CONDITIONS UNDER WHICH THE
SLOWNESS SURFACE OF AN
ANISOTROPIC ELASTIC MATERIAL
IS THE UNION OF

’ ALIGNED ELLIPSQOIDS
By P. CHADWICK

v (School of Mathematics, University of East Anglia, Norwich NR4 7TJ)

and A. N. NORRIS

{(Mechanics and Materials Science Department, Rutgers University,
Piscataway, New Jersey 08855-0909, USA)

[Received 11 September 1989. Revise 15 December 1989]

SUMMARY

The slowness surface of an anisotropic elastic material is described as consisting of
aligned ellipsoids when it is the union of three coaxial ellipsoids each common principal
axis of which is a specific direction for a longitudinal plane wave. It is shown that the

Do slowness surface has this property only when the material has orthorhombic symmetry.
Five sets of conditions are obtained, one of them necessary and each sufficient, for the
slowness surface of an orthorhombic elastic material to be formed from aligned
ellipsoids. A complete characterization of the conditions referred to in the title of the

paper is thus provided.

i
!
:

L. Introduction and preliminaries

IN THE theory of elastic waves in transversely isotropic media considerable
simplifications spring from the adoption of one or other of the relations

(€11 — CaadC3s — €4q) — (€13 + €44 =0 (1.1)
and
€13+ e =0 (1.2)

> : between the elastic moduli {1, p.96; 2, section 5(e)). These are the only

4 conditions under which the slowness surface & of a transversely isotropic elastic
material reduces to the union of three spheroids, and the associated factorization
of the displacement equations of motion into wave equations is responsible for
the ensuing simplifications. For media with cubic symmetry there is just one
constraint on the elastic moduli,

C12 +C44=0, (1‘3)
under which & is composed of three spheroids (3, section 8.3).
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None of equations (1.1) to (1.3) represents at all accurately the behaviour of
known materials: their value is in allowing explicit calculations to be made
while preserving essential qualitative features of wave propagation in trans-
versely isotropic and cubic media. A comparable easing of the theory of
small-amplitude elastic waves will result for any anisotropic medium for which
& consists of three ellipsoids and we address in this paper the question of what
conditions must be placed on the elastic moduli for this structure to occur.

The complexity of the general problem is such that some primary limitation
of scope seems unavoidable. We suppose that the ellipsoids are aligned in the
sense that, first, they have common principal axes and, second, each principal
axis is a specific direction for a longitudinal plane wave. The second assumption
is less restrictive than might at first appear by virtue of the existence, in every
anisotropic elastic material, of at least three distinct specific directions for
longitudinal plane waves (4).

Our findings are summed up in two theorems which together state that an
anisotropic elastic material for which & consists of aligned ellipsoids is
necessarily orthorhombic and that & assumes one of five specific forms, each
requiring the elastic moduli to satisfy additional conditions. The sets of
conditions are numbered (C1),..., (C5) and we note in advance that (C3) implies
a higher form of symmetry, namely transverse isotropy. In order not to have
to qualify the statements of our main results on account of this one case we
take the view in the present work that transverse isotropy is a special case of
orthorhombic symmetry. In respect of solution (S3) and the accompanying
conditions (C3), orthorhombic symmetry is therefore understood to subsume
transverse isotropy.

The proof that & can be the union of aligned ellipsoids only when
orthorhombic symmetry prevails is taken to its final stage in section 2 and
completed in section 5. Section 3 is devoted to the investigation of conditions

under which the slowness surface of an orthorhombic material consists of - -

aligned ellipsoids and the methodology employed there is used again in section
5. We confirm in section 4 that the results for transversely isotropic and cubic
materials mentioned at the outset are contained in the solutions found in
section 3.

We consider initially an elastic material which is anisotropic in relation to a
natural reference configuration N. The components C,,, relative to an arbitrary
orthonormal basis b of the linear elasticity tensor Cin N are assumed to possess
the symmetries Cyyy = Cyyy; = Cy, and to be positive definite.

