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ABSTRACT

SCATTERING of an antiplane shear wave from a single fibre partiaily bonded 10 a malrix is considered, The
region of debonding is modeled s an interfuce crack with nen-contacling faces; the crack opening
displacement is represented by Chebyshev polynomials, and a system of equations is derived for the
unknown coeflicients. The solution is valid for arbitrary values of & a, where &, is the incident wavenumber
and « the fibre radivs. and the semi-angle § sublended by the crack may vary from zero to 7. The general
solution simplifics in two limiting situations : (1) i 6 is small, and ka8 is also small, then the waveleng(h
greatly exceeds the crack length and the crack is effectively subject Lo a static loading determined by the
dynamic licld around the perfectly bonded fibre. Explicit expressions can be obtained for the COD and
the sealtered field in this case; (i) when the crack semi-angle is finite, but &, is small, then both the fickd
in the fibre and the crack loading are quasistatic. The dependence of the seattered field on & is particularty
simple: however, the quasistatic theory breaks down at surprisingly low values of k¢ when the fibre
becomes almost complelely separated from the matrix. The marrow neck joining the walrix and fibre
permils the fibre to oscillate al very low lrequencies and cavses a strong resomance in the scallering cross-
seetion. The general and approximate results for the single fibre are used to estimale the attentuation of a
wave propagating through a composite with many fibres and the possibility of guantitative detection of
debonding using ultrasound attenuation measurements is discussed.

1. INTRODUCTION

Tuz pARTIAL debonding of fibres in reinforced composites can be the precursor 1o
serious degradation of mechanical properties. Thus, if a large enough axial load is
applied, the fibres may completely disengage from the matrix, possibly resulting in
catastrophic failure. The topic of this paper is the effect of debonding on the scattering
of antiplane shear waves. The solution to this problem is relevant to ultrasonic
nondestructive detection of debonding, and could have applications to the question
of how dynamic loading can lead to growth of debonds. The solution may also be of
interest to earthquake engineers concerned with the motion of foundation piles. The
associated long wavelength or quasistatic problem has been solved in closed form by
Coussy (1982, 1986). However, as we will see, the values of dimensionless frequency,
ka, for which the quasistatic solution is valid may be strictly limited to ka « 1, and
it could break down at values for which it might otherwise be expected to hold.

The present method of selution is similar to that of KRENK and ScHMIDT (1982)
who considered the scatleﬂng of clastic waves from a penny-shaped crack in a
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homogeneous medium. Their method was also used by Bostrém (1987) in solving
for the SH scattered field due to an interface crack between two homogeneous clastic
half spaces. The two problems discussed by BosTrOM (1987) and in the present paper
are simpler than the fully elastic problem of in-plane Eofngltudnml and shear wave
incidence (Coussy, 1984) in that the crack opening dlspldcemcm on the debond has
the usual square root behaviour near the edges. However, the technique outlined here
could be extended to the in-plane problem, although the algebra is necessarily quite
a bit more extensive, and will be discussed in a later paper. As BostroM (1987) noted,
the present method does not involve the use of Green’s functions. This is a tremendous
simplification and leads to the ultimate equations in a direct and straightforward
manner,

2. FORMULATION AND SOLUTION OF THE PROBLEM
2.1. Decomposition into syrmetric and antisymmetric parts

Let the shear modulus and mass density of the matrix and fibre be y,, p,, and s,
£2. respectively. The fibre occupics r < @, the matrix » > &, and polar coordinates
{(r, ) will be used. All motion is time harmonic of frequency w, and the term ¢~
will be omitted, but understood. Let the interface crack be of angular width 28, and
centred at § == 0, see Fig. [. The total out-of-plane displacement is expressed as

wi(r g T ST VA s
Wi, 0 = 2.
(r 0) w41, i<, (2.1)

where «™ represents the incident wavefield, «{” and 15" are the fields that would be |

present if the fibre were perfectly bonded, and 1{? and »4" are the additional ficlds
generated by the debond. All these fields, except possibly 1" which could possess
singularities, are homogeneous solutions to the wave equation in their respective
regions,

1, r>aq,

Viudkiu=10, a= { 2.2)

2, r<a,

2

where

K Py

8,

16, 1. The partiaily debonded fibre and the incident wave direction.
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k, = wle,, (2.3)

172
o= lpa) {2.4)

