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Dynamic Stress on a Pértially
Bonded Fiber

The dynarmic stress on @ partially bornded fiber is analyzed for shear wave incidence,
with particular attention given fo the stress intensity factor al the neck joining the
Jiber to the matrix. The problem is formulated in terms of the unknown stress across
the neck and the remainder of the fiber-matrix interface is modeled as a curved
interfacial crack. Explicit asymptotic expressions are derived for the near and far-
Sfields that are valid in the frequency range in which the recently discussed resonance
phenomenon occurs ( Yang and Norris, 1991}, This resonance is a rattling effect
that is most prominent when the neck becomes very thin, and can occur at arbitrarily
small values of the dimensionless frequency ka, where a Is the radius of the fiber.
The asymptotic results indicate that the dynamic stress intensity factor becomes
unbounded as the neck vanishes, in contrast to the prediction of a purely gquasi-

static analysis that the stress intensity factor vanishes in the same limif.

1 Introduction

In a recent analysis of the scattering of out-of-plane shear
waves from a partially debonded fiber in an otherwise ho-
mogenecus matrix, it was demonstrated that the fiber can
exhibit a strong resonance at very low frequencies (Yang and
Norris, 1991). The reason for this is appareat from Fig, 1: As
the size of the debond becomes large, the neck joining the
fiber to the matrix becomes correspondingly smaller, allowing
the fiber to undergo large relative motion. At the same time
the mass of the fiber is unchanged, and thus the fiber acts as
a spring-mass system of constant mass and relatively small
stiffness. The stiffness goes to zero as the neck vanishes, and
so one expects that the frequency of resonance also goes to
zero in the same limit. The numerical results of Yang and
Norris (1991) clearly show that the resonance can be excited
by incident shear waves, and that it can occur at arbitrarily
Jlow frequency if the neck is allowed to be sufficiently small.

This type of resonance is clearly related to the Helmholtz
resonance of gravity water waves in a harbor with a narrow
opening {(Miles, 1971; Burrows, 1985), and more generally,
with the Helmholtz resonance phenomenon of an acoustical
cavity. In the latter case, the compressibility of the acoustic
fluid occupying the cavity is volumetric, but the mass of en-
trained fluid in the cavity opening is independent of the cavity
volume, depending instead on the local geometry at the mouth.
Thus, the roles of stiffness and inertia are quite different in
the fiber and Helmholtz resonances.
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One consequence of the fiber resonance is that the scattering
cross-section of a low frequency shear wave is greatly en-
hanced, thus providing a possible means of identifying loose
fibers using ultrasonic waves. The numerical results of Yang
and Norris (1991) also show that the stress intensity factor at
the neck is magnified at resonance, which has important im-
plications for the dynamic pullout of fibers and shock-induced
debonding and may also be of significance in the vibration of
foundation pilings subject to seismic excitation. These in-
creases in response af resonance are analogous to the para-
doxical enhancement of the surge in a harbor as the entrance

o

Flg. 1 The partially bonded fiber and the Incldent wave direction



is narrowed, an effect known as the ‘““harbor paradox™ (Miles,

1971; Burrows, 1985). In the present paper we focus on the
dynamic stress intensity factor using a formulation which leads
directly to simple asymptotic expressions for the resonance
frequency and the stress intensity factor for small neck size.
In the previous analysis (Yang and Norris, 1991) a system of
equations was derived for the coefficients in a Chebyshev ex-
pansion of the crack opening displacement of the debond. This
is the standard approach in attacking scattering problems in-
volving cracks in infinite media (Krenk and Schmidt, 1982;
Bostrom, 1987), and leads to simplifications in the present
configuration when the debond is small, but is not suitable for
treating the limit in which the neck as very narrow. In this
paper we consider the stress on the neck is the unknown to be
determined, rather than the COD. This method is similar in
spirit to that of Burrows (1985) who considered waves incident
on a circular harbor, and some of the asymptotic results re-
ported here are similar to his discussions of the ‘‘harbor par-
adox.” One advantage of the present method of solution is
that the unperturbed configuration is the fully debonded state
(i.e., a void) whereas in the COD method the base state is the
perfectly bonded fiber. The dynamic response is simpler for
the void and although this simplification is not significant for
the SH problem treated here, it is very useful in considering
the in-plane problem, the results of which will be published
separately.

