear system of simultaneous equations which are solved by numerical truncation. The
static and dynamic stress intensity factors for a square crack under normal incidence show very
good agreement with all data reported by other researchers. For a rectangular crack, the ratio
between the two local maxima of Mode I stress intensity factors is found to be the square root of
the aspect ratio. A Rayleigh wave membrane analogy is used to explain the appearance of peaks in
the dynamic responses. All the results for cracks under oblique incidence are new, as well as the
scattered far-fields and their long wavelength or quasi-static limits. The asymptotes of the scattering
cross-sections in the high frequency region are found to vary linearly with the cosines of the incident
angles, and a corner effect is observed in the scattering patterns for moderately high frequencies.

[. INTRODUCTION

The study of elastic wave scattering by cracks is of some importance in the field of ultrasonic
non-destructive testing and evaluation. However, to date there have been few analytical or
numerical studies on three-dimensional crack configurations. In particular, we note the
work of Itou (1980) who used eigenfunction expansions and integral transforms to formulate
solutions for a rectangular crack with a normally incident plane wave. The same method
was employed by Krenk and Schmidt (1982) for a circular crack under oblique incidence.
Lin and Keer (1987), Budreck and Achenbach (1988) and Nishimura and Kobayashi (1988)
applied the boundary integral equation method (BIEM) to tackle scattering problems by
cracks of arbitrary shapes.

The aim of this paper is to solve the direct problem of scattering of obliquely incident
longitudinal plane waves from a prescribed rectangularly shaped crack. The motivation for
this study stems from the possible existence of rectangularly shaped cracks in composite
materials, caused for example, by pinning, and also from an interest in the role of the corner
in influencing the scattered far-field. The latter effect cannot be found in the study of
elliptical cracks or cracks with smoothly varying edges.

Similar to the approach employed by Itou (1980), eigenfunction expansions and integral
transforms are used in Section 2 to formulate the governing equations for the present
problem. Analytical results are derived in Section 3 for the scattered far-fields together with
their Rayleigh limit. The criteria used to bound the computational errors are described in
Section 4, followed by discussions of the numerical results for near-field crack opening
displacements (¢02) and stress intensity factors (¥£% ), and also for the far-field scat-
tering patterns.

2. FORMULATION OF THE SCATTERING PROBLEM

2.1. Mathematical preliminaries
The response of an isotropic elastic solid is expressed as the superposition of the
complex valued incident and scattered displacement fields
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Uit (x) = uf™(x) +1°(x), ey

where the superscript “tot” denotes the total field, ““in” the incident field and “‘sc”” means
the scattered field caused by the incidence. Latin subscripts run from 1 to 3, and the
summation convention is implied throughout for the repetition of indices unless otherwise
stated. Also, the subscript “‘0” will be used to denote quantities associated with the incident
wave. The assumption in these equations and what follows is a time dependence of ¢~ in
all fields, where @ > 0 is the circular frequency. This dependence is to be understood and
will be suppressed.
For an arbitrarily oriented incident plane wave,

w(x) = " d; e, )

where .o/ is the amplitude, the unit vectors p and d define directions of propagation and
polarization respectively, and k, = k¢ or ky is the incident wave number,

@ w A+2u \/;:
k=—, kr=—; CL= _|[—, Cr= _[—; 3
L= k=g G= [T o= [ &)

where p is the mass density, 4, u are the Lamé constants, and C, and Cy are the longitudinal
and transverse wave speeds for the material.

The scattered displacement fields are constructed as an integral representation by
employing the second Green’s identity at an observation point x away from the crack. Thus

uis(x) = f ui (X )Zy (X =) (x") dF (x), “

with the source point X’ running over the entire crack surfaces & = " V% ~, where €+
and ¥~ are the surfaces facing down and up respectively. Also, Z;,(x’—x) denote the
elasto—dynamic stress fields at an observation point x caused by the application of a unit
force at a source point x” in the /th direction, and n" = +J4; denotes the surface unit
normal, see Fig. 1. The crack opening displacement field (¢02) is defined in the crack
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Fig. 1. The coordinate systems.
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plane by

w (X1, %2, 0% ) =1 (x1, x5,07) = u°(x1, X5,07) =217 (x1, %,,07)