The acoustical tensor Q(n) has components

Qi) = Cpigyn, (1.4)

relative to b, n, being the components of an arbitrary unit vector n. Here, and
henceforth, we reserve the letters p, g for repeated suffixes to which the
summation convention gpplies: there is no summation on repetitions of i.
Because of the properties of C, Q(n) is symmetric and positive definite.
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Cr'u.cially, Q(n) links the speed ¢ and the polarization p of a planc wave
advancing in the direction of n through the propagatién condition

Qm)p = pc?p, (1.5)

p being the density in N.
The slowness surface & of the material is the three-sheeted surface in R3
given by .

sm) = {p~4m} M, i=1,2,3, allnex, (1.6)

where A,(n) are the eigenvalues of Q(n), necessarily positive, and % denotes
the set of all unit vectors. By (1.5), the speeds ¢(n) of the three plane waves
which can propagate in the direction of n are related to the eigenvalues
by A(n}= pcf(n), and assoctated orthonormal eigenvectors p,n) are the
polarizations of these waves,

.. A plane wave is said to be longitudinal when its polarization is +n and

" transverse when its polarization is orthogonal to n. A unit vector n which is
an eigenvector of Q(n) defines a specific direction for a longitudinal wave and it
then follows from (1.5) that

Q) = [n.{Q(m)n}]n. (1.7)

In view of the orthonormality of the polarizations p;(n), a specific direction for

Y a longitudinal wave is also a specific direction for two transverse waves.

2. Restrictions on the elastic moduli of 8 material for which & is the
union of aligned ellipsoids

The main result of this section is the following.

Tueorem 1. The slowness surface & of an elastic material consists of aligned
ellipsoids only if the material has orthorhombic symmetry.

It is convenient from now on to refer all vector and tensor components to
the orthonormal basis e = {ey, e,, €3}, the members of which are directed along
the common principal axes of the aligned ellipsoids constituting %

Since ¢; defines a specific direction for a longitudinal plane wave, equation
(1.7) yields

Qlee; = [e,. {QUee} Je. (2.1)
The component form of (2.1), derived from (1.4), is
Cijii = Cﬁfiaij:

and on giving i and j all possible unequal values and adopting the contracted
suffix notation (according to which C,;, = ¢;; where (i, j) = (1, 1), (2, 2), (3, 3),
(2,3),(3,1), (1, 2)correspond to I = 1,2, 3,4, 5, 6 respectively), we deduce that

C15s = C16 ™ C24 = Cpg == C34 = 35 = 0, (2.2)
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Next, let e be any member of e. Then unit eigenvectors f and g, forming with
e an orthonormal set, are the polarizations of the transverse waves which can
propagate in the direction of e and the ray velocities of the longitudinal and
transverse waves are scalar multiples of Q{e)e, Q{f)e, Q(g)e (see, for example,
(5, section 21)). The ray velocity of a plane wave is directed normally to & at
the point representing the wave (6, section 4), so the normality of a common
principal axis to each ellipsoidal sheet entails all three ray velocities being
codirectional with e. There thus exists a positive scalar « such that

{Qe) + Q) + Qig)}e = ce. 23)
Invoking (1.4) and the identity
ee; + fif; + 99, = 4
and setting e = e;, we can express the component form of {2.3) as

Cript = 20y
Again allowing i and j to take all possible unequal values and using (2.2), we
find that

C45 = C46 = CSG = 0. (2.4)

It is easy to verify, from (1.5), that equations (2.4), together with (2.2}, ensure
that the transverse plane waves which can propagate along a common principal
axis are polarized in the directions of the other principal axes.

