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The stresses on a partially bonded fiber in a composite material subject to axial loads are derived for both static and
dynamic conditions. The static stress intensity is calculated for a fiber which is only partially bonded circumferentially and
subject 10 a constant axial stress gradient, i.e. 2 uniform axial body force. The same configuration of a single partially bonded
fiber is then considered for Joading in the form of a dynamic stress gradient in the fiber, and particular attention is given to
the stress intensity factor at the edge of the bond when the fiber is subject to a step load. The numerical results show that the
dynamic stress always overshoots the static value, and the time taken to achieve the static equilibrium stress can be guite long
if the fiber is nearly debonded. This is related to the phenomenon that a very loosely bonded fiber may resonate strongly at a

frequency which goes to zero as the size of the bond vanishes.

1. Introduction

A major cause of failure in fiber-reinforced
composite materials is the phenomenon of fiber
pull-out, particularly for composites containing
short fibers and also when the fiber-matrix cohe-
sion is insufficiently secure. The onset of pull-out
may be due to transverse cracking through the
matrix, resulting in a sudden transfer of load to
the fibers as the crack passes. This and other
mechanisms have been studied in detail by many
researchers using theories of steadily increasing
sophistication; for instance, Cox (1952), Aveston,
Cooper and Kelly (1971), Budiansky et al. (1986),
Gao et al. (1988), Sigl and Evans (1989), and
McCartney (1989). These and other studies of
pull-out have focused on purely static models,
with a natural emphasis upon determining critical
parameters such as the energy release rate for a
debonded fiber, and the stress intensity factors for
different fracture mechanisms. Little considera-
tion has been given to the dynamic and inertial
aspects of pull-out, which may be of some impor-
tance in very fast loading situations, such as when
a transverse crack is rapidly tearing the composite.
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In that case the transfer of stress onto the fibers
could occur on time scales short enough that iner-
tial effects are significant. Dynamic effects may
also play a part in the failure of composites under
other conditions, as in the passage of a mechani-
cal-thermal shock wave.

In this paper we consider a simplified model of
a single fiber which is only partially bonded in the
sense depicted in Fig. 1, i.e. the configuration is
uniform in the axial direction but varies cir-
cumferentially. The fiber is bonded over part of
the 360° interface and debonded over the remain-
ing part. In contrast, a fiber under pull-out condi-
tions is expected to be bonded or debonded de-
pending upon the position along the fiber, with
axial symmetry about the fiber axis. We focus on
the the circumferential debonding configuration
since it is amenable to analysis for both static and
dynamic loading and the explicit expressions de-
rived here may shed some light on the much more
difficult issue of dynamic pull-out. Furthermore,
even though axial debonding along the length of
the fiber is certainly more significant in terms of
the failure of the composite, it will generally be
preceded by some circumferential debonding de-



164 A. Norris, ¥. Yang / Fartially debonded fiber

Fig. 1. The single fiber configuration and decomposition of the
static problem for a debonded fiber.

pending upon the degree of axial symmetry pre-
vailing initially. The results of this study are di-
rectly relevant to this precursor of the axial fiber
pull-out.

The objective of this paper is to describe the
transient loading of a single fiber which is par-
tially bonded in the sense described above. We
begin in Section 2 with an examination of the
shear stress in a partially debonded fiber subject
to a static axial body force. This material is neces-
sary for purposes of comparison with the dynamic
problem of Section 3 in which we consider a
transient body force acting on a similarly de-
bonded fiber, In particular, the long time response
of a step load should be exactly the static re-
sponse. The static results of Section 2 are of some
interest in themselves, independent of the dynamic
problem. For instance, it is shown that the static
stress intensity factor at the edges of the debond is
independent of the material mismatch for a given
body force, and it becomes infinite in the limit as
the fiber is almost completely debonded. We note
that the force which governs the stress transfer to
the matrix in both the static and dynamic prob-
lems is equivalent to an applied stress gradient in
the fiber. The precise genesis of this dynamic body
force is not discussed here, but it could originate
from fast fracture of the matrix or shock wave
loading. The assumptions involved in both the

static and dynamic loadings considered in this
paper are explained further in the discussion in
Section 4. )

