
Int. J. Solids Structures VoL 29, No. 12, pp. 1549-1565. 1992 
Printed in Great Britain. 

002!l-7683/92 $5.00+ .00 
© 1992 Pergamon Press pIc 

ELASTIC WAVE SCATTERING BY 
RECTANGULAR CRACKS 

LINGWEI GUAN 
School of Civil and Structural Engineering, Nanyang Technological University, 

Nanyang Avenue, Singapore 2263 

and 

ANDREW NORRIS 
Department of Mechanical and Aerospace Engineering, Rutgers University, 

Piscataway, NJ 08855-0909, U.S.A. 

(Received 18 April 1991 ; in revised/arm 2 October 1991) 

Abstract-Three coupled integral equations are formulated for the direct problem of scattering of 
obliquely incident longitudinal plane waves from a rectangular crack. Chebyshev functions are used 
to expand the unknown crack opening displacements and to convert the integral equations into an 
infinite linear system of simultaneous equations which are solved by numerical truncation. The 
static and dynamic stress intensity factors for a square crack under normal incidence show very 
good agreement with all data reported by other researchers. For a rectangular crack, the ratio 
between the two local maxima of Mode I stress intensity factors is found to be the square root of 
the aspect ratio. A Rayleigh wave membrane analogy is used to explain the appearance of peaks in 
the dynamic responses. All the results for cracks under oblique incidence are new, as well as the 
scattered far-fields and their long wavelength or quasi-static limits. The asymptotes of the scattering 
cross-sections in the high frequency region are found to vary linearly with the cosines of the incident 
angles, and a corner effect is observed in the scattering patterns for moderately high frequencies. 

1. INTRODUCTION 

The study of elastic wave scattering by cracks is of some importance in the field of ultrasonic 
non-destructive testing and evaluation. However, to date there have been few analytical or 
numerical studies on three-dimensional crack configurations. In particular, we note the 
work ofItou (1980) who used eigenfunction expansions and integral transforms to formulate 
solutions for a rectangular crack with a normally incident plane wave. The same method 
was employed by Krenk and Schmidt (1982) for a circular crack under oblique incidence. 
Lin and Keer (1987), Budreck and Achenbach (1988) and Nishimura and Kobayashi (1988) 
applied the boundary integral equation method (BIEM) to tackle scattering problems by 
cracks of arbitrary shapes. 

The aim of this paper is to solve the direct problem of scattering of obliquely incident 
longitudinal plane waves from a prescribed rectangularly shaped crack. The motivation for 
this study stems from the possible existence of rectangularly shaped cracks in composite 
materials, caused for example, by pinning, and also from an interest in the role of the corner 
in influencing the scattered far-field. The latter effect cannot be found in the study of 
elliptical cracks or cracks with smoothly varying edges. 

Similar to the approach employed by Hou (1980), eigenfunction expansions and integral 
transforms are used in Section 2 to formulate the governing equations for the present 
problem. Analytical results are derived in Section 3 for the scattered far-fields together with 
their Rayleigh limit. The criteria used to bound the computational errors are described in 
Section 4, followed by discussions of the numerical results for near-field crack opening 
displacements «(fo(9~) and stress intensity factors (!J' § ~), and also for the far-field scat­
tering patterns. 

2. FORMULATION OF THE SCATTERING PROBLEM 

2.1. Mathematical preliminaries 
The response of an isotropic elastic solid is expressed as the superposition of the 

complex valued incident and scattered displacement fields 
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uJot(x) = u)n(x) + u;C(x), (1) 

where the superscript "tot" denotes the total field, "in" the incident field and "sc" means 
the scattered field caused by the incidence. Latin subscripts run from 1 to 3, and the 
summation convention is implied throughout for the repetition of indices unless otherwise 
stated. Also, the subscript "0" will be used to denote quantities associated with the incident 
wave. The assumption in these equations and what follows is a time dependence of e- iwt in 
all fields, where OJ > 0 is the circular frequency. This dependence is to be understood and 
will be suppressed. 