It follows from (1.6) that when & consists of coaxial ellipsoids, each of the
eigenvalues A;(n) of Q(n) is a homogeneous linear form in n?, ni, n?
eigenvalue

A= qn} + gyn3 + gan} {2.5)
giving rise to an ellipsoidal sheet of & defined by
4151 + 4253 + 4355 = p, (2.6)
where s; = s, ¢; are the slowness coordinates. The characteristic equation,
det{Q(n) — AI} = 0, (2.7)
of the propagation condition (1.5) consequently contains only even powers of

Ry Ry, N,
Taking account of the simplifications (2.2} and (2.4), we can write equation
(2.7) as

AP — (A4, + A, + Aa))?;z' + (4245 + A34, + A A, — B ~ BS — B
— (A A, 43 — A, B} — A,B3 — A,B] + 2B,B,B;) =0, (2.8)

3 al’lr
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with . |
Ay =cynf + cegn} + csgni, )
Ay = cgaht + 13 + Coqn?, (2.9)
A3 = csshi + caqnd + ¢330,
By = bynyny + x3n3n, + xyn,n,,
By = x3nyn; 4 byngng + x,nn,, {(2.10)
By = xanyn3 -+ X nany + bynin,,
and
by = ca3 + Cua, by =c13 + s, by =¢y5 + cgs, (2.11)
Xy = Cr4n X3 == Cp5, X3 = €3¢ (2.12)

= {ef. (7, p. 84)). The inadmissibility in {2.8) of odd powers of ny, By, 0y implies
the following set of 12 relations between the elastic moduli:

b1x2x3 = 0, b2X3x1 = 0, b3x1x2 = 0, (2.13)
(("66b2 + 655133))61 + Ci1XaXy = 0,
(caabs + ceeby)x; + C22%3%; =0, (2.14)

(cssby + Caaba)xs + €33%,%, = 0,

{120y — €a2b3)x3 + ca3Xy %, + X3x3 = 0, \

2,
—{casbs — cy3by)x; + ¢a3%3x; + x,x% = 0,

(c23by — €a3b3)xy + €1 3x3x3 4 x3x, = 0, > @.15)
—(c11by — €12b3)%3 + 3% %, + X537 = 0,
(cy3by — €11by)xs + €y5%3%; + x2x, =0,
—(Ca2by — Ca3b3)xy + €13%,%5 + x,x2 = 0.
We prove that the only solutions of (2.13) to (2.15) are
Xy =Xy =Xy=0 (2.16)
and
any two x; and the corresponding b; are zero. (2.17)

Equations (2.16), in conjunction with (2.12), (2.2) and (2.4), state that the elastic
material under consideration has orthorhombic symmetry. We refer to the
restriction of anisotropy imposed by (2.2), (2.4) and (2.17) as quasi-orthorhombic
symmetry,

Equations (2.13) are satisfied only if one of these possibilities holds:

(i) two x; are zero;
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(ii) one b; and the corresponding x; are zero;
(iit) three b, are zero.
We show that each of (i) to (iii) leads to either (2.16) or (2.17),
(i) Suppose that x, = x, = 0. Equations (2.15)4,, then reduce to
(e by — cypb3)x; =0, {cyaby — cazby)xy =0,

and we conclude that either x, = 0, in which case equations (2.16) apply, or

C1yby = ey =0, Ciaby — €330y = 0. (2.18}
Due to the positive definiteness of C,
>0, ey —ch>0, ILJ=1,.,6. (2.19)

Equations (2.18) hence require that b, = b, = 0 and we arrive at (2.17).

(if) Suppose that x; =0, b, =0. In view of (2.19},, equations (2.14) then
become

XoXq == 0, b3x2 = 0, bzx_g = 0,

and we infer that either x;, =0, x5 = 0, or x, =0, b, = 0, or x5 = 0, by =0.
The first alternative completes equations (2.16) and the other two satisfy (2.17).

(iif) Because of (2.19),, equations (2.14) simplify to
X,X3 =0, Xax, =0, XXy = (.

Two x; are therefore zero and (2.17) holds.

It has now been established that & is formed from aligned ellipsoids only if
the material has orthorhombic or quasi-orthorhombic symmetry, and to
complete the proof of Theorem 1 it has to be shown that a quasi-orthorhombic
material for which & consists of aligned ellipsoids is necessarily orthorhombic.
This final stage of the proof is deferred to section 3.