The formulation and analysis are developed in Sections 2,
3, and 4, and the main discussion regarding the stress intensity
factor is in Section 5. Numerical calculations are presented in
Section 6.

2 Formulation

The fiber occupies the region r < & (see Fig. 1) with density
py and shear modulus p;, and the matrix r > a has corre-
sponding parameters p; and xy. The motion is out of the plane
with time harmonic dependence exp(— iwt?) which is omitted
in all equations. The debond is of angular width 28, or equiv-
alently, the extent of the neck is 2¢, where ¢ = 7 —6. The
total out-of-plane displacement is

ot {u"” +ul®+4, r>a,

us?, r<a, 0

where 4™ is the incident wave and u{” is the scattered field
from the void r < a, which satisfies the boundary condition

(au"' au”
+

o o ):0, r=g, -w<f<m, (2)

with the appropriate radiation condition at infinity. The total
stress must be continuous over the entire interface, implying

auf’ o) {0, rea, —-8<f0<8,

r=a,

[ B (3)
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where 7(8) is the unknown additional stress on the neck.

The displacement continuity condition on the neck § < (81
< Tis
d< 1l <. 4

The incident field is assumed to be a plane wave of amplitude
A

W l®+uV =", r=a,

W= AN OO = 4 N i, (k) cos n(B—6;), (5)
=0

where ey = 1, ¢, = 2, n > 0, and k; = w/c;, ¢; = {ui/pd"?,

i=1 2. The scattered field from the void is then

ATk
= -4 Z Ef;w,((k “’)) HD(kyr) cos n(0-0o).  (6)

Finally, the additional fields «{” and 14 must satisfy the Helm-
holtz equations

Va4 i2u=0, i=1or2, ')
in the respective regions, where ¥ 2 is the 2 Laplacian.

3 The Symmetric Solution

The total field may be separated into parts that are either
symmetric or antisymmetric about § = 0. We concern ourselves
here only with the symmetric parf since the treatment of the
antisymmetric part is very similar (Yang and Norris, 1991).
The symmetric part of the additional fields may be expressed,
using equation (3), as

= Z ESDHY (kyr) cos nf,

n=0

B i piki B HY (kia)

Jolkor) cos nd. (8
pkody () L) @

n=0
Use of (3), (8), and the orthogonality of the cosine functions
gives

EP = S 7(8) cos nf dé. (9)
[

€n
‘Mlklﬂg)' (k)

Substitution of (5), (6), (8), and {9) into (4), and use of the
Wronskian relations (Abramowitz and Stegun, 1965), vields
an integral equation for the stress

,urzkz E,,lw COS nﬁo
2UA et cos nf
HZ HY (kya)

=Ze,,A,, cos m?g 7(0°) cos nt'dé’, (10}
§

n=0
where TUea)  pky HY (kia)
Ay=— - 1700 . (11)
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The unknown shear stress 7(f) can be expressed using the
first kind of Chebyshev polynomials

Ak Z B680),
(=)
i—
€
where {(Abramowitz and Stegun, 1965)
8O =(- 1)%(”6 9)
={~1)"cos (er arccos ~7r—e_—3) (13)

7{f) = (12)

Note that 7(f) has the correct inverse square root singularity
at either end of the neck. The Chebyshev functions have the
property

I £6)
()
€

and it is therefore possible to reduce (10) to a system of equa-
tions for the coefficients g

cos p db=(— 1}" JZn(pE): (14)

Z OBST=NE, m=0,1,2,..., (15)
n=90
where
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In practice, the system of equations (15) is solved by truncation.
Also, as we will see below, the term Q is singular at low
frequencies, In order to avoid an ill-conditioned system in the
static limit, we eliminate 8§ using the equation for m = 0,
and then solve the resulting system.