For an arbitrarily oriented incident plane wave, 

u:.n(x) == <s;{~n d j eikoP/(i, (2) 

where sJl':~ is the amplitude, the unit vectors p and d define directions of propagation and 
polarization respectively, and ko = kL or kT is the incident wave number, 

OJ 

kL = C~' 
OJ 

kT =C-';:; _ JA+211 , 
CL - P 

~. 
CT = VP' (3) 

where p is the mass density, A, 11 are the Lame constants, and CL and CT are the longitudinal 
and transverse wave speeds for the material. 

The scattered displacement fields are constructed as an integral representation by 
employing the second Green's identity at an observation point x away from the crack. Thus 

ujC(x) = r UnX')L(j;l(X' -x)nj(x') d9'(x'), J'I' (4) 

with the source point x' running over the entire crack surfaces 9' = CC+ u CC-, where CC+ 
and CC- are the surfaces facing down and up respectively. Also, Lijix' -x) denote the 
elasto-dynamic stress fields at an observation point x caused by the application of a unit 
force at a source point x' in the lth direction, and nl = ± <5 3j denotes the surface unit 
normal, see Fig. 1. The crack opening displacement field (CC(D£?t7) is defined in the crack 

Xl 

c+ x3 n+ 

X2 

n-

Fig. 1. The coordinate systems. 



plane by 

Wave scattering 

U)Ol(XI' Xl, O+)-U)O\XI' Xl, 0-) = U~C(XI' Xl, 0+) - UfC(X" Xl, 0-) 

{ 
0, 

= ~UnX" X z), 

X I , X 2 off crack; 

XI, X2 on crack. 
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(5) 

Using nt = - n} and (5), eqn (4) eventually simplifies to a surface integral over the upper 
face of the crack only 

uiC(x) = f 1+ dx', dx; ~ufC(X')Li3;'(X' -x). (6) 

2.2. Derivation of the integral equations 
Application of standard procedures (Achenbach et al., 1982) leads to the following 

integral form of the Green's function for an isotropic elastic solid with X3 ~ X'3' 

, 1 ffOC! {I L [( Ci) 2 L LJ ikL(xc-x.J LijAx -x) = 8n l -OC! dk , dk2 VL k, 1-2 cl bij+ ki ki kj e j j J 

+ ~ [e b + e b _l... e e eJ eikJ(X;-X)} (7) 
VT 1]1 ] II ki I J I , 

and when substituted into (6) gives the following formula for the scattered displacement 
for all values of X3: 

USC(X) = f r dx' dx' ~USC(x' x' )-I-ffOC! dk dk ei[k,(x,-x',)+k,(x,-x',)] flAiI(k k . X ) 
I J<e+ I 2 I "2 8nl _ OC! I 2 u " 2, 3' 

(8) 

In these expressions 

il • __ L _ ~ _ L iVLlx31 I [( C
2

) 2 ] flAuCk"k2,X3)-VLkl 1 2Cl bi3 + kikiVL e . 

+ v~[k;rb31+VTbil- ~ik;rvTkJJeiVTIX31, (9) 

where the wave number vectors kY are 

kY = {k"k2' vy}, (y = L, T). (10) 

The equations of motion and the radiation condition at infinity imply that 1m (Vy) ~ 0, and 

{
Jk;-kf-kL fork;>kf+kL 

v- (y-LT) y-, 2 2 2 2 2 2. -,. 
IJk l +kl -ky, for ky < k, +k2' 

(11) 

Following the derivation of (8), the corresponding scattered stress fields are 

(JSC(X) = _i_ ffoc dk dk ei(k,x,+k'X2)flAi31(k k . X ) 
13 8n2 -00 I 2 (J "2, 3 

x fi dx' dx' e-i(k,x',+k,x',)~uSC(x' X') I 2 I I, 2, 
'6'+ 

(12) 
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where 

'll'ijl=~(1k2b .. +2J.1kL)[(1_2Ci)b +3..... k Lv ]eiVLIXll 
.7iJ" /I. L IJ.J C2 13 k 2 1 L 

VL L T 

+ V~ J.1 [(kT b3j +kJ b3;)kT + (kJ blj +kJ b/i)VT - k~ kT kJ kT VT] eiVTlx31. (13) 