0, x,, X, off crack ;
= Auj*(x;,x5), xi,X,oncrack. ©)
Using nj = —nj3 and (5), eqn (4) eventually simplifies to a surface integral over the upper
face of the crack only
ui*(x) = JJ dx’ dxh Ay (X)2;5.,(x" —x). (6)
(g-f-

2.2. Derivation of the integral equations
Application of standard procedures (Achenbach et al., 1982) leads to the following
integral form of the Green’s function for an isotropic elastic solid with x; > x4,

’ 1 ” 1 L C% 2 L L | aikk(x;—x)
Z,-j;[(x _X)='8'T? _oodk] dk2 Ek, 1_2_6'—1% 6U+k_%k, k] (VA

1 2 T
+ ;[k? Otk bu~ 1 ki kfkf] e’ "‘f"‘f’}, (7

and when substituted into (6) gives the following formula for the scattered displacement
for all values of x5:

1 « ) ) , )
u(x) = JJW dx’ dx’ Aui(x7, X’Z)QFJ‘J‘ dk | dk, et Hhto=x0 '%;](kls kysxs).
(®)

In these expressions

Bk kysx3) = lk,L 1—29% Sin+ ik!‘vL il
u s £l 3 VL C]% i k% i

1 2 .
+ — l:kiT531+vT Su— —zk;-rka,T:I e" sl (9)
Vr k3

where the wave number vectors k¥ are
k' ={k,kyv,}, (y=LT). 10)

The equations of motion and the radiation condition at infinity imply that Im (v,) > 0, and

VK —ki—k3, fork?>ki+k3;
v, = =L,T). 11
! {i«/k%+k§—k§, for k? < k3+k3; @ ) ()

Following the derivation of (8), the corresponding scattered stress fields are
05() = g J J ey dky &4 3 e, Ky 5 x3)

8 J J dx; dxy e DAL (x) x5, (12)
(g+
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where

N 1 C
-@:;/l = V_ (lkﬁé,]‘i—zﬂk,]“) |:< -3 T> On + k] -J v x|
L

4
— MU |:(sz5 3yt k.fTési)le + (kiT‘slj +ij51i)VT k! kaT VT:I ePral (13)

ki
The term £:* physically represents the effect of the ¥0% component in the /th direction
on a stress component along the ith direction in the crack plane oriented in the x; dimension.
We note the symmetry property #:* = %, Also, it is instructive to write out #:*(k,k,;0)
explicitly so that one may readily see the decoupling of the in-plane and out-of-plane terms
with respect to the crack plane x; = 0:

-
4 1 4 1
k3 [kT (vp—vr)+ V_T}-H)T’ k ik, l:k_%(VL—VT)‘f' V—Ti]’

!%Bl
- = 4 1 4 1
H k1k2[k—%(VL—VT)+ V_T:|’ k3 l:k—%(VL—VT)+ V_T‘:|+VT,
L 0 0
0
0 (14)
k% 2 4 2 2
— (k +k3 ) sz(k1+k2)
VL ki

~

Great advantages will emerge from this decoupling property in some of the subproblems
dealt with in Section 4.
The traction-free boundary condition on the crack surface implies

ol +6% =0, wherex; =0. (15)
Equations (2), (12) and (15) imply that, for all x,, x, on the crack plane,

0 = 87>} ko[Adipidis +u(dips +dsp;)) eolrrvitrad

+ jj dk, dk, ei("'“"'”l"'l),@f[fj dxy dxy e Vi) Ayse(x], x5),  (16)
-2 g+

where the first term on the right-hand side stands for the incident stress fields, and the
second bears the physical interpretation of the total scattered stress fields emitted from all
the secondary sources distributed over the entire crack face ¥ *. The identities (16) are the
integral equations to be solved for the sought unknown 0% fields Au;°. Note that there
are three integral equations which must be satisfied simultaneously everywhere on the crack
plane. By the nature of the elasto—dynamic stress field (14), the third equation (i = 3) stands
on its own, while the other two are generally coupled together. The major difficulty of solving
these integral equations rests with the Green’s function, which in the present formulation
is expressed as a double integral of infinite extent.