The determination of the fields wi” o = 1, 2, is a standard problem, with solutions
arven m Appendix A for the incident plane wave

u:n . Aelk!rcm((‘.’---uu)’ (25)

propagating in the ¢, direction. In order Lo sofve for the additional fields !, o = 1,
2, it is helpful to decompose the fields as

u;” = z.;;_é’+ui,!\), o=1,2, (2.6)

where als’ and wl) are symmetric and antisymmetric, respectively, about the line
0 = 0. A symmelric function Ag(r, ) satisfies

ho(r, ) = he(r,2n ), 0 0<m, (2.7
while for an antisymmelric function, 4,

halr, ) = —ha(r,2n—-0), 00 < (2.8)

2.2. The symmetric solution

Since the solution satisfies the symmetry condition (2.7) by definition, we need only
consider the half plane, » 2 0,0 < ¢ < =. The interface conditions for the displacement
and stress are

(000 0, r=a, éx0<m, N

g — Uy = AUS(U), r=a, 0<0<0, (2.9
(1) Ayt

s _ M8 <0< 210

Roomger = Ha g s

where AUg(f) is the symmetric crack opening displacement (COD).
The scattered fields due to the presence of the crack must satisfy the Helmholtz
equation (2.2) and be symmetric. Therefore, referring to Appendix A, let

wld = Y EPH{M{k,r) cos b, (2.11a)

n=0

&
uby = N FSJ (ko) cosnd, (2.11b)

n=0

which when substituted into (2.10) yield
gk

E® = 7. 71%29) g 2.12)

HY (kya)™"

where Z is defined in (A6)i Eliminating ES in favour of F§, and using (2.9), (2.10)
and (A35) gives '
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s g D 0= 0, s<l<m,
ngo " H“) (k )COSFT —AUS(O), 0<0< 6, (213)
and therefore |
Hf” |
FO = ‘; (k,a) j AUs(0) cosnfl do, (2.14)

where ¢, and D,,n =0, 1, 2,..., are defined in Appendix A.
So far, we have not required the total stress to vanish on the crack faces. This
condition is, for the symmetric solution, '

duld o)

CE L TTE 0 r= < 5 .
8r'+ 5 , r=a, 00«4, (2.15}
where wbd is the symmetric part of 4%, which may be expressed as
[e4]
W = 3 B I (ko) cosnb. (2.16)
o=0

Thic coeflicients B, n = 0,1,2, ... ,depend upon the type of incident wave considered,
and are given in Appendix A for an incident plane wave. Substituting (2.11b), (2.14)
and (2.16) into (2.15) yields

e

HeY
cosp()J,(/\?f) - (k,a) AUS(l//) cos pir di
TI I

pm
= Z B Jyksaycospl, 0<0<5. (217)
=

We next expand the symmetric COD in a compleie set of Chebyshev functions,

AUS0) = ¥ a® ¢ (0), (2.18)
n=
where
1 0
¢S = 7 c08 [(21?— 1} arcsin (5)]. (2.19)

These functions have the desired square root behaviour near the crack edge, 0 = 4,
and have been used previously in related problems (NEERHOFF, 1979 ; BOSTROM, 1987).
The integrals in (2.17) may be expanded in terms of the COD coefficients «* by using

"""" J2H F(])(S)’ l)z 152735"'1
j GEN0) cos pOdl = i (2.20)
4 5;!11 P = U,

where 8, = 1 il m = n, 0if m % n. Then multiplying (2.17) by ¢ (0) and integrating

el
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yields a system of linear equation for the COD coefficients,

Z Q8™ = NS yp=1,2,3,..., {2.21)

s

where the symmetric, complex-valued matrix [Q®] has elements

b I‘ )(k,a)Jo(kqa)
5) . 7 5 ..
Qnm — 8 (:',,,1(3,,; ])”
H“ (k@) (kya
+ Z 5 Jam 1 (PEYT 3y (pI) “E 'Dn'2) (2.22)
»
and
§ = 5(5 © 4 3 B'()S) d k 2
Nu 2 uiJ()(k‘a)B + Z] P JZn 1([) )Jp( 2(1) (2 3)
pe

Having solved (2.21) for the COD coefficients, the symmetric part of the scattered
field due to the debond follows from (2.11a), (2.12), (2.14), (2.18) and (2.20) as

0 (!c 2 a)

ll(;!g} = 4 (8)7 (I)(/ |")