3. Classification of conditions under which the slowness surface of an
orthorhombic material is the union of aligned ellipsoids

For an orthorhombic elastic material equations (2.16) hold and (2.10)
condense to

By = bynyn,, By = byngny, By = bynyn,. (3.1)

1t is seen from (3.1) and (2.9) that when n, = 0, equation (2.8) has a root
A= Ay = cegn + cssn3. Similarly, A, = ceen? + cound is a root of (2.8) when
n; =0 and Ay = csen} + c 2 when ny = 0. These roots correspond to the
cllipses, E,, E,, E, respectively, which form part of the sections of & in the
planes of symmetry with formals e,, ey, €5 (7, p. 118). If & consists of three
aligned ellipsoids one of the following possibilities must be realized.
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1. E,, E, and E; lie on the same ellipsoid. K
2. Two of E,, E,, E, are on one ellipsoid and the other is on a different

ellipsoid.
3. Bach of E,, E,, E; is situated on a different ellipsoid.

The alternatives are labelled cases 1, 2, 3 and considered successively.
Case 1. Since

2 2 2 2 2
Ceehty -t Cssh3, Ceally + Caqny, CsshT + Cagltl 3.2)

are obtained from a root of (2.8) of the form (2.5) by putting n, =0, n, =0,
ny = 0 in turn, we must have

Ca4 = Cs55 = Cggq- (3.3)

" This means that Caq 18 @ rOOL, 53y A4, Of (2.8),

Let
@y = Cyy — Ca4, Gy = €33 — Cyqs U3 = €33 — C4q,
e 2 — 2 _ 2
dl e a2a3 - bl’ dz - a3a1 - bz, d3 —_ a1612 - ba, (34)
€ = Cy4q.

Then, bearing in mind, as always, the identity n} + n2 +nl =1, 4, = an? + ¢
and (2.8) is converted {o

A% — (an? + ank + aznd + 3e)i?
+ {dingnd + dynind + dynind + 2aynt + apnd + aynd)e + 3¢*}A
— {(a,a,05 — a,b} — a;b} — a3b3 + 2b,byb;)nindnd
+ (dyn3nd + dyndnt + dynindle + (agnd 4 apnd + aynd)c? + ¢} = 0. (3.5)
As ¢ is a root of (3.5),
ayayay — ayht — a;b — azb? 4 2b,b,b, =0, (3.6)

whereupon (3.5) factorizes as

(A — e){A? — (ayn? + aynd + aun} + 2¢)i
+ dyning + dyndnd + dynind + (ayn? + apnd + asndle + ¢33 =0. (3.7)
Let
Ay quny o+ gond + qand, Ay =rond 4 rond + rgnd (3.8)

be the zeros of the quadratic factor in (3.7). Then, equating the coefficients of
njand nf in A, + 4, and the expression for the sum of zeros, and the coefficients
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of n3, n3 and n3nj in 4,1, and the expression for the product of zeros,

gz + 12 = ay + 2e, q3+r3=a3+2c,} (39)
4oty = (a; +¢)e, qyry = (a3 + c)e, .
dyrs + g3ty = (as + ay + 2c)e + d,. (3.10)

Similar sets of five relations connect (g, g4, 73,7,) and (q,, g2, 7y, 75). The
distinct solutions of (3.9} are

=83 +¢, qa=az3+ec, ry=ry=c, (3.11)
and
G2=¢C {a=daz+e¢, ry=da,+c, ry=c (3.12)
When (3.11} (respectively (3.12)) applies, equation (3.10) imposes the condition
dy = 0 (respectively b; = Q).
The compatible solutions for (g, g3, 73, r3), (43, 41, 73, 71) and (¢, ¢, 7y, )

form, with A, == ¢, four distinct sets of roots of {2.8) corresponding to aligned
ellipsoids. With reference to the definitions (2.11) and (3.4), the first two are

Ay = ¢y 0F + Cound + caand,
1 117491 22102 33743 (SI)

Ay = A3 = cyy,
subject to the conditions
Cas = Cs5 = Cggs
{11 — Caadleaz — Caq) = (€12 + caa)* = 0, 1)
{e11 — Caadlcas — c4q) — (Cya + €44)* = 0, 4
(€11 — Caa)(C22 — Cagdless — €aa) = (€13 + Caa)ess + €aa)Cas + Caa),

and
Ay = Caah} + cponk + Ca3his
Ay = cyint + cqu(nd + nd), (82),
A3 = cqy,
subject to the conditions , .0

C44 = C35 = Cge;

€12 = Cra = —Cyq, (C2),

(€22 — cag)lCaz — €44) ~ (023 + €432 = 0.