The term f!Jj~31 physically represents the effect of the ~(!J~ component in the lth direction 
on a stress component along the ith direction in the crack plane oriented in the x 3 dimension. 
We note the symmetry property f!Jj~31 = f!Jj~3i. Also, it is instructive to write out f!Jj~31(k j, k 2; 0) 
explicitly so that one may readily see the decoupling of the in-plane and out-of-plane terms 
with respect to the crack plane X3 = 0: 

qgi31 . " = 
J.1 

2 [4 1] kl ki (VL -VT)+ VT +VT, 

klk2 [~ (VL -VT)+ vlJ, 
o 

klk2[~(VL-VT)+ vlJ, 
2[4 IJ k2 ki (VL -VT)+ VT +VT, 

o 

o 

(14) 
o 

ki [ 2 2 2 J2 4 2 2 
VL 1- ki(k l+k2) + ki vT(k l+k2) 

Great advantages will emerge from this decoupling property in some of the subproblems 
dealt with in Section 4. 

The traction-free boundary condition on the crack surface implies 

a)3 + af~ = 0, where x 3 = O. (15) 

Equations (2), (12) and (15) imply that, for all XI,X2 on the crack plane, 

o = 8n2d~nko[AdkPkbi3+J.1(diP3+d3pJ]eiko(P,x'+Ph) 

+ ff co dk dk ei(k,x,+k2X2)f!Jji3Ifi dx' dx' e- i(k 1x',+k2x'2) !1uSC (x' x') I 2 a I 2 1 I, 2, 
-:t:;, (6+ 

(16) 

where the first term on the right-hand side stands for the incident stress fields, and the 
second bears the physical interpretation of the total scattered stress fields emitted from all 
the secondary sources distributed over the entire crack face ~+. The identities (16) are the 
integral equations to be solved for the sought unknown ~(!J~ fields !1u,!c. Note that there 
are three integral equations which must be satisfied simultaneously everywhere on the crack 
plane. By the nature of the elasto-dynamic stress field (14), the third equation (i = 3) stands 
on its own, while the other two are generally coupled together. The major difficulty of solving 
these integral equations rests with the Green's function, which in the present formulation 
is expressed as a double integral of infinite extent. 

3. SOLUTION OF THE INTEGRAL EQUATIONS 

3.1. Reduction to a system of linear equations 
We proceed to solve the integral equations by expanding the ~(!J~ in terms of a 

complete set of functions, each of which tends to zero at the edges of the crack in a square 
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X3 

Xl 

X I -X3 plane 

Fig. 2. The rectangular crack. 

root sense. For the rectangular crack, Ixt! ~ a and IX21 ~ b, see Fig. 2, a suitable set of 
functions is the following 

{ 

~ cos [l sin - , CO]' 
(MO= 

i I sin [l sin - , CO]' 

(odd I); 
(17) 

(even I). 

These are related to Chebyshev functions of the first kind. The Cf}(!J~ is then assumed to be 

00 co (X' ) (X' ) f1unx'" x~) = d~n L L ex;nn ¢m ~ ¢n t . 
m~' n~' a 

(18) 

Substituting (18) into (16) and using the identity 

I
' n 
_, d( ¢,CO e- ik

\ = kJ,(k), (19) 

where J, is the Ith order Bessel function, yields an infinite linear system of equations 

00 00 

L L ex~n ~~npq d ~q, (p,q = 1,2, ... ), (20) 
m= I n= 1 

where 

~li = 100 d!,Jm(~) ~(O 100 

d J"(r1]) Jq(r1]) ~i3'(!, ) 
mnplJ s): ~ 1] (J s, 17 , 

- ro <, ~ - CD r1] r1] 
(21) 

.9i~q = - ~ 2kL [(~ _v ) b +dL dLJ Jp(~O) Jq(r1]o) 
r 1 _ 2v ,3 ,3!, ' 

<,0 r1]o 
(22) 

and v is Poisson's ratio of the material. The over-bar in these expressions and what follows 
denotes the normalized version~f quantities, and the dimensionless variables are defined 
as ~ = ak" 1] = ak2' kL = akL' kT = akT' VL = aVL, VT = aVT' The parameter r = bla is the 
constant aspect ratio, and a superscript "L" is employed for the polarization vector d since 
only longitudinal incident waves are considered in this paper. It is significant to note that 
each element in the matrix of the governing equations (20) is a double integral of infinite 
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extent, the kernel of which possesses no singularity. This is a superior feature of the present 
method over the boundary integral equation method (BIEM) which is extensively used in 
solving scattering problems for cracks. Also, the decoupling property noted previously is 
evident by rewriting (20) in the explicit form 