- ZJ
— 3= ";g‘za) HP (ke r) cosnt Z &I, (n8).  (2.24)
n=1 n o =

This becomes in the far-field

gn\"?
uf.'q"‘*(iﬁ) ¢TI 0 (0, 0,), 2.25)

{ I ]'
where the symmetric part of the far-field pattern is

8 Jolk e "I (k
FE(0,0,) = M_;Tr_ {4 mo}f):?) o+ Z ( l)nD(cza)

He |

cos 16 Z o, 1(}16)} (2.26)

r,'-

2.3. The antisymmetric selution

Define the antisymmetric COD, AUA(()) by the interface condition analogous to
(2.9),

G 0, r=a, 00 <n,
R~ = (A @), rea 020<6 .27

.
Then it is possible using the same procedures as before to obtain an equation for AU,,
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o 2 H(k
Y ;smpOJ’(kz &) -~ £

r=1

1) fAUA(u)) sin iy dy _

= 3 BMTi(k,aybinp, 0<0<5, (228)
r=1 .
where the coefficients B, n = 1,2,.. ., are defined by

1w = Y B®J, (o) sin nd. (2.29)
He= |
Explicit expressions are given for B in Appendix A for an incident plane wave. As
before, expand the COD in a complete set of antisymmetric Chebyshev functions,

AULG) = Z o™ i (R, (2.30)
n=1
where
) o i {8
O (0)y = 55, 5in 2rarcsin 5 (2.31)
ﬁlcse have the property that
J. SN0 sin pOdO = ﬁ?j) Julpd), p=1,2,3,.... (2.32)

Substituting (2.30) into (2.28), multiplying both sides of (2.28) by ¢ (#) and
integrating yields the system of equations

Z QW™ = N m o= 1,2,3,..., (2.33)
n=1
where
| H (ka)J s (k
J(;::f) = ) J?m(pé)JZH (/J‘S) : ( I([) : ( Cza)s (2‘34)
Wt D
pe I
(A) - B(A)
Nn = z -W;"“' J?!l(pé)‘] (kza) (2‘35)
pel

Once the o, n = 1,2,3,..., have been determined the antisymmetric part of the
scattered far-ficld pattern follows as

FiN0,00) = -+ Z (— -sin nf Z a5, (né). (2.36)

n-~l q=1

J::(Cza)

3. SCATTERING CROSS-SECTION AND ATTENUATION
The scattered far-field may be written
. ga A\t
U = -y~ o e r=rO g, 0,), (3.1)
i\ F

where the radiation pattern is
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F(0,00) = FO(0,00)+ F§0,04) + F1 (0, 0,). (3.2}

The pattern % is that for the perfectly bonded cylinder, and is given in Appendix A
for plane wave incidence. The total energy flux for the scattered field is the time
average of the flux over any surface S enclosing the cylinder,

sC

(Py= Cim ,u,u“audS
2 5 on

2
= 471’0)#; J l]r((), 00)'2(!8. (33)
0
The latter integral can be evaluated using the two-dimensional optical theorem,
2%
J [F(0,00)]d0 = — Re AF(0,,0,). (3.4)
]

The total scattering cross-section o is defined as (P divided by the time average of
the incident flux,
])
a(w) = &}<> - (3.5
Shki(A]?

Let o'®(w) be the cross-section for the perfectly bonded fibre. Then using the optical
theerem (3.4}, we have

a{w) = oW — .. Bz

AT REAF (00, 00), (3.6)
1

where F™is the sum of F{" and F{».

Consider, for simplicity, a composite of aligned identical fibres in a matrix such
that there are N fibres per unit arca in the plane perpendicular to the fibre axis. Let
cach fibre be partially debonded, with the same size crack and orientation on alf the
fibres. Distributions of crack sizes and orientations could be considered by a simple
extension. The effect of each fibre is to scatter energy from the coherent wave pro-
pagating through the composite medium, resulting in attenuation of magnitude
@ = Im (k), where k is the complex-valued coherent wave number, The simplest way
to approximate « is by neglecting multiple scattering effects, which gives the estimate

=59 (3.7

where ¢ is the volume fraction of fibres in the composite. Thus, the effect of the
debonding on the attenuation of the coherent wave may be estimated from (3.6) and
(3.7). In particular, let «/® be the attenuation in the absence of debonding. Then the
relative change in attenuatioh due to debonding is
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Ao Re/ziF“)(Go, 90)
B LA CLLO (3.8)

The approximation which led to (3.7) and (3.8) considers each fibre as isolated in an
otherwise homogeneous material and neglects the interaction between fibres, which
may in fact be of equal importance to the scattering from an individual fibre.