The other eigenvalues, (52)2 and (S2);, and the allied conditions, (C2), and -
(C2)s, are formed from (S2), and (C2), by changing the suffixes of the elastic o
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moduli and the components of n according to the {gllowing scheme:

(5),(C), :' 1 23 4 5 6 B
$)(C), 1 231 5 6 4 (3.13)
(8),(C-}a : 31 2 6 4 5

It can easily be confirmed that each set of conditions satisfies (3.6).

The slowness surfaces represented by (S1) and (S2), via (2.5) and (2.6), have
two coincident spherical sheets and one spherical and one spheroidal sheet
respectively. Unnormalized polarization vectors relating to (S1) and (S2), are

P = a’fn1 sgn bye, + ain, sgn bye, + aﬁns sgn b3e3,} (P1)
p; and p; span the plane perpendicular to p,,
<--and
Py = dyhy€; + bynses, Py =&y, Py = —bynze; + amae;. (P2),
| With regard to (P1), it should be noted that the signs of a,, a, and s,
are required by (Cl); 4 to be the same. If each of them is negative then (C1),

£ implies that at least one of b, by, b, is negative. But if b, <O we have
;Y €6 < cia < ¢},, in violation of (2.19),, so a,, a, and a, must be positive.

Case 2. Since two of the expressions (3.2) are now specializations of a
homogeneous linear form in nf, n3, n3, two of ¢4, ¢s5, o must be equal.
Suppose that

(:44 = CSS‘ (3.14)
Then the roots of (2.8) are

>
Ry
1

= onj + wn} + yn,
Ay = cosltt + n3) + cqund, (3.15)

i _ 2. .2 2
! A3 = Caa(nf + n3) + znj,

where v, w, y and z are to be determined. When (3.14) holds, E, and E, are
situated on the ellipsoid associated with 2,, and E; on the ellipsoid associated
with 4.

Equating the coefficients of n%, n3 and n in the expressions for the sum of
roots derived from (3.15) and from (2.8) and (2.9) results in

<

D=0Cyqy W= Cpg Y+ 2Z=C33 b Cay (3.16)

Forming next from (3.15) and from (2.8), (2.9), and (3.1) the sum of products
of pairs of roots, it is found that, due to (3.16), ,, the coefficients of n* and n$
agree. Equality of the coefficients of n$, nin3, nZn} and ninZ provides the
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relations
Cas(y + 2) + yz = 2c33044 + ¢4, (3.17)

{csa + Coe)y + (C1y + Co6)Z = C33(Cy + Coq) + CaalCas + Cg6) — (c13 + c44)7,
(Cas + Cog)y + (€22 + Cg6)2 = Ca3(Cay + Co6) + CoalCas + Cos) (c23 + €44)%,

(3.18)
{11 — cee)C22 — Co6) — (€13 + cg6)* = 0. (3.19)
The solutions of (3.16); and (3.17) are
Y = Caa, Z = Cyy, (3.20)
and
Y = Cqq, 2 == Cyq. (321)
When (3.20) applies, equations (3.18) become
(11 — Caadess — Cag) — (43 + 044)2 = Os} (3.22)
(€22 — €aa)(Caz — Can) = (C23 + €4u)* = 0.