3. SOLUTION OF THE INTEGRAL EQUATIONS

3.1. Reduction to a system of linear equations
We proceed to solve the integral equations by expanding the €02 in terms of a
complete set of functions, each of which tends to zero at the edges of the crack in a square



Wave scattering 1553

X3

// 7
a

A
| e |

Fig. 2. The rectangular crack.

root sense. For the rectangular crack, |x;| < « and |x,| < b, see Fig. 2, a suitable set of
functions is the following

llcos [I[sin™' ()], (odd));
&) =< (17

gsin [[sin ' ()], (even ).

These are related to Chebyshev functions of the first kind. The ¥02 is then assumed to be

wirx = 3 3 o (3o, (2) 18)

m=1 n=1 a

Substituting (18) into (16) and using the identity

f_ AP = LIR), (19

where J, is the /th order Bessel function, yields an infinite linear system of equations

oS o2k, =, (pg=12,..), (20
m=1 n=1
where
- (RS J PR RACH)
li — N or MASIAN A liay, 2k
anpt/ - Jloo dé f gy C d’? ™ ™ ‘@a (59 7’)’ (21)
=i _ 8 v L 3L Jp(fo) Jq(TnO)
= [(1 ~2v>5”+d" dJ & -

and v is Poisson’s ratio of the material. The over-bar in these expressions and what follows
denotes the normalized version of quantities, and the dimensionless variables are defined
as & = ak |, n = ak,, ky = ak, kr = ak, v, = avy, ¥ = av;. The parameter © = b/a is the
constant aspect ratio, and a superscript “L” is employed for the polarization vector d since
only longitudinal incident waves are considered in this paper. It is significant to note that
each element in the matrix of the governing equations (20) is a double integral of infinite
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extent, the kernel of which possesses no singularity. This is a superior feature of the present
method over the boundary integral equation method (BIEM) which is extensively used in
solving scattering problems for cracks. Also, the decoupling property noted previously is
evident by rewriting (20) in the explicit form

Z Z [ Dy + CnDnmp) = L g (23)

Z Z [a Qplnfrpq"*'arzmgiﬁpq] J%;i[’ (24)
m=1n=1
Zl Zl [0 Zopa] = S pg.- (25)

3.2. Far-field asymptotics
Some general features of the far-field scattering can be deduced without explicitly
solving the system (20). In the far-field, R = |x| — oo, the scattered displacement becomes

uE ~ — (1—” raz)&i,‘}‘kL [,w'%gbr (k )M T] (26)
4 ke

The far-field scattering amplitudes are defined by

o O

i _nl Z Z (xirm/ b (27)
m=1n=1
A= Y Gl (28)
m=1n=1
the direction functions are
Cr CT Jn(kpan,) J,(kybn,)
g L —
Fr(n) = ,:(1 Cz) 513+2C2 nn 3] K an, kibn, (29)

Julkran,) J, (kanz)_
kran, kibn,

Fi(n) = (n0;3+n30,—2nnn;) (30)

where n = x/R is the observation direction, and the scattered longitudinal and transverse
spherical waves are

ik, R

R 3

iR

R

€

9" (R) = 9'(R) = (3b

Expression (26) shows that at field points which are remote from the crack the scattered
fields decompose into longitudinal and transverse components polarized perpendicular to
each other, namely o/F«/T = 0. Also, the dependence of these far-fields on the distance
from the centroid of the crack (31) is completely separated from their directional variations
(27, 28), and only the latter parts contain the scattering information.

It is informative to explore the Rayleigh or long-wavelength limit of the scattered far-
fields. Gubernatis and Domany (1979) expressed the far-field scattered displacement for an
arbitrarily shaped cavity as

uF* ~ dig-+lg', (32)
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and used the orthogonality property between the two scattered far-fields to define a vector
f such that

%thni”jﬁ)a &{iT: (&j*ninj)];‘a (33)

where f is written in terms of volume integrals. The static Eshelby solutions for ellipsoidal
inclusions were then employed by Gubernatis and Domany to obtain the quasi-static
approximation of f which turned out to have a leading order of w?. By letting the volume
of the cavity tend to zero several characteristics of the scattered far-fields were recognized
for crack identification and hence called the crack scattering signatures. For the present
rectangular crack, it follows from (27) and (28) that when k a « 1, the vector f becomes

simply
o, C2 32
f= % [(1 —2CE> di3m;—2 <1 - CE) njn,n3+n,5_,-3+n35_,-,]. (34)