4, THE LONG WAVELENGTH LIMIT
4.1. General solution

The solution simplifies somewhat in the limit that the incident wavelength greatly
exceeds the fibre radius, ie. ko« 1. Tt is also assumed that ky/k, = (1), or
ka = O(k,a). This limit is equivalent to a static loading of the fibre, and so it may
also be called the quasistatic limit.

First, we nole that the matrices [Q®] and [@"™M] of (2.22) and (2.34) become

1

(0] = o [T 40(1), T=S§,A, (4.1)
kza(i + HE—)
H
where [J®] and [§M] are symmetric, real-valued matrices that depend only upon 4,
~ |
QS}?& = z f; J2m--- I(p(s) J2n— 1([95), (42'(1) l
p=1
&1
Qr{rﬁl) = Z ]j J21ni(1)5)J211([)5)' (42b)
p=1

When the incident wave is a plane wave, see Appendix A, the COD coefficients
become, forn=1,2,3,...,

a® = ik acos 0,0 A+ Ok &)%), (4.3a)
o™ = 2ik,asin 0,@M 4 + O((k,a)*), (4.3b)

where &% and ¢ are real-valued and also depend only upon d. They satisfy

4}

Z Q“’fl?ra&f?) = sz,, I((S)9 h = l; 21 31 ey (443)
n=1

) -

Y Oma® = J5,(8), m=123,..., (4.4b)
ne= |

which follow from (A4b), (2.23), (2.35) and (4.1)-(4.3). We note from (4.3) that the
COD is of order (k,4) in magnitude, it is in-phase with the incident stress field, and
has a simple dependence upon the incident direction; all of which one could surmise
independently from quasistatic arguments.
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4.2. The radiated field and the limit of § — =

The radiation pattern in the absence of any debonding becomes in the long wave-
length limit

) Lt I N O TIE S 2
FO0,0,) Ag(k.a) [p. uz(ﬂlﬂz)cos(o 00)]+0((k,a) ). (4.5)

The additional far-field amplitude due to the crack is F(" = Fi"+ F which follows
from (2.26}, (2.36) and (4.3) as

e
F0,0,) = A ; ([i:%m [/5(8) cos 0 cos 0y +,(8) sin Osin 0] + o ((k, 2)?),

(4.6)

where
Ss(8) = Z' 021 @), fa(0) = T @M, (5). (4.7a,b)
o = 4

g=

Coussy (1982) obtained an expression for the far-field pattern in the long wave-
length limit by solving the static problem using complex variable methods. The same
technique can also be used to calculate the long wavelength scattering from a rigid
elliptic fibre partially debonded from the matrix (Coussy, 1986). Comparison of the
far-field pattern F of (4.5) and {4.6) with that of Coussy (1982) yields

Js(8) = 1 —cos? @), Sa(8) = sin? @) {4.8a,b)

We have checked the equivalence of Js and £, given by (4.8) with the values defined
by (4.2), (4.4) and (4.7) by numerically solving truncated versions of {4.4). The
computations agree to within the degree of numerical accuracy possible.

The behaviour of F, given by (4.5), (4.6) and (4.8), as a function of & has been
discussed by Coussy (1982). For arbitrary 4,

; gl | Lipa L2 4.‘?)
F(6,04) —A4(k,a) [2 (p] 1)+(1 'u‘+'u2cos 5 cos 0cos @,
2u2 ( ' éé)) . . ] 2
e fsind k , (4.9
+( PR sin 5 | JsinOsin 6, +o(lka)®), (4.9)
and in particular, as § — r,
F6,0) = A-é—(k;a)z[g—z- —1+2cos (OMGO)]+0((k|a)2). (4.10)
! .

