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Abstract. Several results are presented cencerning symmetry properties of the tensor of third
order elastic moduli. It is proven that a set of conditions upen the components of the modulus
tensor are both necessary and sufficient for a given direction to be normai to a plane of material
symmetry, This leads to a systematic procedure by which the underlying symmetry of a material
can be calculated from the $6 third order moduli, One impiication of the symmetry conditions is
that the nonlinearity parameter governing the evolution of acceleration waves and nonlinear wave
phenomena is identically zero for all transverse waves asseciated with a plane of material
symmetry.

1. Introduction

The types of symmetry possessed by clastic materials can be usefully de-
scribed in terms of the underlying planes of material symmetry. The idea of
symmetry planes, as defined by Spencer {1} for example, has been adopted
by Cowin and Mehrabadi [2] in their categorization of the elastic symmetries
known to exist (the completeness of these symmetry classes was recently
proved by Huo and Del Piero [3]). For instance, materials of orthotropic |
symmetry possess three orthogonal planes of symmetry. In general, the
material symmetry is completely specified by the underlying symmetry
planes, and vice versa.

The basic result of Cowin and Mehrabadi [2] is a set of conditions on the
components of the elastic modulus tensor that are necessary and sufficient
that a given direction be normal to a plane of symmetry. An analogous set
of conditions for the components of the third order elastic modulus tensor
are derived and discussed in Section 2. A simpler set of conditions are also
given which are necessary but not sufficient, and are of practical use in
determining the underlying material symmetry of a given set of 56 third
order elastic constants.

The main result of the paper is derived in Section 4 and concerns the
acoustic nonlinearity parameter f defined in Section 3. This is the parameter
which governs the evolution of acceleration waves in elastic solids, and its
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value determines whether or not a given initial disturbance develops into a
shock. It is well known [4, 5, 6] that a set of infinitely many transverse wave
modes is associated with every plane of material symmetry. By using one of
the set of conditions derived in Section 2, it is shown that § is identically zero
for this class of transverse waves, generalizing a previously known result of
Green [7] that f =0 in isotropic solids.

There is some ambiguity in the terminology used to discuss elastic co-
efficients. One approach is to view the moduli as the coeflicients in an
expansion of stress in terms of strain [8]. The first coefficient, which provides
a linear stress-strain relation, is known as the tensor of first order moduli, and
the coefficient of the term quadratic in strain is the tensor of second order
moduli, etc. Alternatively, one can expand the energy as a power series in
strain for materials possessing a strain energy function. Asswmning the strain
energy is zero for zero strain, ie. the reference state is taken as the unde-
formed configuration, then the term linear in strain in the expansion is
“-identically zero. The first non-zero contribution is quadratic in strain and the
corresponding coeflicient is known as the tensor of second order moduli, even
though these moduli are closely related to the first order moduli of the
previous definition. In fact they are identical if the constitutive relation
expresses the second Piola-Kirchhoff stress tensor as a function of the
Green-St. Venant strain tensor [8] and the material is hyperelastic. The term
in the energy expansion that is cubic in the strain defines the so-called third
order moduli, which are closely related to the second order moduli of the
stress-strain definition.

The definitions of second and third order moduli used in this paper are
those which follow from the expansion of the strain energy, and they will be
discussed explicitly in Section 3. The precise origin of the moduli is immaterial
to the discussions of Section 2, where the only relevant attribute used is the
symmetry of the components.

A remark on notation: for the remainder of the paper all vectors are unit
vectors in three dimensional space; lower case subscripts assume the values 1,
2 and 3; upper case subscripts the values 1,2,...,6; and the summation
convention on repeated subscripts is taken for granted.

2. Necessary and sufficient conditions for the existence of 2 planc of symmetry

Given an elastic stiffness or compliance tensor, it is not immediately clear
what symmetries, if any, the corresponding material possesses. This question
of determining the symmetry was addressed and answered by Cowin and
Mehrabadi [2} for the moduli of linear elasticity, i.e. the second order moduli,
The components of the modulus tensor are Cay relative to a rectangular basis,

o
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and satisfy the symmetries
C."jkl = er‘kn’a Cijkl = Ckh‘j- (2.1)
These are a consequence of the symmetry of the strain tensor and the
existence of a strain energy function, respectively, independent of whatever
symmetry the material may have. The fundamental result of Cowin and

Mehrabadi [2], in a simplified form due to Cowin [9] and Norris [6], is:

THEOREM |. The conditions

ank.f(quk q) = (Cabcu'qa g Gu )‘?i! (22)
CinariTe@t = (CobecabaQars7)is (2.3}

Sfor all directions v perpendicular to q, are necessary and sufficient that q be
normal to a plane of material symmertry,

The components of the tensor of third order elastic moduli referred to a
rectangular basis are Ciuy,, and are defined in Section 3 below. These also
possess certain fundamental symmetries [10] analogous to (2.1)

"
Cl‘jk!nm = Ykt C.Uk.fmn = ckﬁjnm = Cmnktif- (2'4)

It is clear that there are at most 56 independent third order moduli for a given
material, In the presence of material symmetry, fewer moduli are involved, as

few as 3 for the case of an isotropic material. Tables of the possible forms of -~

the third order moduli tensors for all material symmetries were first given by
Fumi [11, 12] and later by Brugger {13], and can now be found in several
monographs [14], such as Thurston [10].

The following result is analogous to Theorem 1.

THEOREM 2. The conditions

Cujk!mn?j‘]k‘l.rqmqn = (Cabcdefqaqbqrq‘lqeqf )i (2.5)

Coitetmn Qi QG i¥m = (Cabcdefga%chaf'd?‘f Y, (2.6)

Citmm 5D Gm T = (Ca!anfqa Qaqeqrr st )i (2.7)
!

Coittom s S5 Qy = (Coseder To¥eSaSeQalr Wi {2.8)
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Jor all v and s perpendicular to q are both necessary -and sufficient that qis
perpendicular to a plane of material symmertry.
B
Proof. It will first be shown that these conditions are necessary. The
reflection operator associated with a given direction q is defined by the tensor
R with components {1]

R; =34, — 2q.q, (2.9
Thus,

Ryq=—q, (2.10)

Ryri=r, (2.11)

for any r perpendicular to q. The direction q is defined to be the normal to a
plane of material symmetry if the moduli satisfy [1, 2]

Cl'_,‘k:'mn = Ria ij ch Rl’d Rmc Rnf Cr.'bc'tlef' (2' 1 2)

Condition (2.5) follows by contracting (2.12) with (¢,9.¢,4,,4,), using (2.9)
and (2.10) to simplify the resulting expression. Similarly, (2.6), (2.7) and (2.8)
follow by contracting (2.12) with (g;q,4,7/7.,), (7 diGmn) and (r;ry5,5,,8,),
respectively, and then using (2.9)—(2.11). This proves that (2.5)—(2.8) arc a
set of necessary conditions.

In order to prove the sufficiency of conditions (2.5)~(2.8), it is helpful to
take q in the x, direction, with no loss in generality. The standard concise
notation C,, will be used to denote the components Ciittmns Where I =1, 2, 3,
4, 5, and 6 correspond to ij =11, 22, 33, 23, 13 and 12. Condition (2.5) then
becomes

C533333 = C3336i3’ (2-13)
implying,
Crag = Cy35=0. (2.14)

Similarly, (2.6} implies

Ciszma?ilm = (Cazzmat it )oin (2.15)
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for any r in the x;—x; plane. Taking r=(1,0,0) and letting i =1 and 2,
gives

Caag = Chas = Cyss = Cq55 = 0. (2.16)
Condition {2.7) becomes
Caﬂdn’}"k = (C3jk333rj"k)5f3- (2.17)

Selecting r = (1,0, 0), (0, 1,0) and (1/./2, 1//2,0) for both i = 1 and i =2,
yields

Craa= Ci3s = Cazs = Cpa5 = Cuy = Cuse = 0. (2.18)
Finally, condition (2.8) becomes
Cijkl‘nﬂ "tirks.’sm = (C3jkfm3 rjrkslsm)éi.? ] (2 19)
for any pair r and s in the x,~x, plane. Taking combinations of r= (1, 0, 0),
(0, 1,0) and (1/3/2, 1/4/2, 0) with s =(1, 0, 0), (0, 1, 0) and (1//2, 1/,/2, 0),
for i =1 and 2, yields

Cha=Cys5=Claq= Cias = CMG = Cy56 =0,

(2.20
Cooa = Cyps = Coap = Cosp = Cige = Cses = 0.