2, The static problem for a debonded fiber

2.1, Formulation and decomposition of the problem

We [irst consider the static problem of a par-
tially debonded fiber subject to a uniform axial
body force P, per unit length. The loading £, may
be considered as a locally uniform approximant to
the imposed nonuniform force 3¢/, /3z, where z is
the axial coordinate and o, is the average axial
stress in the fiber. The force F, is assumed to act
uniformly inside the fiber which is partially bonded
to the surrounding infinite matrix. The assump-
tion of an infinite matrix simplifies the analysis,
and all quantities are assumed independent of the
axial coordinate, including the debond. The prob-
lem is therefore one of two-dimensional anti-plane
strain for the configuration shown in Fig, 1. The
extent of the circumferential debond is defined by
the half angle 8, 0 < § < =, subtended at the center
of the fiber.

We first decompose the problem as indicated in
Fig. 1, where I corresponds to a perfectly bonded
fiber with the body lorce acting on the fiber, and
in 1I shear tractions are applied over the debond
which cancel those of L. Let u; and u,, be the
anti-plane displacements in the direction of the
load F,, i.e. in the positive z-direction, then the
solution to I is radially symmetric and easily de-
termined as

P
() = (@), 1<, M
f
—p ,
(Y = 9 =
w () 2‘17.11,,,10g(0‘)’ r>a. (2)

The solution to I of course requires that an equal
but opposite load F; is applied to the matrix at
infinity, and the rigid body displacement is chosen
so that u{’(a)=u¥(a)=0. The shear stress at

the interface r = a is ¢!V = ¢V = — 5, where
F
_ 1o
T Tna (3)
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and this provides the tractions necessary for prob-
lem II, see Fig. 1.

In problem II, both the fiber and matrix are
free of body forces and the displacements satisfy
the 2D Laplace equation. Standard methods for
two-dimensional elasticity problems can then be
used (Tamate and Yamada, 1969; England, 1976).
Let u denote either of u{™ or «{P then u(x, y)
may be expressed in terms of a single complex-val-
ued function ¢(z), of the complex variable (not to
be confused with the axial coordinate) z=x + iy

- i8
= et

u=1tle(z)+9(2)], @

where the overbar denotes the complex conjugate,
and the associated stress is

9, — iaﬂz = .F'l’(p,(z)‘eiq' (S)
Let ¢, &, be the corresponding complex func-
tions in the fiber and matrix, and let C denote the
crack or debond, —8 < § < 8, and B the remaining
bonded part of the interface, |#]>3. The
boundary conditions are then: on the crack face

(it m(lly __
Urz( )marz( )_70’ or

g (o) + &g (a) = 20;—0, on C
H

ad, {(a) +ag. (a) = Zajrg—, on C, (6)

and on the bonded interface, both the stress and
displacements are continuous,

| ot (o) + 867 (@)] = [ @ty (@) + @00 (@),

on B, (7)
ag; (o) ~ & (o) = adp,(@) - & (a), onB,
(8)
where
a=ae' (9)

The inhomogeneous equations (6) may be made
homogeneous by the intreduction of new func-
tions Y, (z) and v, (z) defined by
ar,
—Z-,-[—L—r; -

(10)

#(2) =i (2)+ 200 #(2) =di(z) +

Thus, the boundary conditions at the crack face
become ;

api(a) + @pi(a) =0, ayp(a)+ay,(a) =0,
on C, {11)

and the conditions (7) and (8) on the bonded
interface are now

e[ @i (a) + a1 (o)
—pm[mp;n(a)+a¢_;:(§]m0, onB, (12
[ oopi (@) — i (a)]
~[eviu(@) ~ @i (@)] =0, onB. (13)

The function ¢;(z) is holomorphic within the
fiber region, |z| <a, and so Y{(z) is holomor-
phic in the same region, except at z = 0 where it
possesses a simple pole. Both ¢;,(z) and ¢/, (z) are
holomorphic in |z| > a. We note that the applied
tractions of problem II are self-equilibrated, hence
the stress must vanish at infinity like z7% The
corresponding condition on ¢/,(z) is

¥ml(2) =

—a
Ty of{z7?),
ET

[z] — oo. (14)

Finally, the stress at the center of the fiber must
be bounded, implying

wi(z) = _zs:" +0(1), |z| —o0. (15)