The monopole term in (4.10)i.is proportional to (p,—p,), and is unchanged by the
presence of the debond. The dipole term however, becomes the same as the dipole
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field scattered from a cylindrical void, p; = 0 in (4.5). Thus, as the fibre becomes
almost completely disconnected from the matrix, it behaves for purposes of shear
deformation exactly like a void. The inertial eflects of the fibre are unaltered because,
even as the width of the neck connecting the fibre to the.fnatrix shrinks to zero, the
fibre continues to oscillate in phase with the matrix.
- The scaltering cross-section follows from (4.9) as

L{ps ’ ( 2y 5Y
233 4 ! . o 47 2
alw) = |A|*kia 5 {2 (pﬁ >+ 1 P cos® | cos #,

24, . 40 : ) s
-i-{l ,u.+;u2(1—sm 5] | sin O r+olkia®. @.11)

If the fibre is more rigid than the matrix, g, > u,, then the presence of the debond
always decreases the cross-section, as long as u/u, < cos® §/2, see Appendix B. This
condition is satisfied by a very rigid fibre, u, « u,, for almost all values of 8, except
for the case when 8 — 7, and then ¢ approaches the value for the perfectly bonded
fibre. Furthermore, when the fibre is perfectly rigid, the cross-section achieves an
absolute minimum if 0y =0 and & =&, or if 0;=n/2 and & = m—3J,, where
cost 84/2 = 1/2, or 8¢ = 65.5% I the fibres are randomly oriented, then cos® 8, and
sin? @, are both replaced by 1/2 in (4.11), and a minimum cross-section is obtained
{or the case of a rigid fibre when ¢ = =/2.

5. THE SrorT CrRACK LiMIT

The general solution of Section 2 also simplies in the limit of § « I, for kya = O(1).
Then, under the substitution v = pd, (2.22) becomes

“dv ka Jf k a
st.zzj ------ ¥ o 02 090 ‘D) e, (5.1)
vid

By assumption, k,a and k»a are of order unity, therefore using the asymptotic forms
of Bessel functions for large order (ABRAMOWITZ and STEGUN, 1965),

um (kla)Jn,'a(k?a) v

D, ~ ’
i k 2a< 14 HE)
Hy

1 o
(S) — Hin
Q ma 2(2}2 . i )
faal 1 +
JL !

6 (5.2)

and so,

(5-3)

Similariy, from (2.34)

)
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b O (5.4)

o dn
{
/cza<| -+ £ 3-)
Hy

The vectors N® and N of (2.23) and (2.35) simplify in the same limit to

NF = gé,.a :0 S} B+ 0(5%), (5.52)
NN =008, n=1,273,. . .. (5.5b)
The COD cocefficients are therefore
o = a8, o =0, (5.6a,b)
where
o) = 5k2a( I+ ﬁ:) ,,io T Geaa) B (5.7)

Note that the COD involves only the first Chebyshev function $P0) =
() —0%/6%)". Let b = ad and x = a8, then the COD follows from (2.18) and (5.7) as

] I
Al = O'“pp(;t'“l -+ #2)(1&'2 ""XZ) vz Ix! < b, (58)

~where ¢"" is the applied normal stress on the crack face due to the quasistatic field
about the small crack,

G = gy, aa, W 0), r=a (3:9)

The crack experiences a quasistatic opening since k,b « 1, even though the fibre is in
a fully dynamic state, i.e. koa = O(1). It may be verified independently that (5.8) is®
in fact the COD on a flat interfacial crack between half spaces of moduli 4, and p,
subject (o loading ¢""" at infinity.
The additional radiation generated by the smalt crack is
A1) _ i _kay)?
F (6. 8) 4(i+;(1|/!iz)g’ ©-10)

where g is for plane wave incidence (see Appendix A),

L [J‘?(l + &)T( S 1 (e0) B cos 0 )
g A 2f{i 1 = plUt2 P Py

x (i (= Do, (k,a)B, cosq@). 1D

‘ =0
1]

Aslkia— 0,9 - A cos fcos do, and so (5.10) agrees with (4.6) and (4.8) in the double
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limit of & « 1, k,a « 1. The factor g of (5.11) becomes in the limit of a rigid fibre,
phafis € 1,k fky = o(l),
i cos pdy ' cosgl )
1 12
9 ek (z ! H“)(klm)(; W 0 G2

In general, it follows from (3.6) and (5.10) that the presence of the small debond
produces a change of order 82 in the scatiering cross-section.