00 00 

" " '-II 2 -2' -, ~ ~ [llI:mnQmnpq+llI:mnQmnpq] = d pq , (23) 
m= 1 n= 1 

00 00 

" " '-12 2 -22 - 2 ~ ~ [llI:mnQmnpq+llI:mnQmnpq] d pq , (24) 
m= 1 n= 1 

00 OCJ 

" " 3 -33 - 3 ~ ~ [llI:mnQmnpq] = d pq • (25) 
m= 1 n= 1 

3.2. Far-field asymptotics 
Some general features of the far-field scattering can be deduced without explicitly 

solving the system (20). In the far-field, R = Ixl -+ 00, the scattered displacement becomes 

ulCCO 

- - C: ra2)d~nkL [df9L + (~:)dTgTJ. 
The far-field scattering amplitudes are defined by 

the direction functions are 

ro OCJ 

,AL _ "'" oz-L ~ i - ni i..J L. ('/..mn e7- I, 
m= I n= 1 

00 00 

dT = I L llI:~nffJ, 
m= I n= 1 

ffL( ) = [(1_2~1)c> +2 C~ ] Jm(kLan,) I n (kLbn 2) 
, n C2 '3 C2 n,n 3 k k b ' 

L L Lan, L n2 

ffJ(n) = (n,C>i3 +n3C>i/-2n
j
n,n3) Jm,(kTan,) In(kTbn2~ 

-Tan I kTbn 2 ' 

(26) 

(27) 

(28) 

(29) 

(30) 

where n = xl R is the observation direction, and the scattered longitudinal and transverse 
spherical waves are 

eikLR e ikTR 

gL(R) =R' gT(R) =R' (31) 

Expression (26) shows that at field points which are remote from the crack the scattered 
fields decompose into longitudinal and transverse components polarized perpendicular to 
each other, namely d j

L dT = O. Also, the dependence of these far-fields on the distance 
from the centroid of the crack (31) is completely separated from their directional variations 
(27,28), and only the latter parts contain the scattering information. 

It is informative to explore the Rayleigh or long-wavelength limit of the scattered far­
fields. Gubernatis and Domany (1979) expressed the far-field scattered displacement for an 
arbitrarily shaped cavity as 

u;CCC - d'(gL+dTgT, (32) 
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and used the orthogonality property between the two scattered far-fields to define a vector 
f such that 

dF = nindj), ,,>IT = (bij-ninj)jj, (33) 

where f is written in terms of volume integrals. The static Eshelby solutions for ellipsoidal 
inclusions were then employed by Gubernatis and Domany to obtain the quasi-static 
approximation of f which turned out to have a leading order of w 2

• By letting the volume 
of the cavity tend to zero several characteristics of the scattered far-fields were recognized 
for crack identification and hence called the crack scattering signatures. For the present 
rectangular crack, it follows from (27) and (28) that when kLa « I, the vector f becomes 
simply 

r:i11 
[( Ci) (Ci) J jj = 4 1-2 cl b/3n j -2 1- cl nj n,n3+ n,bj3+n3bj/ . (34) 

It is clear in (33) and (34) that reversal of the observation direction, n --+ - n, has no 
impact on the amplitudes of the far-field spherical waves. This means, as was explained by 
Gubernatis and Domany (1979), that the waves will be seen identically from two diame­
trically opposite directions (n and -n); and, more importantly, this is the unique feature 
which distinguishes an arbitrary-shaped crack from volumetric defects. Also, if the incident 
longitudinal plane wave is directed either perpendicular (0 0 = OC) or parallel (00 = 90

C

) to 
the crack plane, see Fig. 2, only the terms involving cd 1 in (34) remain, implying 

.JL I!XLI v (1+ 1-2v 20) 
C4t --+ --- --cos 

4 I-v v ' 
(35) 

T I!XL I . 
d --+-4c Ism201. (36) 

Note that these results have no dependence on the polar angle t/J, and are symmetric about 
the crack plane (0 = 90°). In summary, as stated by Gubernatis and Domany (1979), these 
long-wavelength scattering signatures can be utilized to determine the orientation of a flat 
crack. 