2.2. Solution of problem IT

Introduce new functions v/(z) and y.(z) de-
fined as

¥ (2} = 2 (2),
Yo(2) = 29 (2),

Although these stress functions have meaning
only in their respective regions |z} <a and |z|
> a, respectively, it is useful to analytically con-
tinve them into their complementary regions
according to

lz]| <a, (16)
iz] >a. (17

27 2y
O R = A E (18)

(¥

o) = - (%), iel<a (19)

z z
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Thus, for any z, except possibly {z]| =a,

y;(f-—z)é—vf’(z), WL =W o

Z

Let v/ " (a) and v, (@) be the limiting values
of ¥/(z) as z approaches a=a ¢' from |z]| <a
and |[z]| > a, respectively, with similar definitions
for v, (a«) and v, («). Then the boundary condi-
tions (11) become

¥ (a) =¥ («)=0, onC
Yo (&) =¥ () =0, onC, (21)

which means that v/(z) and v/ {z) are continuous
across the crack. The remaining interface condi-
tions (12) and (13) become

[y " (@) + post ()]

— v (@) + pyn ()] =0, onB, (22)
[ (o) = v ()]

+[v"(a) = . ()] =0, onB. (23)

Thus, ¥/(z) and y,,(z) are holomorphic every-
where except across the bonded interface B. Their
behavior at the origin and infinity is

—arn, z—0,
ar, z— oo,

BeY{ = = Yo = { (24)

Using Cauchy’s theorem, the unique solution to
(22) that also satisfies Egs. (21) and (24) follows as

peye (2) +payvmlz) =0, forall z. (25)
It remains to determine the function

h(z) =% (2} = Ym(2), (26)
which from (23) satisfies

At (a) +h (a)=0, onB. 27

This is a homogeneous Hilbert problem, with the
extra conditions from (24),
My + Ko

—h{0) = h{o0) = ax, L

(28)

The solution for h(z) is

h(z) = {(co+ a1z} x(2), (29)

where ¢;, ¢, are constants and
x(z)=(z—ae ) z=ae®) % (30

The function x(z) is single-valued everywhere ex-
cept along the bonded interface B. The constants
¢y and ¢, then follow from the two conditions in
(28) as

co=ah(0), ¢ =h(0). (31)
Combining (25), (26), (28), (29) and (31) yields

v(2) =20 (2~ a) x(2),

—aT

i (2—a) x(2). (32)

Yo (2) =
This completes the solution to problem Ii.
2.3. Stress intensity on the static debond

The total static shear stress ol (a, ) =
o (a, 0)= ¢} (8) along the bonded interface fol-
lows from the separate solutions to problems I
and IT as

Bego, po
Ur'e'z(a):z_;[YrJr(a)"Yr (0‘)]’ on B. (33)
Use of (30) and (32) gives the explicit result
— 1, sin(38)

o, (8)= ’
A0 Tt s o) a2 (7 9]

n B,

(34)

The condition that the fiber is subject to zero net
force implies

[l05(6) 46 = —mm,, (35)
&

and it may be shown by direct integration that
(34) satisfies this. Furthermore, we note that o(&)
is independent of the material mismatch char-
acterized by the ratio u/p ., i.e. the stress on the
bonded neck due to the interior body force F =
2mat, per unit axial length is the same whatever
the fiber—matrix combination. The stress intensity
factor K| is defined as

5 rz

K =alix?+[a(9—6)]l/ a3 (0), (36)
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Fig. 2. Stress intensity factor for a debonded fiber under a
static load.

and therefore

K 12
— — ={tan(1é . 37
— e [an(2 )] (37)

The simplicity of this expression is noteworthy, as
is the fact that the stress intensity factor is the
same for all material combinations. Also, K, be-
comes infinite as & -, see Fig. 2, which is not
surprising since in this limit the vanishingly thin
neck must support a finite load. The monotoni-
cally increasing nature of K, as a function of §
means that any crack propagation instability will
lead to catastrophic crack growth and complete
debonding in the circumferential direction. It is
important to point out that this does not occur if
the fiber is subject to a remote loading in the
matrix. Karihaloo and Viswanathan (1985) con-
sidered the response of an elliptical fiber under
remote shear loading and their results predict a
finite mode III stress intensity factor in the limit
as the fiber becomes completely debonded.