When (3.21) holds, they reduce to
C1a + Cea =0, €23 + Cas = 0. {(3.23)

Lastly, we form from (3.15) and from (2.8), (2.9) and (3.1) the product of
roots. The coefficients of n¢ and »§ are identical, and when account is taken of
(3.19) and the relation pz = ¢354, satisfied by (3.20) and (3 21), agreement is
also secured betwcen the coefﬁcients of n§, nin3 and nin}. Equality of the
coefficients of n¥nZ, n1n3, n3nd and nin} reproduces (3.22) or (3.23) according
as (3.20) or (3.21) is in force. There remain the coefficients of nnZn? which,
when equated, give

2c44C66Y + (€11 + C23)C66Z = €14Ca3Ca3 + C33¢ks + 2624c66
= C13{C23 + €4a)? — Caa(C13 + Cau)?
— €33(C42 + Ce6)’
+ 2(c12 + ceg)(C1a F Caa)(Caz + Cas) (3.24)

When (3.20) and the attendant conditions (3.19) and (3.22) hold, equation (3.24)
can be recast as

(legy — 044[ lezz — Casl* ticyy — Cssf*lczz - 0441*)2(033 —~ C44) =0,
and, after multiplication by
(leyy ~ C44| lczz - Cseli Flegy — Css|*|czz - Cu?*)z,
thls can be cxpressed as |

(Cu - sz) (caz — casdlcas — 065) =0.

" E
St
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Clearly, ¢,y = ¢33, OF €33 = Cqq, OF Ca4 = Cg. When ¢4 = Cg6, however, the
equalities (3.3) hold and the solution (S1) is recovered, and when c¢y3 = ¢y,
(3.20) is the same as (3.21). When (3.21) and the accompanying conditions
(3.19) and (3.23) apply, equation (3.24) is satisfied identically.

The following sets of eigenvalues representing aligned ellipsoids have thus
been found:

Ay = ¢y1(n} + n3) + caand,
Ay = Cos(nt + n3) + cqqni, (53),

Az = Caa,

subject to the conditions
Ciy =C22, €13 =Cz3, C44 = Css, Cgs = 3(Cqq — 012)3} (C3)
(€11 = Caa)Caz — Cas) = (€13 + €a4)?, !
.and
Ay = cpnf + eand + coan,
Ay = Coalnd + n3) + coumi, (S4),
Az = Caa(ni + n3) + c4303,
subject to the conditions

_C13=—023=C44=C55, } (04)
i
(11 — coe)Caz — Co6) — (€42 + co6)* = 0.

Additional solutions, (S3),, (S4), and (S3),, (S4),, are obtained by replacing
(3.14) by c55 = ¢4 and ¢4 = 46 respectively, They are adapted from (S3),,
{S4), by permuting the suffixes of the elastic moduli and the components of n
as specified in (3.13).

Solution (83} describes a slowness surface with one spherical and two
spheroidal sheets, and (S4) also displays two spheroidal sheets. Unnormalized
polarization vectors for (S3), and (S84), are

Pi = ey — caaine) + npeg) + (C13 + cyginzes,
Py = —mey + 18y, (P3),
By = —{c;3 + Caaliz(nye) + nyey) + (cq; — Cagdint + ndles,
and
Py = (¢1, — ceelniey + (¢15 + coslnzes,
P2 = —(c12 + Cop)Ma€y + (11 ~ Cog)ni€y, (P4),

P3 = ¢;.
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Case 3. When the expressions (3.2) are specializations of distinct roots of 2.8)
it is apparent from (2.9) that

j,; = Ai + t"n?, (3.25)

where ¢; are as yet unknown. However, equating the sum of roots as given
by (3.25) and (2.8) yields

tynf + tnd - tan? =0,

whence t, = 0 and 4; = 4;. We deduce from equation (2.8) that B, = 0 and then
from (3.1) that b, = 0. :

Case 3 accordingly delivers a single set of aligned ellipsoids, linked to the
eigenvalues

Ay = ¢y nd + coand + csnl,
Ay = coen? + 022”% + 6'44"§’ (S5)
— 2 2 2
Ay = CssNi + €443 + C33n2,
and subject to the conditions
€23 + €40 =0, Ciat+ess =0, 3 +ce =0 (C5)

Associated polarizations are

Pi=¢€;, Ppy=e, Py=e ®sy

The results of this section can be summarized as follows.

THEOREM 2, If the slowness surface of an orthorhombic elastic material consists
of aligned ellipsoids, the elastic moduli satisfy one of the sets of conditions
(C1),..., (C5), the eigenvalues and corresponding eigenvectors of Q(n) being given
by (81),..., (S5} and (Pl),...,{(PS). Conversely, if the elastic moduli of an
orthorhombic material conform to one of (C1),..., (C5), then & consists of aligned ™
ellipsoids represented by the corresponding member of (81),..., (S5).