4 The Scattered Radiation Pattern

The scattered symmetric. displacement due to the debond
follows from (8), (9), (32), and (i4), and the far-field ap-
proximation for (! becomes

N 1/2 il r—I
) ~ (%) Fﬁ"(ﬁ,ﬂo)e‘(' “) ., koo

1

{an

where the radiation pattern generated by the debond is

5}
F6,00) = (HS”'(S(!{ p
+2 Z le?(skp ) E BNy, (Pf)) (18)

At low frequencies such that kg << 1, ke << 1, but for
fixed ¢ = O(l), it may be shown that ,60” = O{ka), and
therefore 8§ — 0 as ki@ — O in agreement with the static
condition that the net force acting on the fiber is zero. The
net moment on the fiber is automatically zero for the symmetric
solution and may be shown to be O{ k@) for the antisymmetric
solution. The symmetric far-field becomes, in this limit,

i
0,00 =" (kla)z(z—‘}
+ecosd Y, E,(.”Jzn(e)) +o(ka)?. (19

where the B¢ are real valued and satisfy

— pAT
> By - == o5 Golau(e)s m=1,2,. .., (20)
oo e{py + pa)
and
T = E Do P} Jan (DE). @1)
p= l
It should be noted that the monopole term in (19), i.e., the

term involving the densities, comes from the low frequency
limit of 3§, which is discussed in the next section.

A system of equations very similar to (20) was encountered
in the COD formulation of Yang and Norris (1991) for the
same problem, but in that case the matrix @ and the right-
hand side of the system both depended upon é = = — ¢ rather
than e. Furthermore, the system corresponding to (20) was
previously obtained for the antisymmetric part of the solution,
However, based on the analogy with the equations in Yang
and Norris (1991) it can be shown that the sum in equation
(19) may be simplified, and a snm;lar result is found for the
antisymmetric far-field pattern F{ (8, §,). Combining these
results we find that the total radiation pattern in the low fre-
quency limit is in complete agreement with the quasi-static far-
field obtained by Coussy (1982) using the purely static solution
discussed below,

5 Stress Intensity Factors and Resonance
The dynamic stress intensity factor at the junction of the
neck and debond is defined as
H

KI;= lim [2a(8-8))2r(8), (22)
[ B
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and so it follows from (12) and {13) that

K1y
= ln(s}
e «fZ( )85

where 79 = ik A is the stress applied at infinity in the static
limit, and in general, 8§ are frequency dependent and deter-
mined from (135). The shear stress 74{6) along the bonded in-
terface for the corresponding static problem may be expressed
in closed form using the solutlon obtained by Tamate and
Yamada (1969).

L i
sin (~2~ - 60) —¢os d sin (5-— Bo)
)

750} = sgn(d),

S in 058 G 040
2 2

(23)

<l <x, (24)

The static SIF follows from equation (22) as KI, = KI¥ +
K, with symmetric and antisymmetric parts

KR 2uy
— afgin € sin = cosB s
'ro\/— o+ po 0
KI}“’ 2 o cos & s
—— sin € ¢os — sinflp.  (25)
@ it 27
We note in particular that for fixed 6, K7 = 0% and
K19 = O(e"yase — 0.

5.1 The Short Neck Approximation. As the fiber be-
comes almost separated from the matrix (¢ << 1), equation
(15) can be simplified quite a bit. Considering m or n > 0,

[&)-

= D% Apham(pe) T (pe)

=1
+ ) Apan(pe) aulpe),  (26)
i
(7]
where [ ! is the integer part of 1 The first sumis G (™),
Ve Ve

while the infinite sum simplifies by using asymptotic expansion
for large order Bessel and Hankel functions, to give

S AT (PE) Jaa (D)

1
7]
=k2a<1 +ﬂ) 5 LM 4L 0y,
Ay 0 4

and the integral may be found in Abramowitz and Stegun
{1965). In summary, we have the asymptotic results for e <<
1 that

sl kza(l +,u )4’:;4-0(5),

N =0 Y, m>0, (27

and from (15) and 27),
ﬁé”“anHO(e), W=0("h), m>0. (28
3



Equation (28) indicates that the response of the fiber when
the neck is small is governed principally by the first term in
the expansion (12 for the stress #(8). Since the first Chebyshev
function ¢4 is unity, it follows that the approximate stress in
this regime is )