For the perfectly elastic material considered in this project no energy dissipation is 
expected. Hence, the time average of the total energy flux must vanish within any surface 
g enclosing the entire crack, implying (Achenbach, 1982) 

~Im f L (tu*) dg = 0, (37) 

where t is the traction on g and * denotes complex conjugate. By allowing the surface g 
to tend to infinity and using the method of stationary phase, we obtain the scattered-power 
theorem 

f sinOdO rn dt/J[ldLI2+ G:}dTI2J+ Clta i ) Re [dL(d
L
)] =0, (38) 

where 

X 'X, 

Re [dL(dL)] = I I Re [!X;nn]ff,L(dL). (39) 
m= I n= I 

The first term in (38) represents the total scattered flux, and the second bears the physical 
significance of the interference between the incident wave and the scattered fields along the 
forward direction of the incidence dL. The fact that only ff,L is present in the interference 
term originates from the longitudinal nature of the incidence and the orthogonality relation 



1556 L. GUAN and A. NORRIS 

d j
L d! = O. The total scattering cross-section is defined as the time average of the ratio 

between the total scattered energy and the incident flux over a unit area. Thus, 

L(W) = <f7J
SC

)o = [~lm f r t'Cu'c* dy]1 [~Im ((Jin dLuin*)] (qpm) 2 J.'I' I I 2 IJ J I 

n 2 

= - 4 (4ra 2
) Re [dL(dL)], (40) 

where the final equality follows from (38). 

4. NUMERICAL CALCULA nONS AND DISCUSSION 

The bulk of the numerical calculations involves the evaluation of the double infinite 
integrals }1::mpq in eqn (21). The integrands are even functions of their arguments and 
therefore the integrals only need to be computed in the first quadrant of the ry-~ plane. 
They are further split into four integrals for numerical computation 

}1::mpq = 4 [I dry r d~ '§(ry, 0 + r dry 1'.0 d~ '§(I],~) 

+ L" dl] I d~'§(I],O+ 1'" dl] LX; d~'§(I],Ol (41) 

where '§(I], 0 is the integral kernel. Asymptotic approximations to the semi-infinite integrals 
are derived for a chosen large number !Y. » I through repeated integrations by parts and 
the use of the leading term in the asymptotic expressions of Bessel functions for large 
arguments. The finite integrals are computed by a composite Simpson's rule. The use of a 
pre-calculated data table for the Bessel functions actually reduced the computer CPU time 
by about an order of magnitude. The solution of a truncated version of the simultaneous 
equations (20) for the unknown expansion coefficients was accomplished via an algorithm 
based on Gaussian elimination with LU factorization. Evaluation of the other physical 
quantities which are represented explicitly by the expansion coefficients is then straight­
forward. To keep the numerical calculations reasonably simple the incident waves were 
restricted to be parallel to the x I-X 3 plane, see Fig. 2. 

Two accuracy control criteria were employed in the numerical process: the optimal 
truncation rule was used in the asymptotic evaluation of the semi-infinite integrals in order 
to bound the truncation error to a minimum (Bender and Orszag, 1978). A simple truncation 
procedure was applied to determine the number of terms needed in the simultaneous system 
of equations. Some results from different trunctions are compared in Fig. 3 which shows 

0 
ri 

L() 

C\i 

0 
C\i 

y~ 

0 
.....i 

L() 

a 

0 a , 
0.0 

80=0°,6 terms 

2 terms \ 
\ 

/-:-::::-:~~.:~.~­
~~;"" 

;/ 8
0
=45°,6terms / 

/ 2 terms ; 
'/ 

?/ 

0.5 1.0 1.5 k;. 2.0 2.5 3.0 3.5 

Fig. 3. A comparison to show the convergence of the expansions. 
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that with only two Chebyshev functions th~«5(i)~ can be fit very well in a low frequency 
regime where the dimensionless frequency kL < I. Beyond that, six functions were found 
to be sufficient within the frequency range considered. The scattered-power theorem, eqn 
(38), served as a check on the over-all consistency of the numerical results. Thus, for all 
the numerical results discussed here, the two terms of this equation had a relative error of 
less than one percent. It should be noted that the scattered power theorem can only verify 
the consistency of the numerical results, but not the accuracy, since the results from the 
two truncation versions mentioned above both had less than 1 % relative error in the entire 
frequency region 0 ~ kL ~ 3.5. 