It is clear in (33) and (34) that reversal of the observation direction, n — —n, has no
impact on the amplitudes of the far-field spherical waves. This means, as was explained by
Gubernatis and Domany (1979), that the waves will be seen identically from two diame-
trically opposite directions (n and —n); and, more importantly, this is the unique feature
which distinguishes an arbitrary-shaped crack from volumetric defects. Also, if the incident
longitudinal plane wave is directed either perpendicular (6, = 0°) or parallel (6, = 907) to
the crack plane, see Fig. 2, only the terms involving «}, in (34) remain, implying

3 1-2
gt ol Y <1+ vcos20>, (35)
4 1—v v
T |a%l| :
7= fsin26). (36)

Note that these results have no dependence on the polar angle y, and are symmetric about
the crack plane (8 = 90°). In summary, as stated by Gubernatis and Domany (1979), these
long-wavelength scattering signatures can be utilized to determine the orientation of a flat
crack.

For the perfectly elastic material considered in this project no energy dissipation is
expected. Hence, the time average of the total energy flux must vanish within any surface
& enclosing the entire crack, implying (Achenbach, 1982)

“Im J J (tu*) d& = 0, (37)
2 o

where t is the traction on & and * denotes complex conjugate. By allowing the surface &
to tend to infinity and using the method of stationary phase, we obtain the scattered-power

theorem
" 2" L2 kT T2 16 L/gL
sin 6 d8 dy | "+ =) ]2 |+ | 5= | Re [ (d")] =0, (38)
0 0 ki tkia
where

Re [« (d")] = Z Z Re [a,,] # [(d"). (39)

m=1 n=1

The first term in (38) represents the total scattered flux, and the second bears the physical
significance of the interference between the incident wave and the scattered fields along the
forward direction of the incidence d“. The fact that only % is present in the interference
term originates from the longitudinal nature of the incidence and the orthogonality relation
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o = 0. The total scattering cross-section is defined as the time average of the ratio
between the total scattered energy and the incident flux over a unit area. Thus,

S(w) = <<§,>> = B Im J L tfcu;C*dy] / [% Im (o dj-Luf-“*)J

- — % (47a%) Re [ (dY)], (40)

where the final equality follows from (38).

4. NUMERICAL CALCULATIONS AND DISCUSSION

The bulk of the numerical calculations involves the evaluation of the double infinite
integrals 2,,,, in eqn (21). The integrands are even functions of their arguments and
therefore the integrals only need to be computed in the first quadrant of the n—¢ plane.
They are further split into four integrals for numerical computation

o@—,’,';npq=4[[)dnﬁdég(n,f)JrLdnJdég(f/,é)

+f dnﬁdé%(n,éHJdnJ défe(n,@], @1

where %4 (y, £) is the integral kernel. Asymptotic approximations to the semi-infinite integrals
are derived for a chosen large number « > 1 through repeated integrations by parts and
the use of the leading term in the asymptotic expressions of Bessel functions for large
arguments. The finite integrals are computed by a composite Simpson’s rule. The use of a
pre-calculated data table for the Bessel functions actually reduced the computer CPU time
by about an order of magnitude. The solution of a truncated version of the simultaneous
equations (20) for the unknown expansion coeflicients was accomplished via an algorithm
based on Gaussian climination with LU factorization. Evaluation of the other physical
quantities which are represented explicitly by the expansion coefficients is then straight-
forward. To keep the numerical calculations reasonably simple the incident waves were
restricted to be parallel to the x,-x; plane, see Fig. 2.