6, Tue STRESS INTENSITY FACTOR

The static stress intensity factor, KJ,, is defined as

K, = lim [2)"P 1)l e

iy AU(G)

T L Gy,

) (6.1)

where » is the radial distance from the tip at 8 = &. TAMATE and YaMmaDa (1969)
derived the static stress intensity factor for a uniform antiplane stress t, at infinity,
which is inclined at the angle £,

2t é
KI = — ——-i-——--r o{asin ) cos (03~ = ) (6.2)
ot 2
We define the dynamic stress intensity factor K, by analogy with (6.1), as
e i AU@
Kly= = fim o o) 7. 6.3)

From (2.18),as 6 = _,
AN
AUS(H) = |:2([ — 5):| Z (=" 'a®, (6.4)
w1

and therefore the symmetric dynamic stress infensity factor is

1 Hifh
KI® = e 2102 18 .
/s  (ad) +#z..§( D' ©

This should agree in the low frequency limit with the symmetric part of (6.2)

2
B2 (asind)" cos 0, cosé, (6.6)

KIS =
; o s 2

where from (2.5), 1, = iku,4. Similar expressions can be obtained for the anti-
symmetric dynamic stress intensity factor.

b E
A
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7. NUMERICAL RESULTS AND THE LOw FREQUENCY RESONANCE

Numerical results for the scattering cross-section and the far-field radiation pattern
have been computed for two combinations of matrix and fibre: (i} epoxy, u, = 1.28
GPa, p, = 1.25 gjec, and glass, u; = 29.9 GPa, P2 =2.55 gfce; and (ii) aluminium,
#y = 2649 GPa, p, = 2.70 gfce, and tungsten, u, = 155.47 GPa, p, = 19,19 gfcc. The
results are for plane wave incidence, and were obtained by solving truncated versions
of (2.11)-(2.23) and (2.33)-(2.35). The computations were validated by (i) increasing
the truncation limit and checking that the difference was negligible, and (ii) numeri-
cally verifying that the optical theorem (3.6) was always salisfied.

The exact scattering cross-section and long wavelength approximation are com-
pared in Fig. 2 for glassfepoxy, § = 130° and g = 0. The approximate theory is
extremely accurate for &y« less than 0.2, but the peak at k,a near 0.6 clearly indicates
that the quasistatic analysis is breaking down. The peak becomes more pronounced
and occurs at lower frequencies as the crack size is increased, see Fig. 3, until as
& — =, the shape of the peak becomes more and more like that of a sharp resonance.
In particular, for & = 179.9° the resonance occurs at about k;a = 0.2, which is right
in the range of &« for which one would expect the quasistatic theory to apply. The
probable explanation for the resonance is that as § — 7 the narrow neck joining the
fibre and matrix permits large relative motion to oceur. The neck, in other words, has
a smaller and smaller stiffness as 6 — n. The resonance is then caused by relative
motion of the matrix and fibre in opposite senses. The resonance frequency is deter-
mined by the neck stiffness, which goes to zero, and the inertia of the fibre and matrix,
which remain relatively constant independent of §. This hypothesis is explored in
Appendix C, where a simple model is presented for this low frequency resonance. The
model involves a single free parameter related to the unknown inertia of the matrix
as it oscillates. We found that the positions of the peaks in Fig. 3 and for other values
of é could be well matched by setting the parameter as § = 5.13, with COmMparisons

< GLASS/EPOXY T

EXACT
LONG WAVELENGTH

=
o

T T T I 1
00 o2 04 4o 06 0.8 10

Fig. 2. Comparison of the exact al‘?d approximate scaftering cross-section for glassfepoxy, 8 = 130° and
8y=10,
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=, (70,00 GLASS/EPOXY
0, = 0°
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<+ ]
i 175°
s
a
o
2
ol NS e e
o T T T T !
00 02 04 4, 08 08 10

F1G. 3. The exact cross-section for glassfepoxy with f, = 0 and § = 65.5°, 130°, 175° and 179.9°.

.as-shown in Fig. 4 for glass/epoxy. The agreement between the simple model and
the exact results is very convincing and suggests that a slightly more sophisticated
quasistatic analysis might capture the full resonance phenomenon, although we will
defer consideration of this until a later date. In the meantime, we note that the low
frequency resonance is also evident for the tungsten/aluminium combination, sce Fig.
5. The positions of the peaks in Fig. 5 are at lower value of k,a than for glass/epoxy
in Fig. 3, which may be attributed to the greater densities of tungsten and aluminium.