It may be verified by other means [10] that the 24 moduli indicated in (2.14),- -~

(2.16), (2.18) and (2.20), are the same 24 moduli that vanish when the
material has monoclinic symmetry with the x, direction normal to the
symmetry plane. That is, there are at most 32 nonzero third order moduli for
a monoclinic solid. This completes the proof of Theorem 2.

There are, of course, simpler sets of necessary conditions than those of
Theorem 2. The simpler conditions may be useful, for example, if one is given
the components Ciy,, and wishes to determine the underlying material
symmetry, With regard to the analogous problem for the second order elastic
constants, Cowin and Mehrabadi [2] showed that the less restrictive condi-
tions

Cikqu_f = (Cjkqu,iq:‘ Yai ‘ (2.21)
.
Chink q4;= (C:f!kk q;4; )fo (2.22)
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are necessary in order that q be normal to a plane of symmetry. These
conditions may be derived by the method discussed below, or by using (2.2)
and (2.3). The procedure for finding the symmetry-{lsing {2.21) and (2.22) is
to first calculate the proper vectors of the tensors Cyu, and Cy,,. If these
possess no common proper vectors, then the material has no underlying
symmetry and is triclinic. On the other hand, any common proper vectors
must be tested further to see if they also satisfy (2.2) and (2.3), and if they do
they are normals to symmetry planes. This scheme, combined with Cowin and
Mehrabadi’s [2] classification of material symmetry in terms of symmetry
planes, provides an algorithm for determining the symmetry from the 21
components Cpy,.

It is not even necessary to compute the proper vectors of these tensors to
determine whether or not the material possesses any symmetry. The following
addendum to Theorem 1 relies on the fact [15] that two semisimple tensors
commute if and only if they have a complete set of proper vectors in common.

COROLLARY. Define A as the skew-symmetric commutator of the tensors Cyy,
and Cyy,;, ie.,
Al'j == Cikmm Ckrmj . Cimrk ijmm'
(i) A necessary condition for the material to have orthorhombic or higher
symmetry is that A = Q.
(i} If A is nonzero and its null vector, with components ey Ay, is a proper
vector of both Cyy and Cyy,, then the material may be monoclinic.
Otherwise the material has no underiying symmetry.

The first statement is a consequence of the classification scheme of Cowin and
Mehrabadi [2], combined with the completeness proof of Huo and Del Piero
[3], which states that all symmetrics higher than monoclinic require at least
three symmetry planes.

The simpler set of necessary conditions (2,21} and (2.22) can be derived by
noting that any tensor of lower order formed by contracting indices must
satisfy the same symmetries as the original tensor, The same principle applies
equally to the tensor of third order elastic moduli. For example, the second
order tensor of components Cy,, must satisfy

C.e'jkka'." = ‘Rijb Cabkklh (2'23)
where R is defined in (2.9), if q is to be normal {0 a plane of symmetry.

Stmilar conditions can be stated for the second order tensors of components
Ciietmrs Cagy and Cypyp. Use of (2.9)-(2.11) then leads to the following as
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simultaneous necessary conditions for q to be normal to a symmetry plane,

Conrndy = (Corrtr@im M1 (2.24)
Ciwrerq; = (CojrrntdiGm i (2.25)
Cigeny = Cosgunrdi G s (2.26)
Cijtrd; = (Coojirs 904, (2.27

These conditions can also be shown to follow from (2.5)-(2.8) by using
arguments similar to those employed by Norris [6] in deriving (2.21) and
(2.22) as consequences of (2.2) and (2.3).

Suppose that the 56 third order moduli are known relative to some
rectangular coordinate system. Then the procedure to determine what, if any,
symmetry the material possesses is to first find the common proper vectors of
the four tensors with components Ciup, Cywnss Cugenr @and Chgye I no
common proper vectors exist, the material is triclinic. If there is one common
proper vector, the material may be monoclinic, but not of higher symmetry.
In order to ascertain whether the material is indeed monoclinic it must be
checked that the single proper vector fully satisfies all the conditions (2.5)-
(2.8). Similarly, if more than one common proper vector is found, then each
must be checked in the same manner. Note that if there are two proper
vectors in common, the highest symmetry the material can possess is again
monoclinic since orthorhombic or higher symmmetry requires the existence of
at least three planes of symmetry. Conditions similar to those stated in the
Corollary to Theorem 1 also exist for determining whether any symmetry is
present. For example, a necessary condition that the material has at least
orthorhombic symmetry is that each of the six commutators formed from
Cierrs Cipgrs Cianr and Cyy must be identically zero.