3. Dynamic loading of an isolated fiber
3.1. Formulation of the dynamic problem

We now extend the- two-dimensional static
solution of the previous section to the dynamic
case. Thus, the debond is again circumferential, as
illustrated in Fig. 1, with no variation in the axial
direction. This is of course an approximation, but
it should be valid for fibers with relatively con-
stant debonds extending over an axial distance of

many fiber radii. The loading on the fiber is also
assumed independent of the axial coordinate, and
is in the form of a causal time-dependent axial
stress gradient P(r), such that P(:)=0 for 1 <0,
Thus, P(¢) corresponds to a dynamic generaliza-
tion of the static'load P, of the previous section.

Define the Fourier transform pair for any causal

quantity g(¢) as
o0 R
g(w)= [ g(e) e ar,
0

g(1) = %Refomg(w) e do. (38)

We seek solutions for the time harmonic displace-
ment fields &.(r, 8, ) and 4,(r, §, @) in the
fiber and matrix respectively. The equations of
motion are

B

V 260+ k20, + (f)=o, r<a, (39)
wa e

Vzﬁm+kﬁ,ﬁm=0, r>a, (40)

where k= w(p/we)?, ko= w(py/t.)"? and
pr and p, are the volumetric densities. The gen-
eral solutions to Eqgs. (39) and (40) that are
bounded for r > g and satisfy the radiation condi-
tion for » > a, are

[+.s]
+ ¥ EJ.(k;r) cos né, (41)
n=0

D
fo(r, 8, w)= Y EH®(k_r) cos né, (42)
n=0
where J, and H™ are Bessel and Hankel func-
tions of order # and E, and F, are frequency-de-
pendent constants. The stress must be continuous
over the entire interface

dfi ai
ufma—:=pm-—~g-rﬂ, reg, —m< <, (43)
and therefore,
k Sk
E =ﬂ_ﬂ—m.M)__F n=0,1,2,....

" Pra kf H,f”’(kma) "
(44)
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Let the unknown stress on the bonded interface B
be 7(8, w), then 7 is even in § and

.38, (0, 0<@<8, g g
By = {1'-‘(8, ©), d<fB<m. (45)
Therefore,

En .'“A
ﬂmm.[s 7(9, &J) COS nﬂdfi,
n=0,1,2,..., (46}

where €,=1,¢,=2, for n> 1. The final condi-
tion is the continuity of displacement over the
bonded interface, which along with Eqs. (42)-(45),
implies

o r
aY e, cos nb L,,f #(0°, ) cos n’ do’
n=0 ‘45

=Pw), §<b<a, (47
where
= Jn(k-fa) Pr HISI)(kITIa)
Ly(@} =kiagrg oy = o ko g 2)°
(48)

3.2, Dynamic stress on a bonded fiber

An explicit solution to the integral equation
{(47) may be obtained in the single case that the
fiber is fully bonded (8 = 0). The interface shear
stress is then radially symmetric, (8, w) = T(w),
and

(49)

We consider -specifically the step load
P(t)=PH(1), (50)

where H(t)}=90, t<0, H()=1, t>0, is the
Heaviside function, and P, is a constant. The
natural unit for the dynamic stress 7(1) is 7
defined in (3). The long time behavior of (1) is
governed by the zero-frequency component of
#(w), which follows from (49) and (50) as #(w) =
7/ie + O(1) as @ — 0, and is therefore just the

]
o ||\ b
T(T) / . Fiber = Matrix  (Solid }
T ! Glass/Epoxy (chaindot)
¢ { Sitica/Algminum (dash }
o |l
N | S—
/
A
/
e | ; ; ]
0 10 20 30 10 50

T
Fig. 3. The shear stress on a perfectly bonded fiber subjected
10 a step load at T =0, where T'= ¢/ is the dimensionless
time, and =, = Py /2ma is the static stress solution. The material
parameters used are listed in Table 1.

simple static stress for a bonded fiber, ie. 7(z) =
—, as t — co. The transient stress is illustrated in
Fig. 3 in terms of the dimensionless time

¢
m'a‘f‘f, cr=/ps, (51)

where ¢; is the shear wave speed in the fiber. The
response for a homogeneous medium is shown for
comparison, and it is not much different from the
response for silica/Al. Generally, the dynamic
stress overshoots the static value before relaxing to
the static equilibrium stress. The interval required
to aphie\'re the asympltotic static stress appears o
increase if the fibers are much stiffer than the
matrix, as illustrated by the response for glass/
epoxy.