TRy

Finally, we note the connection between the low frequency resonance and the -
Helmholtz resonance of an acoustic cavity (RAYLEIGH, 1945). The acoustic resonance ™.

is caused by the compressibility of the cavity fluid and the inertia of the fluid in the
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FiG. 4. Comparison of the Jow frequency resonance frequency vs 8. The solid and dashed curves are from
Appendix C, Eqgs C{10) and (C11}, respectively, with f = 5.13, and the circles are from the exact computed
cross-seclions.
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& 1700 TUNGSTEN/ALUMINIUM

B, = 0°

i8

F1G. 5. The cross-section for tungsten/aluminium with 0, = 0 and § = 65.5°, 90°, 1 10°, 150 and 170°,

neck jotning the cavily to the exterior medium. The roles of the “cavity” material and
the material in the neck are reversed in the present problem. Thus, the inertia may be
attributed to the gross motion of the fibre, while the spring constant is governed by
the elastic strain in the vicinity of the neck. The main distinction between the (wo
phenomena is due to the different boundary conditions on the cavily and fibre,
respectively. The behaviour of the low frequency resonance is shown in Fig. 6 for
d = 170% and different directions of incidence.

The behaviour of the cross-section at higher frequencies is illustrated in Fig. 7. The
curves for a uniformly bonded fibre, § = 0, and a void are shown for comparison. It
is worth noting that even for § = 170° the cross-section is quite unlike that for the
void. Figures 8, 9 and 10 illustrate the far-field radiation pattern for glassfepoxy for

ud
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FiG. 6. The low frequency resonanck for glass-epoxy with 8 = 170°, and 0, = 0, 60°, 90° and 180" (dotted
curve).
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FiG. 7. The cross-section for glassfepoxy, 8, = 0, = 0, 65.5°, 110% and 170°. The curve for an empty void
is shown for comparison.

different frequencies and angles of incidence. In Fig. § the pattern is shown for the
frequency of the resonance and for neighbouring frequencies where the resonance is
not as significant. Quasistatic theory predicts that at the frequencies involved the
patterns shouid have monotonically increasing magnitudes, which is clearly not the
case from Fig, 8.

Finally, the static and dynamic stress intensity factors are illustrated in Figs 11 and
12. Note in particular the magnification of the stress intensily at the low frequency

\
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i

Fic. 8. The far-field pattern for glassfepoxy with 6 = 175°, 61, = 0, al the low frequency resonance,
kya = 0.35, and slightly off resonance, ka0 = 0.3 and ko = 0.4.

Kaiden ¥
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90°

F1G6. 9. The same as Fig. 8 but for § = 90°, Oy = 0, 45% and 90°, ka0 = 2.0.

resonance in Fig. 12, to be compared with Fig, 2, The change in phase of the complex-
valued stress intensily factor near this frequency is characteristic of a resonance
phenomenon.

8. Discussion
Ultrasonic inspection of composite materials is normally made at frequencies such

that k,a is small, i.c. the wavelength greatly exceeds the fibre radius. If ¢ is the volume
fraction of fibres in the composite, then the quasistatic approximation of Section 4
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Fic. 11. A comparison of the symmetric stress intensity factor in the static limit. Kl is given by (6.6} and
Kliyis computed from {6.5) using the static COD coeflicients o' of (4.3a).

predicts an allenuation of o = ¢Fkia®, where E is a material constant and follows
from (4.11) as E = E(u,/u,, p+/p., 0o, 8) for a single fibre. In general, the fibres will
have a distribution in values of 8, and 8, and E must be averaged accordingly. If,
however, the fibre debonds are all similar, then careful measurement of the attenuation
for several distinct propagation directions should provide sufficient information to
determine & and 0y, This type of inverse measurement is fraught with difficulties since
it requires looking for smalf differences in the slope of the low frequency attenuation.
In addition, the background attenuation in the absence of fibre debonds may not be
so well defined, due to other damping mechanisms.

The numerical results for the low frequency scattering cross-section and the simple
model of Appendix C indicate the possibility of a strong low frequency resonance

o GLASS/EPOXY

&= 130° 0, =0°

KiSURISY

mg_

f

PG, 12 The complex-vaiued dynamic stress intensity factor from (6.5}, normalized with respeet Lo the
static value, K/, The solid curve is the absolute value, the dashed curve the real part, and the dotted curve
the imaginary part,

=
H
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when the debond becomes large, The associated attenuation will be significantly
enhanced by this resonance. For example, as Fig. 3 shows for a glass/epoxy system,
the attenuation at very low frequencies can be increased by orders of magnitude. In
contrast, the quasistatic theory predicts that the debond reduces the stiffening cffect
of the fibre, and leads 1o a decrease in attenuation.