4.1. Crack opening displacements 
Before discussing dynamic results, we note that in the limit w ---> 0 the system (20) 

reduces to the corresponding set of equations for an arbitrarily applied static load. We have 
numerically solved the static equations for a normal load Po in the X3 direction, and found 
that the maximum crack opening displacement of a square crack (r = I) appears at its 
centroid and is 

. (I-V) ~u~~;l~ll~arC) (0, 0) ~ 1.40 -;- aPo, (42) 

which is about 10% larger than the corresponding value for an inscribed penny shaped 
crack 

s . 4 (I-V) ~u3~~~11~ny)(0, 0) =; /1- aPo, 

(Bui, 1977). Note that the difference in area between these two cracks is more than 27%. 
Some of the dynamic ((}(i)~ profiles for a square crack are plotted in Figs 4-6. These 

(&(i)!?iJs have been normalized with respect to the right member of (42) with 
Po = L91::'ko().+2/1) for the dynamic load. For a normally incident wave of moderate 
frequency, the only non-zero component ~U3c has the form shown in Fig. 4. This is clearly 
symmetric relative to both the XI and Xl axes, which is also the case in the static limit. 
Under oblique incidence another component, ~Uslc, becomes non-zero, although one still 
has ~u~c = 0 because the incident wave is assumed to be parallel to the XI-X) plane. The 

-1 

Fig. 4. l~u?1 for normally incident waves, kL = I. 



1558 L. GUAN and A. NORRIS 

-1 

Fig. 5. 18u','1 for an obliquely incident wave with 110 = n/4 at kL = 1. 

dependence of the Cf}{!)!!.i1 profiles on the incident angle is illustrated in Figs 5 and 6, and we 
note the changing shapes when the excitation frequency is high. 

4.2. Stress intensity factors 
Three possible types of stress intensity factor (Y.i' ff) are defined as 

_.. [ fJ. fjn AU3(X'j,X;)] . _ {J, d = a, K1 - hm - J-
x;~d 4(I-v) d JJ-.x=' 2, d=b, 

(43) 

' 1 

Fig. 6. 18ufl for an obliquely incident wave with 0" = n/4 at kL = n. 
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• [ J.1 f3n ~U~C(X'I'X2)] 
KIlt = hm - , 

x'l~a 4(l-v) a Jl-x' (44) 

K - l' [~j§n ~U~C(X'I' X2)] 
Ills - 1m , 

x'2~b 4 'fa Jl-x' (45) 

where X' = xi/d. The Mode II and Mode III gJ:Fs have relatively simple expressions in 
the present problem owing to the specific orientation of the incident wave in conjunction 
with the inherent symmetry of rectangular cracks. Only the Mode I g J:F is present for 
normal incidence; otherwise, all three modes exist. In the static limit the Mode I g J:F 
achieves local maxima at the mid-points of the long (I) and short (s) edges, and can be 
simplified to 

CD CD 1 
Rt:,ectangle) L I a~;tic - (-lf21 , 

2m~I"~1 n 
(46) 

1 CD CD 1 
j{(rectangle) __ . '" '" aStatic _(_1)"2 1 

10 ;: ~ ~ mn . 
2v' r m~ 1 "~I m 

(47) 

These results were normalized by KL~;xD) = Jn7Ip 0, the g J:F for a two-dimensional plane­
strain Griffith crack oflength 2a. For a square crack (r = I), as shown in Fig. 7, we have 

K[;:;,~:re) ~ O.738Ki~;xD). (48) 

This result agrees very well with the data reported by both Weaver (1977) and Mastrojannis 
et al. (1979). 