3.3. Solution of the dynamic problem

The presence of the debond can lead to stress

concentrations at the crack tips # =8 and § = — 8.
Table 1

Material E(GNm™) » p (2/cm?)
Glass (fiber) 70.68 0.182 255

Epoxy {matrix) 322 0.258 1.25

Silica (fiber) - 73 0.177 255
Aluminum (matrix)  70.5 345 27
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The static solution of Section 2 indicates that the
form of the singularity is at most of the inverse
square root type. A static analysis of mode Il
fracture at an interface crack leads to the same
conclusion, while dynamic analysis of the canoni-
cal problem of diffraction of a plane time harmonic
SH wave from a semi-infinite crack between two
materials (Clemmow, 1953) also shows that the
singularity of stress is of inverse square root form.,
Thus, we do not have to deal with the complica-
tion of oscillating singularities common to in-plane
fracture problems (Rice, 1988). Accordingly, we
expand the stress as

. Plw) 1
F(8, w) =
T et - (n—0)
X 2 B{w)e(8), (52)
n=90

where € =1 — § and $$* are related to Chebyshev
polynomials T;, (Abramowitz and Stegun, 1965)

#9(0) = (-5, (22

= (—1)"005(2!: arccos“—g). (53)

€

These have the useful property that
() cos mé

Taking appropriate inner products with eq. (47)
yields an infinite system of equations for the stress
coefficients 8,

o
E anf))n=8mﬂ’ mWO,I,Z,,.., (55)

n=0

m

d6=(-1)"54,(me). (54)

where @, are complex-valued elements of an
infinite, symmetric matrix,

=)
erm(w) = %L06m06r10+ Z Lp‘]?_m(pc) J2rr(P€)'
p=1

(56)

In order to avoid an ill-conditioned system in the
static limit discussed below, we eliminate 8, using
the equation for m = 0,

18{) = -é; - z QOan, (57)

el

and then solve the system

(> )

— QmOQnO - _ QmO
Z (an Q()O ) n QO{J »

n=1

¥ m=1,2, ... (58)
The coefficient By(w) is related to the net force
transmitted across the bonded neck, and it is
shown in Appendix A that the total power lost

into the matrix is proportional to Im{5;).
3.4. Comparison with the static solution

The asymptotic expansion for Q, —in the static

limit, ka << 1, is

i

Qnm(w) = _-smﬂanl) + (1 + %)(kfa)z

m

x § sz(p€) JZH(JDC) +O(kfa)3'
p=1
(59)

Therefore, in this limit, 8= —1+ O(k;a), and
the system of equations (58) for .the other coeffi-
cients in the stress expansion becomes

Z QA"”IBN(O) = érnﬂ’ m= 13 27" "y (60)

=1

where ¢, =~ are real-valued matrix elements,

oo
err = Z sz(pi) Jln( pf).
p=1
The stress coefficients 8,, 0=1, 2, ..., are there-
fore real and independent of the material con-
stants, specifically the ratio p,/pu . These results
correspond to the static findings of Section 3.3, in
particular, lim _, ,2wa?(8, w)/f’(w) is exactly
equal to o}(#)/7. The fact that B,— —1 is
equivalent to the condition (35) for no net force
on the fiber,

3.5, The dynamic siress intensity factor

The dynamic stress intensity factor is defined
in the same manner as for the static problem,

Ro(@)= lim [a(0-8)]'"72(¢, »)

=f_(__‘e_)(éf_)"zﬁo(-1)"ﬁ,,(w), (61)

2wa €
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In the static limit, we obtain

RO 2y & L
fo‘/; - ( € ) ”z=:] ( 1) “ﬁ,,(()), - (62)
where B, (0) are determined from eq. (60), and
P(0
0" 3‘% (63)

The definition of 7, only makes sense, of course,
when the zero-frequency component of the ap-
plied force is defined. This is not the case for the
step load considered above, but it may be in-
cluded by an appropriate extension of (63).