Two accuracy control criteria were employed in the numerical process: the optimal
truncation rule was used in the asymptotic evaluation of the semi-infinite integrals in order
to bound the truncation error to a minimum (Bender and Orszag, 1978). A simple truncation
procedure was applied to determine the number of terms needed in the simultaneous system
of equations. Some results from different trunctions are compared in Fig. 3 which shows

0,=0° 6 terms

2 terms

N -

8=4 5%, 6 terms /
2 terms
T T T 1
15 T 2.0 25 3.0 35
L

Fig. 3. A comparison to show the convergence of the expansions.
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that with only two Chebyshev functions the ¥0% can be fit very well in a low frequency
regime where the dimensionless frequency &, < 1. Beyond that, six functions were found
to be sufficient within the frequency range considered. The scattered-power theorem, eqn
(38), served as a check on the over-all consistency of the numerical results. Thus, for all
the numerical results discussed here, the two terms of this equation had a relative error of
less than one percent. It should be noted that the scattered power theorem can only verify
the consistency of the numerical results, but not the accuracy, since the results from the
two truncation versions mentioned above both had less than 1% relative error in the entire
frequency region 0 < ki < 3.5.

4.1. Crack opening displacements

Before discussing dynamic results, we note that in the limit w — 0 the system (20)
reduces to the corresponding set of equations for an arbitrarily applied static load. We have
numerically solved the static equations for a normal load P, in the x; direction, and found
that the maximum crack opening displacement of a square crack (r = 1) appears at its
centroid and is

. 1-—
Au?:il(:l:;uré) 0,0) = 1.40 (luv>aP 05 42)

which is about 10% larger than the corresponding value for an inscribed penny shaped
crack

Static 4/1—v
Au%zplcnny) (Oa 0) = % (#) aP(),

(Bui, 1977). Note that the difference in area between these two cracks is more than 27%.
Some of the dynamic ¥0% profiles for a square crack are plotted in Figs 4-6. These
€0C%s have been normalized with respect to the right member of (42) with
Py = is/"ko(A+2u) for the dynamic load. For a normally incident wave of moderate
frequency, the only non-zero component Awu’ has the form shown in Fig. 4. This is clearly
symmetric relative to both the x; and x, axes, which is also the case in the static limit.
Under oblique incidence another component, Au¥, becomes non-zero, although one still
has Auy = 0 because the incident wave is assumed to be parallel to the x,—x, plane. The
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Fig. 5. |Au¥| for an obliquely incident wave with 0, = /4 at kT =1

dependence of the ¥0% profiles on the incident angle is illustrated in Figs S and 6, and we
note the changing shapes when the excitation frequency is high.

4.2. Stress intensity factors

Three possible types of stress intensity factor (¥ .# %) are defined as

K, = lim K \/ﬁmﬁ(xllaxlz) fl,d=a,
l_x}_’d 40—V d J= —b

2’

J1=x

(43)
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. po[2m Aut(xy, xh)
Ky =1 — 44
SRR [40 -WWNa iz [ “
Ky, = lim [E [2m Aut(x, (X"iz)} (45)
-b | 4V ta \/1 Y

where X’ = xj/d. The Mode II and Mode IIT &£ %s have relatively simple expressions in
the present problem owing to the specific orientation of the incident wave in conjunction
with the inherent symmetry of rectangular cracks. Only the Mode I #.#.% is present for
normal incidence ; otherwise, all three modes exist. In the static limit the Mode 1 ¥ # %
achieves local maxima at the mid-points of the long (/) and short (s) edges, and can be
simplified to

B 1] ©» = 1 m—
Kg;ectangle) — i Z Z d'rSntrz'itlc Z (_ I)Tl’ (46)
m=1n=1
_ 1 X 1 n—
Kﬁec&angle) _— Z Z O_(;Sr:r?m _ ( — 1) 2 . (47)
2. /T m=1n=1 m

These results were normalized by K{2,.” = \/;T;PO, the #.#F for a two-dimensional plane-
strain Griffith crack of length 2a. For a square crack (z = 1), as shown in Fig. 7, we have

K{ar) ~ 0.738K (20 (48)

This result agrees very well with the data reported by both Weaver (1977) and Mastrojannis
etal. (1979).