3. The nonlinearity parameter for elastic waves

The second and third order elastic moduli may be defined through the Taylor
series expansion of the strain energy W with respect to an unstressed reference
configuration,

W = %CijklEijEkI + écifklnmEijEkn'Emn + e (3'1)

Here, E is the Green-St. Venant strain tensor,
.

E;= il(Fkiij - &) (3.2)
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and ¥ the deformation gradient tensor, .

ox; K
Fo=-"h 33
L aX’ ( )
which relates the current position of a material particle, x, to the reference
position of the same particle, X. The non-symmetric Piola-Kirchhoff stress
tensor, T, can be derived from the stored energy as

oW

= (34)

aF,

The Taylor series expansion for the stress with respect to the unstressed
reference configuration is

Tij - erkl(Fk! - 6!4:!) + %Blj}clmrr(Fkl - 5“)(17"”1 - 5»1”) ey (3'5)
where
Bijk!rmr = Sijkimn + Cijlnékm + Cjukla:'rn + Cﬂmnaik' (3'6)

The second and third order moduli Cyy, and Ciup, satisfy the symmetries
(2.1) and (2.4), respectively; however, B, do not satisfy all the symmetries
in (2.4}, specifically

‘Bijklnm 7 Bjik."mn‘ (3.7)

We consider acceleration waves in hyperelastic materials with no prestrain,
with quiescent conditions ahead of the wave, and such that the wavefront
is a plane with constant normal n. These are fairly strong restrictions upon
the type of acceleration wave allowed, and are placed in perspective within
the general theory of acceleration waves by Chadwick and Ogden [8].
This paper also provides an exbaustive discussion on the connection
between the different definitions of elastic moduli. Let the speed of the wave
be v, then the associated displacement polarization direction m must satisfy
[8, 16]

(Cityity — pv2o,)my, =0, (3.8)

where p is the material density. The growth in amplitude of the acceleration
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wave is dependent solely on the nonlinearity parameter f§, defined as {8, 16}

ﬁ == — WM, R,

aFkI aE;m

T Bt P 7 P UL, (3.9
The vanishing of § is physically significant as it means the acceleration wave
will not develop shaocks, irrespective of the initial sign of the acceleration wave
amplitude {16].

It is known, for instance, that f§ vanishes identically for transverse waves in
isotropic materials, a result established by Green [7]. This may be secen by
noting that Cy, and Ciy,,, for an isotropic solid must be of the form [10]

Cir = 40,0 + (565 + 8,0,), (3.10)
Coigtmn = (Cr12 = 2C155)048 1,0 + Cr55104 (S Oy + B4 py)

F 0,81 + 05} + 8, (085 + 60,1

+ CasoCikmCiin + CiemCita + Citr €pten + e,-k,,-eﬂ,,,). {(3.11)

Here e, are the components of the third order alternating tensor,
€133 = —ey; =1, ete.; X and p are the Lamé moduli of linear elasticity; and
Ci12, Cis5 and C,s4 are the third order elastic moduli. Green’s [7] result that
B =0 for iransverse waves in isotropic solids follows from (3.6) and (3.9} -
(3.11) with m *n=0.

4, The nonlinearity parameter for transverse waves

The nonlinearity parameter may be expressed, via (3.6) and (3.9), with m and
n defined as in Section 3,

/3 = Cl’ﬁdnm]ni’nk’nmnjn!nr! + 3C|jklml'njnknl' (4'1)

This form for # shows the dependence upon both the second and third order
moduli [8, 17]. If the wave motion is purely transverse, then m is perpendicu-
lar to n, and it follows from (3.8) and (4.1} that the dependence upon the
second order elastic moduli disappears,
E
ﬁ = Ci_;klnm’nimkmm jn!”n' (42)
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It is clear from (2.2) and (3.8) that the direction normal to a plane of
malerial symmetry supports a longitudinal wave, i.e. one for which m and n
arc paralicl, The same direction therefore supporfs two transverse waves
polarized in the plane of symmetry. In addition, (2.3) and ¢3.8) imply that a
transverse wave polarized in the direction normal to a plane of symmetry
can propagate in any dircction in the symmetry plane. Let us denote the
combined class of transverse waves, with co 4+ 2 members, as the transverse
waves associated with the plane of material symmetry. The existence of this
class of transverse waves was noted by Fedorov [4].