For rectangular cracks with increasing aspect ratio r > I, the static limit discussed 
above gives the absolute maximum Kit at the mid-point of each long edge, Fig. 7, and the 
value there approaches the corresponding g J:F for a plane-strain Griffith crack when r 
is large enough [r> 3, see Weaver (1977)]. The local maximum KIa on the short edges 
behaves differently, and according to eqn (47) it decreases as the reciprocal of Jr, in 
agreement with the numerical results. This phenomenon can be understood by considering 
the close analogy between a prolonged rectangular crack and an elliptical crack. In the 
latter case an exact expression exists for the Mode I g J:F, and a comparison of the g.~:F 
for elliptical cracks with different values of r shows that the local maxima behave very much 
like those of the rectangular crack as a function of r. Plots of the g J:F for elliptical cracks 
may be found in the book by Sih and Liebowitz (1968). By a modest stretch of the 
imagination we may ascribe these changes in the local g §ff maxima to a St Venant 

KJ 

3,'------===~~~-----------~ 

co 
ci 

co 
ci 

'<j< 

ci 

C\2 
ci 

't=3 

't=2 

't=1 

a 
ci~--_,---,----+---,~-~,_-__4 

0,0 15.0 30.0 45.0 
'P 

60.0 75.0 90.0 

Fig. 7, Rl,,"ang'e) versus polar angles i/J for different aspect ratios, 
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phenomenon. Thus, for a rectangular crack which is gradually elongated, the constraint 
posed on the mid-portion of the long edges by the short ones attenuates, and the Y' §:F in 
this portion tends to the value for a two-dimensional Griffith crack. By the same reasoning, 
as the long edges are extended, their influence on the short ones in turn becomes stronger, 
and this is related to the decrease of the local maxima of Y'.'!:F. 

We note that different features were predicted along the short edges in the paper by 
Weaver (1977). However, a careful study reveals that Weaver's results were based on a 
different mathematical model of the rectangular crack than used here. In particular, the 
maximum value of the Y'f:F was estimated using an energy method which allows only the 
short edges of the rectangular crack to grow while fixing the long edges (Budiansky, 1990). 
Thus, the predictions of Weaver are not in conflict with the present results. 

In the finite frequency region 0 :( k~ :( 3.5, the maximum KI for ~ square crack is 
displayed in Fig. 8. The first peak on the solid curve appears at about kL = 0.85, and its 
value is --.<l.bout 65% higher than the corresponding static limit. The second peak occurs 
around kL = 2.6, and has a magnitude of 0.84. These data match very well with the results 
reported by Nishimura and Koboyashi (1988). The first peak is slightly higher than the 
corresponding value given by Itou (1980) where the frequency range of his computations 
was 0 :( kL :( 1.5. 

Using a membrane analogy, after Budreck and Achenbach (1988), the -'!esonant" 
frequencies of the first two Rayleigh modes of the crack faces are found to be kLR, = 0.87 
and kLR2 = 2.62. These can explain the occurrence of the two peaks found on the KI curve 
as the constructive interference between the incident wave and the excited standing Rayleigh 
surface modes on the traction-free crack faces. The membrane analogy is also helpful in 
understanding the origin of the peaks appearing on the maximum KI curves for rectangular 
cracks under normal incidence, plotted in Fig. 9. When the aspect ratio r > I, two distinct 
Rayleigh mode frequencies can be estimated for the XI and X2 directions separately, and 
the resonant frequency for the true drum-head mode of the cr.~ck faces can be obtained as 
~ simple combination of the two. This procedure gives kLR, = 0.655 for r = 2 and 
kLR 1 = 0.582 for r = 3, which correlate well with the positions of the primary peaks in Fig. 
9. The relatively constant position of the secondary peaks can be explained by the dominant 
effect of the second Rayleigh mode along the short dimension of the cracks. 

A general observation can be made concerning the order of appearance of the primary 
peaks in Fig. 9: the more a rectangular crack is prolonged, the lower the frequency at which 
the peak appears. This is consistent with the statement made by Budreck and Achenbach 
(1988) for elliptical cracks. 