For rectangular cracks with increasing aspect ratio t > 1, the static limit discussed
above gives the absolute maximum K, at the mid-point of each long edge, Fig. 7, and the
value there approaches the corresponding & # % for a plane-strain Griffith crack when t©
is large enough [t > 3, see Weaver (1977)]. The local maximum K;, on the short edges
behaves differently, and according to eqn (47) it decreases as the reciprocal of \/;, in
agreement with the numerical results. This phenomenon can be understood by considering
the close analogy between a prolonged rectangular crack and an elliptical crack. In the
latter case an exact expression exists for the Mode 1 ¥ 4%, and a comparison of the ¥ £ F
for elliptical cracks with different values of t shows that the local maxima behave very much
like those of the rectangular crack as a function of 1. Plots of the .4 % for elliptical cracks
may be found in the book by Sih and Liebowitz (1968). By a modest stretch of the
imagination we may ascribe these changes in the local . #% maxima to a St Venant

T T — T
0.0 15.0 30.0 450 60.0 75.0 90.0
N

T

Fig. 7. K{™*"¢® versus polar angles  for different aspect ratios.
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phenomenon. Thus, for a rectangular crack which is gradually elongated, the constraint
posed on the mid-portion of the long edges by the short ones attenuates, and the ¥ 4% in
this portion tends to the value for a two-dimensional Griffith crack. By the same reasoning,
as the long edges are extended, their influence on the short ones in turn becomes stronger,
and this is related to the decrease of the local maxima of ¥ #.%.

We note that different features were predicted along the short edges in the paper by
Weaver (1977). However, a careful study reveals that Weaver’s results were based on a
different mathematical model of the rectangular crack than used here. In particular, the
maximum value of the &.# % was estimated using an energy method which allows only the
short edges of the rectangular crack to grow while fixing the long edges (Budiansky, 1990).
Thus, the predictions of Weaver are not in conflict with the present results.

In the finite frequency region 0 < k; < 3.5, the maximum K, for a square crack is
displayed in Fig. 8. The first peak on the solid curve appears at about k; = 0.85, and its
value is about 65% higher than the corresponding static limit. The second peak occurs
around k; = 2.6, and has a magnitude of 0.84. These data match very well with the results
reported by Nishimura and Koboyashi (1988). The first peak is slightly higher than the
corresponding value given by Itou (1980) where the frequency range of his computations
was 0 < k. < 1.5.

Using a membrane analogy, after Budreck and Achenbach (1988), the “‘resonant”
frequencies of the first two Rayleigh modes of the crack faces are found to be E_R] = (.87
and kg, = 2.62. These can explain the occurrence of the two peaks found on the K| curve
as the constructive interference between the incident wave and the excited standing Rayleigh
surface modes on the traction-free crack faces. The membrane analogy is also helpful in
understanding the origin of the peaks appearing on the maximum K, curves for rectangular
cracks under normal incidence, plotted in Fig. 9. When the aspect ratio 7 > 1, two distinct
Rayleigh mode frequencies can be estimated for the x, and x, directions separately, and
the resonant frequency for the true drum-head mode of the crack faces can be obtained as
a simple combination of the two. This procedure gives HRI = 0.655 for 1 =2 and
HR‘ = 0.582 for t = 3, which correlate well with the positions of the primary peaks in Fig.
9. The relatively constant position of the secondary peaks can be explained by the dominant
effect of the second Rayleigh mode along the short dimension of the cracks.

A general observation can be made concerning the order of appearance of the primary
peaks in Fig. 9: the more a rectangular crack is prolonged, the lower the frequency at which
the peak appears. This is consistent with the statement made by Budreck and Achenbach
(1988) for elliptical cracks.

The Mode 1 ¥ #Fs of three rectangular cracks under an oblique incidence, with
0, = 45°, are shown in Fig. 10. The high secondary peaks occurring in Fig. 10 are understood
to be caused by the second anti-symmetric Rayleigh modes which do not exist when the
crack is under normal loading.

0.0

0.0 05 10 15 +— R0 25 3.0 35

Fig. 8. |[K{"')| versus normalized frequency k.
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Fig. 10 |K{f=="¢)| versus frequency ky. for 0, = 45°.