4, Numerical results and discussion

The ratio of the dynamic stress intensity factor
to the static SIF is plotted in Fig. 4 as a function
of frequency for different neck widths and differ-
ent material combination. As expected, the ratio
approaches unity as the dimensionless frequency

Glass/Epoxy

Silica/Aluminum

~
@

Fig. 4. The absolute value of the ratio of dynamic stress
intensity to the static SIF versus nondimensional frequency
kea for different values of the crack semi-angle 8.

Glass/Epoxy

{ i T
Q 106 200 300 400
T

Silica/Aluminum _

KB | .
N]%:g_ if‘ﬁ /\ A I
vy
& G L
® T ¥ T
0. 50 00 260

Fig. 5. The magnitude of the ratio of dynamic stress intensity
to static SIF for a partially debonded fiber versus nondimen-
sional time T. The load is a step function at T = 0. The solid
curves are for 8 =170°, the chaindotted curves for § =130°,
and the dashed curves for § = 60°,

k¢a — 0. However, the dynamic SIFs in Fig. 4
clearly exhibit a resonance behavior, at a frequency
that is small and decreases with €. Fig. 5 shows the
ratio of the dynamic SIF to the static SIF in the
time domain for step loading. The dynamic SIFs
not only overshoot the static SIFs but also ring
exactly at their resonant frequencies shown in Fig,
4. In general, the smaller the neck, the longer the
fiber will oscillate,

This resonance is essentially a rattling phenom-
enon that occurs when the fiber is almost com-
pletely disconnected from the matrix. It has been
discussed and quantified by Yang and Norris
(1990) and Norris and Yang (1990), who consider
the related problem of SH wave scattering from a
partially debonded fiber. The resonance may be
understood as that of a spring mass system, where
the spring constant is defined by the ability of the
neck to transmit shear force between the matrix
and fiber, and the mass is the inertia of the fiber.
As the neck vanishes, ie. as 8§ - o, the spring
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stiffness goes to zero, but the inertia of the fiber
remains unchanged. Therefore, the resonance
frequency goes to zero in the limit as § — =,

The form of the resonance is well described by
the following asymptotic approximation. In the
low frequency limit, the quasistatic approximation
for the stress intensity factor discussed in Section
2 is not uniformly valid in ¢ as e = 0. It can be
shown, using the methods of Narris and Yang
(1990), that B, = O(e*™ %), m > 0, if k,a is small
and € is also small. Therefore, the £, term will
dominate Eq. (61) for the stress intensity in this
double limit, i.e.

Ru(w) = 200 (2) % ), (64

A double asymptotic expansion of Q, for both
kia <1 and ¢ << 1 yields (Norris and Yang, 1990)

o) ~ = (1= - (ko) 1+ 42 30

-1
bty sealiga) < 2is]) L (69)
f

where
2(e) = Iog(§) + 1+ 0(e%),

The asymptotic behavior of X(e) as ¢ — 0 implies

that the low frequency behavior of By{w) can be .

quite different in character from the quasistatic
approximation, §;~ —1, valid only for e = O(1).
The resonant form of fd(w) Hlustrated in Fig. 4 is
thus due to the possibility that 8,(w) can vary
substantially from —1 even as k;a is small, if ¢ is
also small. The resonant frequency predicted from
eq. (65) is to first order

kea= [(1+%)2(e)]“1/2, (66)

which is O(1/+/logle}) as e = 0.

The predictions based on Eqgs. (64) and (65) are
compared in Fig. 6 with the full, numerically
intensive computations for the stress intensity fac-
tor in both the frequency and time domains. The
agreement between them is remarkably good, and
suggests that the simple form of the asymptotic

S )
iI.E 1.5
Glass/Epoxy
o :
: ©(b)
i figxact 8=170° 0
e g Y T 3 t
1] 100 200 300 400

T

Fig. 6. (a) The absolute value of the ratio of dynamic stress
intensity to static SIF versus nondimensional frequency k;a
for glass/epoxy, §=170°, The solid curve is the result of the
“exact” numerical calculations, the dashed curve follows from
the asymptotic approximation of Eq. (65). (b) The correspond-
ing ratio in the time domain versus nondimensional time T for
a step load at T=0,

approximation in Egs. (64) and (65) can be used
to describe the transient response of a loosely
connected fiber. The approximation contains the
correct static limit as w — 0 and also captures the
low frequency resonance phenomenon.