7080

() = ——
V(7
1—[~—
€

The relatively simple form of 3§ in (28) means that the res-
onance reported by Yang and Norris (1991) and illustrated in
the numerical examples below is governed by this expression
only, rather than the full system of equations (15). It is also
clear, if not @ priori then certainly « posteriori, that the res-
onance must oceur at asymptotically small values of k2. There-
fore, in order to further understand the resonance, we further
approximate 8§ as a doubly asymptotic expansion in both ¢
and kja. Expansion of the numerator and denominator in (28)
for low frequencies yields

85 ~

29)

ikaa uaky

30
€k (30)

f(kiav € 90),
where

J(kia,e,80)
1 2ika cos 6,

g2 2 1 wmoxy YV ka o xl’
1 -== (ke L+= Sy +— =L op =4 =

#1(2)[( m) 5, 2721085 4J
(31)
(32)

o 73
S(e) = Z JPL‘.U.E,),’
pe1 P

and vy is Euler's constant. We note that fis asymptotic to unity
fore = Q(1), in which case (30) reproduces the low-frequency
behavior of 8§ discussed in Section 4. However, in the doubly
asymptotic regime of ¢ << 1, ko << I, J depends upon ¢
through S(¢) which can be simplified by first using the identity
Jo(x) = =~ [F cos (x sin £)dr. The sum over p then follows
from equation (27.8.6) of Abramowitz and Stegun (1965) to
give

_1 x x )
S(e)xz—wz L L {log{z sin% Isin ¢ —sin si]
+ !og[z sin § (sin £+ sin s):”dsd:.

Expanding the integrand in ¢ and using equation (4,226.1) of
Gradshteyn and Ryzhik (1980) yields

Z
S(e)=Iog<—§) +%+0(e“).

The term S(e) is asymptotically large and therefore S may vary
considerably from unity even as rhe Jrequency goes to zero,
in stark contrast to the quasi-static behavior based on the static
solution.

This low-frequency effect is manifested as the resonance
discussed in the introduction. To a first approximation, the
resonance occurs when the real part of the denominator in (an
vanishes, i.e., at frequency k@ which satisfies

pa 2 I 1 kia
= —-= s 1 —} . 34
(l +#1) log e~ )2 8+2#| ['y+ og( > (34)

This reduces to equation (20) of Burrows (1985) when the
material parameters are equal on either side of the neck (p, =
#2, p1 = p2). The leading-order approximation for ¢ << [ is

1
kza=B“‘[Iog(§>] 2. A= /Hff,
1

(33)

(3%

and so the resonant frequency thus goes to zero very slowly
as ¢ — 0. Yang and Norris (1991) proposed a heuristic spring-
mass model of the low-frequency resonance which predicted
the resonant frequency in the same form as (35), but the sim-
plicity of the model did not permit the explicit evaluation of
B in (35), which was originally cast as an unknown constant,
However, it is clear that the model does give the correct leading-
order behavior, Furthermore, the precise form of 8 means that
the resonant frequency can be simply modeled as the frequency
of a spring-mass system with mass i = 20,ma”, which is twice
the mass of a unit length of the fiber. This is not surprising
when one considers that as the fiber oscillates, an equivalent
inertial mass of matrix oscillates out of phase. The effective
stiffiess K of the oscillator follows from Yang and Norris
(1991} as the ratio F/w, where Fis a uniformly applied axial
force over an isolated fiber of shear modulus equal to the
harmonic mean of the matrix and fiber moduli, i.e., "' =

| N _ . N
E(m s u: ). An equal but opposite force is distributed across

the portion of the boundary corresponding to the neck such
that the applied shear has the correct inverse square root sin-
gularity, and w is the resultant average static displacement of
the fiber in the direction of the axial force. The resonant
frequency predicted by this model is the frequency of equation
(35). It is interesting to note that simple, equivalent-circuit
models for the harbor resonance phenomenon have been pro-
posed and discussed at length by Miles (1971). The present
phenomenon is, however, probably better understood in terms
of mechanical lumped-parameter models.