In conclusion, it is suggested that the presence of strong low frequency resonances
and the associated increase in ultrasonic attenuation could provide unambiguous
evidence of debonding. A similar resonance phenomenon is expected for longitudinal
and SV incident waves and will be explored in a subsequent publication.
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APPENDIX A: SCATTERED FIELDS FOR A PERFECTLY BONDED FISRE

The incident planc wave (2.5) can be rewritten

Wt =AY 6, ", (k) cos n(0—0,), (A1)
Hw= i)
where
I, =0
£, = {2, n =0 "

L)

and J, are Bessel functions. Fet
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W = ¥ A HN (k) cosn(0—0,), (A3a)
e N
M(zo) = z B..Jn(kz") COSH(GMGO)a { (A3b)

w=0 y

where H{" are Hankel functions of the first kind. Standard analysis (c.g. BELTZER, 1988) yields

Ay = AT [20,00) T (s) 0k @), (e, (Ada)
Ag, 21!
where
D, = H (k@) u(ka) = ZH (K a) ), (AS)
ik,
Z == AL
mk a6

The.cocfficients B and B of (2.16) and (2.29) are therefore

B® = B cosnly,, n=0,1,2,..., (A7z)
B = B sinnly, n=1,2,... (A7b)
and the far-field pattern is
1 ol
FO. 0, = 5 Y 174, cosn(0—0,). (A8)
=9

APPENDIX B: THE QUASISTATIC CROSS-SECTION
Itis clear from (4.11) that for fixed frequency the difference ¢ —¢‘” between the cross-section

with the debond and the cross-section ¢'® for the perfectly bonded fibre is proportional to,
and of the same sign as

& 3 3 AN
ﬁ; +cos“§ (cos" 5~ ]— ;:) cos? 0, — (l ~sin? 2)(2'“; +sin“§) sin® 0. (BI)

A simple examination of (B1) shows that three possibilities exist:

() o<o® forall 0y if i:‘ < cos's, (B2)

2
3

(i) o>a% forall, iffﬁl > E—sin“;, {B3)
2
er § 0
~ 4 o — — 4
(i) if cos 2<,u;,_ < |-—sin 50

then & > o' for 0 < 0y < dhy, and 0 < ¢ for ¢y < 0, < 7/2, where
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, L—cos* (/20 1 pifpa—cost (572)
tan” o = [ sin' (8/2)  |[ 1 —sin® (8/2) — g,z | (B4)

ApPpPENDIX C: THE Low FREQUENCY RESONANCE

Consider an isolated fibre of radius a, density p and shear modulus g The fibre is in
static equilibrium under the combination of a force ¥ along its axial direction and uniformly
distributed over the cross-section, and an equal but opposite force applied on the side of the
fibre over the “neck”™ —& < @ < g, where £ = n—§. The axial displacement satisfies

Lo Lo oo, 0 ci
o .’arH +r_2 baz“}- =U, r<a -—m<U<H, ( )
where
. C2
T 2naty’ (€2
The general solution to (C1) which is symmetric about § = 0 is
B o
W Ag— —j—rz-{— S A, cosnl. {C3)
H=
The shear force on the side of the fibre is
0, 0] > e,
Ow

F
— SO0, 10 <e,

where the exact form of the distributed shear force is specified by f(#) which is symmetric,
S(—=0) = (0, and [y = }, where

= f Sy cosnbdo. (C5)
Equations {C3)-(C5) imply
2 .
A= — . WBf, n=1,2,3,.... (C6)

Finally, we specify the rigid body displacement by imposing the condition w{a, 0) = 0, which
means that

l o
Ay = Baz(w +23 fi) (Ch
2 o
An elastic stiffness K may be defined by
F
K= = (C8)

where W = A,— Ba®/4 is the average displacement of the fibre in the direction of the force. The
low frequency resonance is hypothesized as a spring-mass type of resonance in which the
stiffness is approximately the same as X, and the mass is m = f%pra?, where § is a number
larger than unity which accounts for the inertia of the material outside the fibre. The resonance
frequency is wy = (K/m)'?3, apd the nondimensional resonance frequency analogous to k.a, is
Ar = wpajc, where ¢ = (p/p) "2 Thus
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l o — 142
= - = n
e = f (8 +,2;| n) . . (C9)
The coeflicients f,. n =1, 2, 3,..., depend upon the distribution of shear force across the
neck. If this is uniform, then (C5) with /= 1/(2¢) yields B
sin ne
Jo= — (Cl10)

A more realistic distribution, which has the correct stress singularity at the crack tips, is
J =n""("—0% "2 for which

S = Jolne). (C11)

e