The frequency domain solution obtained here
can easily be combined with the spectrum of an
arbitrary excitation to yield the corresponding
transient response. For instance, Fig. 7 illustrates
dynamic SIF of a fiber subject to a forced excita-
tion in the form of a narrow-band pulse of several
cycles. The fiber is such that it is almost de-
bonded, with 6§ =170°, and the forcing frequency
is equal to the resonant frequency, see Fig. 4. The
forcing causes the magnitude of the dynamic stress
intensity factor to achieve a value almost six times
that of the static SIF in a few periods. This
illustrates quite clearly how in certain circum-
stances the role of fiber inertia may not be ignored,
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Fig. 7. The ratio of dynamic stress intensity to static SIF versus nondimensional time T for glass/epoxy under sinusoidal pulse

of the loading pulse is indicated in the insert.

and that purely dynamic effects can lead to tran-
sient stresses far in excess of those that would be
estimated on the basis of static equilibrium.
Finally, we conclude with a brief discussion on
the nature of the applied forces Py, and P(¢) of
Sections 2 and 3. The force P, is equivalent to a
uniform stress gradient 9o /3z in the fiber for ali
z. However, in practical situations the stress o,
cannot be a linear function of z, and therefore we
should think of F, and P(r) as approximations to
spatially varying functions. For instance, consider
the composite cylinders model of pull-out loading
depicted in Fig. 8 for a fiber which is fully bonded

o O Gn
11 2y

To

B, iy

Fig. 8. A fiber under axial pull-out load in the composite
cylinders model of a fiber reinforced material, and the load on
a fiber traversing a matrix crack.

loading with the period identical to the resonant peried of the composite system, 15.9 in dimensionless time units. The precise form

for z > 0 and detached from the matrix for z <0,
In this case it is possible to estimate the axial
stress and its gradient in the bonded section z >
using a shear-lag theory (e.g. Cox, 1952; Budian-
sky et al., 1986; Sigl and Evans, 1989; McCartney,
1589). Based on the fourth-order theory of Mc-
Cartney (1989), the following axial and shear
stresses in the fiber are

o.(z) =0 +5(z),

ol {r, z)=14r8'(2),

(67)
(68)

where S(z) is defined in Appendix B. Note that
the stress gradient is directly proportional to the
shear stress. Representative stress distributions for
this model are illustrated in Figs, 9 and 10. These
results show that as one proceeds along a fiber
away from the loaded end into the composite, the
axial stress diminishes steadily, until it eventually
assumes a constant value. In particular, significant
stress gradients are confined to a region close to
the fiber end being pulled, although the extent of
this region can be several fiber radii. Also, the
maximum shear stress tends to occur closer to the
pulled end as the fiber volume fraction f in-
creases, The two combinations of materials con-
sidered in Figs. 9 and 10 include one for which the
material parameters are not much different
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Fig. 9. The decay of the axial stress in a fiber.

Glass/Epoxy
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Fig. 10. The shear stress o,[z(a, z) at the interface of a f{ully
bonded fiber subject to static pull-out.

(silica /Al), and one for which they differ signifi-
cantly (glass/epoxy). The shear stress actually
oscillates about zero for large values of z/a for
silica/Al, although the magnitude of the oscilla-
tions are very small. The nondimensionalized shear
stress for glass /epoxy is considerably less than for
the silica /Al composite.

5. Conclusions

Results have been obtained for the static and
dynamic loading of a circumferentially debonded
fiber. The solution for the static problem is sum-
marized by Eq. (34) for the interfacial stress be-
tween the matrix and the bonded segment of the
fiber. The corresponding stress intensity factor,
Eq. (37), increases without bound as the fiber
debonds completely, indicating the likelihood of
catastrophic cracking in the circumferential dircc-
tion, The analysis for dynamic loading shows that
the results of the static problem are obtained in
the zero-frequency limit, or equivalently, in the
long time response to a step load. For short times,
i.e. nonzero frequencics, the dynamic stress inten-
sity factor always overshoots the static value, De-
partures from the static limit are more evident for
fibers which are almost completely debonded
which display a distinct low frequency resonance,
analogous to the Helmholtz resonance of an
acoustical cavity. The resonance frequency de-
creases to zero according 1o the asymptotic esti-
mate (66) for small neck width. The existence of
the resonance phenomenon is significant since its
excitation leads to dynamic enhancement of the
stress intensity factor, with a correspondingly
greater possibility of catastrophic debonding,
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Appendix A