6 Numerical Resuits and Discussion

The stress and stress intensity factor have been computed
for the matrix/fiber combination of epoxy and glass: p, =
1.28 GPa, p; = 1.25 gm/ce, and p, = 29.9 GPa, p, = 2.55
gm/cc. The caleulations were performed by truncating the
infinite system of equations (15), and were checked by ()
requiring that the optical theorem was satisfied to z given
degree of tolerance, and (ii) by comparing the results with
those obtained using the COD method of Yang and Norris
(1991). The latter method was found to be numerically fast
for small crack sizes, but required larger and larger truncation
limits as & approached 180 deg. For reasons mentioned pre-
viously, the system (15) is in a sense the dual of that obtained
by Yang and Norris (1991), and not surprisingly, we found
the system required only a small truncation limit for small
necks but became unwieldy for small cracks.,

The ratio of the dynamic stress intensity factor to the static
SIF is plotted in Figs. 2 and 3 for different neck widths, The
corresponding quasi-static theory would predict a constant SIF
at such low frequencies as those considered in the figures, and
normally one would not expect any appreciable change until
the dimensionless frequency k¢ is of order unity. However,
the dynamic SIFs in Figs. 2 and 3 clearly exhibit a resonance
behavior at a frequency that decreases with ¢, Note in particular
the enormous magnification of the dynamic SIF at resonance,
as compared with the static prediction.

The predictions based upon the doubly asymptotic theory
of Section 5 are compared with the exact computations in Figs.
4 and §. It should be noted that the asymptotic theory contains
no free parameters. The agreement between the full, numer-
ically intensive computations, and the simple asymptotic theory
is excellent, and appears to be reasonable even when both e
and k;a are of order unity. In fact, the leading-order approx-
imation of equation (35) turns out to be & very good indicator
of the resonance frequency. We note that the magnitude of
the dynamic SIF becomes unbounded as the neck width van-
ishes, in stark contrast to the static prediction that the static
SIF goes to zero as ¢’ if the applied stress has an antisymmetric
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Fig.2 The complex-valued ratio of the dynamic stress intensity factor
to the static SIF versus nondimenslonal frequency k,a for glassiepoxy, -
& = 170 deg (¢ = 10 deg) and 8, = 0. The solid curves are the resulls
of the “exect” numerical calculations, and the dashed curves foliow
from the asymptotic approximation of equation {37).
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Fig. 3 The same as Fig. 2, but for § = 179 deg (¢ = 1 deg)

component and as ¢*? if not. Also, the real part of the SIF at
resonance achieves a large but negative value, i.e. it is 180 deg
out of phase with the static SIF.

The accuracy of the asymptotic approximation supports the
conclusion that stress field 7(6) on the neck is governed mainly
by the first term in the expansion (12) when ¢ << 1 and ke
<< 1. For fixed ¢ but ki@ ~— 0, the exact theory reproduces
the static stress 7(8) of equation (24), and as discussed in
Section 4, the term 8§” —~ 0, while the remaining 8, = 1,
are of order unity. Therefore, the purely static and the doubly
asymptotic limits are in a sense complementary, and we are
Justified in combining both to form a new approximation uni-
formly valid in both asymptotic regimes. We call this the quasi-
dynamic approximation, since it goes beyond the quasi-static
approximation based on the static solution, but is not a fully
dynamic solution. When the relevant terms are combined, we
obtain for the quasi-dynamic stress

Tofkoa paks

0= 70) + — == "2 flka, ¢, O),
qu() T()""m#lsz( \a, € G)

where [ is defined in (31) and (33). The quasi-dynamic stress
intensity factor Kl is thus

(36
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These expressions are uniformly valid for both small € and
kia, and obviously contain the resonance features of Figs, 2
5. The associated scattered field may be easily computed and
it turns out that the far-field pattern is changed only in the
monopole term.

In conclusion, we have obtained simple but accurate expres-
sions that fully describe the low-frequency resonant behavior.
The numerical and analytical results demonstrate that the stress
intensity factor at the neck of the fiber can be greatly magnified
in comparison with the static prediction. Thus, for instance,
failure predictions based solely upon a static analysis could be
quite erroneous.
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Fig. 4 The dimenslonless resonant frequency according to the ap-
proximate theory, equation (34), compared with the frequency at which
the magnitude of the dynamic SIF achieves a maximum In the exact
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Fig. 5 A comparison of the magnitude of the dimensioniess dynamic
stress Intensity factor at resonance versus the neck angular width ¢. The
solid curve Is calculated using the asymptotic expansion of the stress
on the neck, equations {12} and (30)-(34). The circles are the numerical

computatlons of the exact solution, equation (15).
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