The nonlincarity parameter for a wave in this class is given by (4.2), since
it 1 a transverse wave. Furthermore, Cijy,,, g im,, nnm, vanishes by virtue
of {2.6), implying the result

THEOREM 3. The nonlinearity parameter, [, vanishes for every transverse
wave associated with a plane of material symmetry.

Every plane is one of material symmetry in an isotropic solid, and
so Green’s [7] result that f =0 for transverse waves in every isotropic solid
is a simple consequence of Theorem 3. In a transversely isotropic solid,
every plane containing the axis of symmetry is a plane of symmetry.
Therefore =10 for all TH waves and for TV waves propagating both
parallel and perpendicular to the symmetry axis in transversely isotropic
malcrials. The application of the results of Theorem 3 to solids of material
symmeiries higher than triclinic, which has no symmetry, is apparent,
In general, as long as the material is of monoclinic symmetry or higher,
there will be infinitely many transverse waves for which § = 0. This does not
mean that f =0 for all transversc waves in elastic solids, since there are
many transverse waves which are not associated with planes of material
symmetry. Thus, there is at least one direction on every great circle of the
unit sphere which supports a purely transverse wave. The proof of this
surprising result is contained in a paper by Chadwick and Currie [18] on
fransverse waves in malerials far more general than those considered here.
We note in particular that the proof is independent of any considerations of
material symmetry, and so there is no reason to expect that =0 for these
transverse waves.

Acknowledgement

[ am grateful to P. Chadwick for his helpful comments. This work
was supported by the National Science Foundation, Grant No. MSM
86-16256.

g



Third order elastic modul 257

References

It
12,

13.
14.
15.
16.

17,

. AJ.M. Spencer, Continuum Mechanics. London: Longmans (1980).
. 8.C. Cowin and M.M. Mehrabadi, On the identification of material symmetry for anisotropic

elastic materials. Q. J. Mech. Appl. Math. 40 (1987) 451476,

. Y.Z. Huo and G. Del Piero, On the Completeness of the Crystallographic Symmetries in the

Description of the Symmetries of the Elastic Tensor, preprint.

. F.1. Fedorov, Theory of Elastic Waves in Crystals. New York: Plenum (1968).
. 8.C. Cowin, Identification of elastic materiai symmetry by acoustic measurement. In: M.F.

McCarthy and M.A. Hayes (eds), Elastic Wave Propagation. Amsterdam: North Holland
{1989).

. AN. Norris, On the acoustic determination of the elastic moduli of anisotropic solids and

acoustic conditions for the cxistence of planes of symmetry. Q. J. Mech. Appl. Math. 42
{1989) 413-426.

. W.A. Green, The growth of plane discontinuities propagating into a homogencously de-

formed elastic material. Arch. Rar. Mech. Anal. 19 (1965) 20-23,

. P. Chadwick and R.W. Ogden, On the definition of elastic moduli. Arch. Rat. Mech. Anal. 44

(1971) 41-53.

. 8.C. Cowin, Properties of the anisotropic clasticity tensor. Q. J. Mech. Appl. Math. 42 {1989)

250-266.

. R.N. Thurston, Waves in solids. In: C. Truesdell (ed.), Mechanics of Solids, Vol. 1V.

Berlin-Heideiberg-New York: Springer-Verlag {1984).

F.G. Fumi, Third-order clastic coefficients of crystals. Phys. Rev. 83 (1951) 12741275,
F.G. Fumi, Third-order elastic coefficients in trigonal and hexagonal crystals. Phys. Rev. 86
(1952} 561.

K. Brugger, Pure modes for clastic waves in crystals. J. Appl. Phys. 36 (1965) 759-768.
F.G. Fumi, Tables for third-order elastic tensor in erystals. deta Cryst. A43 {1987) 587-588.
M.C. Pease, Methods of Matrix Algebra. New York: Academic (1965).

M.F. McCarthy, Singular surfaces and waves. In: A.C. Eringen (ed.), Continuum Physics,
Vol 2. New York: Academic (1973).

M.A. Breazeale and J. Ford, Ultrasonic studies of the nonlinear behavior of solids. J. Appl.
Phys. 36 (1965) 3486-3490.

. P. Chadwick and P.K. Currie, On the propagation of generalized transverse waves in

heat-conducting clastic materials. J. Elasticity 4 (1974) 301-315.

|

AT