The Mode I Y' §:F s of three rectangular cracks under an oblique incidence, with 
eo = 45°, are shown in Fig. 10. The high secondary peaks occurring in Fig. 10 are understood 
to be caused by the second anti-symmetric Rayleigh modes which do not exist when the 
crack is under normal loading. 
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4,3, Scattering cross-sections 
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The scattering cross-section defined in (40) is normalized by the area of the crack, 
A = 4w 2

, and some numerical results are shown in Figs 11 and 12, The computed values 
of 1: for rectangular cracks with different aspect ratio T are plotted in Fig, II as a function 
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of the dimensionless frequency. The high frequency asymptotes are virtually the same for 
normal incidence for the range of crack aspect ratios considered. The specific value, ! ~ 2, 
can be interpreted as both of the crack faces subtracting energy from the incident wave and 
converting it into scattered waves. The same value of 2 also follows from the use of the 
Kirchhoff approximation. It is not surprising that Budreck and Achenbach (1988) found 
exactly the same result for a circular crack, i.e. ! ~ 2, since in the high frequency regime 
the Kirchhoff approximation can be used for both rectangular and elliptical cracks. Note 
that the Kirchhoff approximation is independent of the boundary conditions at the crack 
edges. 

The scattering cross-section is plotted in Fig. 12 for a square crack (r = I) under 
different incident angles. The high frequency asymptotes of these curves display a simple 
relation to the incident angle which can be explained on the basis of physical elastodynamics 
or the Kirchhoff approximation. Thus, when the incident angles ()o are not very large, the 
scattered wave is dominated by the reflections, and the high frequency value of! can be 
estimated by the geometrical projection of the crack face onto the plane normal to the 
direction of incidence, which implies !(()o) ~ 2 cos ()o. This estimation breaks down near 
grazing incidence, ()o = n12, because the crack edge diffraction dominates the scattered field 
in the frequency range considered. 

4.4. Scattering patterns 
The scattering patterns are defined by the scattering amplitudes of the far-field dis­

placements, eqns (27) and (28). The physical significance of d~ is the angular dependence 
of the far-field longitudinal wave, dJ corresponds to the far-field SV-wave, while dJ 
defines the angular dependence of the far-field SH-wave. These factors are illustrated in 
Figs 13-15 in the same way that Krenk and Schmidt (1982) used to represent the scattering 
patterns for a penny-shaped crack. In each of these figures the scattering pattern is char­
acterized by a pair of graphs with a bird's-eye-view on the left looking down on the crack 
plane and side-views on the right for an observation direction in the crack plane (see also 
Figs 1 and 2). These patterns are symmetric to the XI-X3 plane, and therefore it is sufficient 
to show only half of them. Thus, in each bird's-eye-view the upper half depicts the pattern 
above the crack plane with heavy solid lines, and the lower half shows the contour lines of 
the pattern beneath the crack plane, and they are in lighter solid lines. In the side-views, 
solid or heavy chain-dot lines show the views looking in the positive X2 (or Y) direction, 
and light dash lines represent the view in the negative XI (or X) direction in cases where 
this is different than the former view. 

The scattering patterns for a square crack under normal incidence are shown in Figs 
13 and 14. Comparisons of these with the counterparts published by Krenk and Schmidt 
(1982) for a circular crack show there is virtually no difference when the incident frequency 
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is low, kL = I for instance. This illustrates the point that it is impossible to distinguish the 
shape of a crack based on low frequency scattered data. 

At higher frequency, such as kL = n, the crack shape becomes visible in the longitudinal 
patterns observed from a direction normal to the crack face (Fig. 13), and the corner effects 
appear more clearly in the SV-wave patterns (Fig. 14). Because the corners are kinematically 
more stiff than the straight edges, it is expected that far less energy is scattered from the 
corners than from other parts of the crack edge. This effect is evident from Figs 13 and 14. 
Changing the aspect ratio to T = 2 (Fig. 15) further verifies this expectation since the lobes 
are much bigger on the longer-edge sides, comparatively smaller on the short-edge sides, 
and almost zero about the corner positions. This corner effect is a new feature of rectangular 
cracks in contrast with elliptical ones. 

Finally, we note that the scattering patterns become much more complicated when the 
incidence is oblique (Fig. 16), especially in the high frequency region, and the afore­
mentioned corner effect is difficult to discern. Nonetheless, at k~ = n the frequency is 
obviously high enough for the scattering patterns to show a ray character. Thus, the 
"reflected rays" in Fig. 16 are in the directions predicted by Snell's law (Achenbach, 1973). 
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