The rate of working of the time harmonic force
P(w) acting on the fiber r<a, when averaged
over a cycle, is

: P(w) L 2n a -
TRc( p: { 1w)'[; d()j(;rdruf(r,ﬂ,w)

= R(w). (A1)

The integral of &; can be performed using (41),
and the result simplified by elimination of F; in
favor of B, from (46) and (52). The final form for
the power input is

—olP(e)|*)

2 (kpa ) [Bo("")] (A2)

Rw) =

Assuming there is no intrinsic damping in the
fiber or matrix, the energy put into the fiber is lost
through radiation in the matrix. The balance of
energy requires that R is identical to the radiated
power, which may be calculated as the integral of
the energy flux across any surface enclosing the
fiber. The latter can be simply evaluated by using
the farfield expansion of #,, and the energy bal-
ance then reduces to the following expression,

2
o |E,]

R(0) =4wp, ¥ —2—, (43)

n=0 "

where E, are defined in (42). These follow from
(44), (46) and (52) as
(_1)”51'1 Py km ﬁ("")

B e o Ky

X g(}.fzp(nc)ﬁp(w). (A4)

The energy balance (A2) can therefore be cast as a
relation  between the coefficients f,, »n =
0,1,2,...,

2 Dy - €,
—Im B (w) = L - n
’ T Pm n=0 lHél)’(kma) | :
oo 2
X EJZp(ne)Bp(w) (A‘S)
p=0
Appendix B

The restraining stresses in the fiber and matrix
for the perfectly bonded fiber of Fig, 8 are related
o o by

of — o
_1 ;f(,:]o
Em+f(ym_y!')ymE0 00
Ent+ [/ =D Ectf(rm= v ) Ey|
(B1)
where
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1 1_21’,“f+ 1_2Vf

+
P Fm g

a-n) .
(82)

where f=a’/b*. Noted that (B1) simplifies to an
expression given by Sigl and Evans (1989) where
Vm = y{.

The function $(z) of Egs. (67) and (68) follows
from McCartney (1989) as the solution to

4 d4 2 d2 2
a H’;ﬁ'S(Z) - 2a1a ES(Z) + bIS(Z) =0,
(B3)
subject to the restraints upon S(z) that it and its
derivative should vanish as z — oo, while at z=0

the pull-out load on the fiber is assumed to be
purely axial, see Fig. §. Thus,

o =0, ol=0f, z=0, (B4)
implying
5'(0)=0, S(0)=0of —of, (B5)

Note that these end conditions automatically im-
ply that ¢,7(0) = 0. The solution for $(z) is (Mc-
Cartney, 1989)

S(z) = S e/
[cos(gz/a) + (p/q) sin(gz/a)],

a, < by,

[(p+q) e~ (p-—g)e /] s2q,

(B6)

and

F= ———————-(1 g:ﬁgm}f) [1+(+r,)1]
{1

G= By -+ (12}28 + 1g:m§(1m_l{—f)

10-ng -5 ) - (= -8

PO TN 3

I=1—1_}log(w1f)~—1,

- 1;:,“ N lg:mf*' lf_g:f(l“‘f),

f

B= i+ (=),

%L_l 14w,
YERE, 2 ak,,

-1)1
8wuf——(1—vf)§.

McCartney (1989} reports that exhaustive numeri-
cal computations for a range of material parame-
ters indicate both a; and b, are positive.

We note that the location of maximum stress
gradient occurs where 3o /3z is minimum, or
equivalently, where §°(z) has a minimum. This is
also the point at which the shear stress o) is
maximum, From (B6) we deduce the location as
the root of

tan(ﬂ)=£, a, < by,
a p

z

a,=b,, (B8)

1
rE
tanh(%{) = %

If a; < by, the desired value of z is the smallest
positive root.

a, > by.