4.3. Scattering cross-sections

The scattering cross-section defined in (40) is normalized by the area of the crack,
A = 41a?, and some numerical results are shown in Figs 11 and 12. The computed values
of £ for rectangular cracks with different aspect ratio t are plotted in Fig. 11 as a function

Fig. 11. £ versus k, for different aspect ratios t and 8, = 0°.
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=T T
00 05 10 15 — 20 25 30 35

Fig. 12. £ versus k, for different incident angles 0, with t = 1.

of the dimensionless frequency. The high frequency asymptotes are virtually the same for
normal incidence for the range of crack aspect ratios considered. The specific value, £ ~ 2,
can be interpreted as both of the crack faces subtracting energy from the incident wave and
converting it into scattered waves. The same value of 2 also follows from the use of the
Kirchhoff approximation. It is not surprising that Budreck and Achenbach (1988) found
exactly the same result for a circular crack, i.e. £ ~ 2, since in the high frequency regime
the Kirchhoff approximation can be used for both rectangular and elliptical cracks. Note
that the Kirchhoff approximation is independent of the boundary conditions at the crack
edges.

The scattering cross-section is plotted in Fig. 12 for a square crack (r = 1) under
different incident angles. The high frequency asymptotes of these curves display a simple
relation to the incident angle which can be explained on the basis of physical elastodynamics
or the Kirchhoff approximation. Thus, when the incident angles 8, are not very large, the
scattered wave is dominated by the reflections, and the high frequency value of £ can be
estimated by the geometrical projection of the crack face onto the plane normal to the
direction of incidence, which implies £(6,) ~ 2 cos #,. This estimation breaks down near
grazing incidence, 8, = 7/2, because the crack edge diffraction dominates the scattered field
in the frequency range considered.

4.4. Scattering patterns

The scattering patterns are defined by the scattering amplitudes of the far-field dis-
placements, eqns (27) and (28). The physical significance of .7} is the angular dependence
of the far-field longitudinal wave, «/j corresponds to the far-field SV-wave, while .o/
defines the angular dependence of the far-field SH-wave. These factors are illustrated in
Figs 13-15 in the same way that Krenk and Schmidt (1982) used to represent the scattering
patterns for a penny-shaped crack. In each of these figures the scattering pattern is char-
acterized by a pair of graphs with a bird’s-eye-view on the left looking down on the crack
plane and side-views on the right for an observation direction in the crack plane (see also
Figs 1 and 2). These patterns are symmetric to the x,—x, plane, and therefore it is sufficient
to show only half of them. Thus, in each bird’s-eye-view the upper half depicts the pattern
above the crack plane with heavy solid lines, and the lower half shows the contour lines of
the pattern beneath the crack plane, and they are in lighter solid lines. In the side-views,
solid or heavy chain-dot lines show the views looking in the positive x, (or Y) direction,
and light dash lines represent the view in the negative x, (or X) direction in cases where
this is different than the former view.

The scattering patterns for a square crack under normal incidence are shown in Figs
13 and 14. Comparisons of these with the counterparts published by Krenk and Schmidt
(1982) for a circular crack show there is virtually no difference when the incident frequency
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Fig. 16. Scattering patterns of 13’ due to oblique incidence, 8, = 45", v = 1.
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is low, k; = 1 for instance. This illustrates the point that it is impossible to distinguish the
shape of a crack based on low frequency scattered data.

At higher frequency, such as k, = x, the crack shape becomes visible in the longitudinal
patterns observed from a direction normal to the crack face (Fig. 13), and the corner effects
appear more clearly in the SV-wave patterns (Fig. 14). Because the corners are kinematically
more stiff than the straight edges, it is expected that far less energy is scattered from the
corners than from other parts of the crack edge. This effect is evident from Figs 13 and 14.
Changing the aspect ratio to t = 2 (Fig. 15) further verifies this expectation since the lobes
are much bigger on the longer-edge sides, comparatively smaller on the short-edge sides,
and almost zero about the corner positions. This corner effect is a new feature of rectangular
cracks in contrast with elliptical ones.

Finally, we note that the scattering patterns become much more complicated when the
incidence is oblique (Fig. 16), especially in the high frequency region, and the afore-
mentioned corner effect is difficult to discern. Nonetheless, at k, = = the frequency is
obviously high enough for the scattering patterns to show a ray character. Thus, the
“reflected rays” in Fig. 16 are in the directions predicted by Snell’s law (Achenbach, 1973).
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