The first part of the theorem has been proved. To establish the second part
we need only rearrange the derivations of (S1),..., (S5) so as to confirm that,
subject to (Cl),..., (C5) respectively, (S1),..., {S5) are the roots of (2.8).

4. Transversely isotropic and cubic materials
When the elastic moduli of an orthorhombic elastic material are related by

€11 = €22, €13 == C23, Cyq4 =Cs5, Cgg= %(6'11 ~ C12)s (4.1)

the material is transversely isotropic. Adjoining (4.1) to each of the conditions
(C1),..., {C5), we find that (C2) and (C5) are brought into conflict with the basic
inequality (2.19),, while (C3) and (C4) impose, in addition to {4.1), only one
restriction on the moduli namely (1.1) in the case of (C3) and {1.2) in the case
of (C4). Conditions (Cl) require that, extra to (1.1}, £(c;s — ¢15) = cqa.
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Solutions {$3) and (S4) duly reproduce the equationg of the spheroidal sheets
of & given in (2, section 5(e)). N

The connections between the moduli of an orthorhombic material appropriate
to cubic symmetry are

€1y = €33 = (33, C1a = Cyy = (a3, €44 = C55 = Cgg- 4.2)

When (4.2) are combined with the conditions obtained in section 3, (C2) and
(C4) become incompatible with (2.19), and (CI) and (C3) can apply only to
an isotropic material, Conditions (C5) enforce the single relation {1.3) supple-
mentary to (4.2) and (S5) then specifies the form of & in agreement with (3,
equation (8.10)).

Theorem 2 thus includes as special cases the results stated in the opening
paragraph of section 1.

- ‘8. Quasi-orthorhombic materials

Turning finally to the proof of the italicized statement at the end of section 2,
we suppose, in conformity with (2.17), that

X, =x,=0, by =b, =0
The definitions (2.10) then simplify to
B, = x3n3n,, B, = x3n,;h5, By = bynyn,, (5.1)
and we see, with the use of (2.9), that the expressions
Coals + Caghi,  €4y0} + cg5mi, Csshi + Caqn (5.2)
are roots of equation (2.8) when n; =0, n; =0, ny = 0 respectively. As in
section 3 these roots correspond to ellipses in the planes orthogonal to e,, e,, e,
and the same three mutually exclusive possibilities are the only ones that can
arise. Now labelled cases 4, §, 6, they are considered in turn.
Case 4. Each of (5.2) derives from an eigenvalue of the form (2.5}, so
C;) = €33 = Ca4 = C55:=C, {5.3)
and A3 = ¢ is a root of (2.8). There follow from (2.8) the relation
(ce6 — ¢+ by)caz — ¢y~ 2x2 =0 (5.4)
and the formulae
Ay + A = cealni + n3) + cand + ¢,
Zika = {{es3 — €)ess — €) = x3} (n] + nd)n3
+ {(Céﬁ - ) — b%}”f"i + {ees(n? + nd) + Cas”%}C,

for the sum and product of the other roots.
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Taking 4, and 4, to be given by (3.8) and equating coefficients of like
monomials in n;, n,, 1 leads to

gyt =gy t+r=cetc, 41"1=€12’”2=0666,} (5.5)
g3 + 73 =0C33 + ¢ g3r3 = Caac,
4172 + qory = ¢+ ¢ — b3, (5.6)
g1r3 + qary = gary + qaFy = C33066 + & — X3, (5.7)
Equations (5.5) admit three distinct solutions:
4 =4y =843 =€, ¥y =T; = L6, F3 = Caa, (5.8)
gy =gy =€, g3 =2=C33, I =Ty =2Cgg F3 =6, (5.9)
G =43 =€ g2 ™ Cggs F1 = Cgey ¥y =€, F3 = (3. (5.10)

When (5.8) or {5.9) applics, equation (5.6) can be written as
(ces — € + b3)lcgs — ¢ — b3) = 0.

By (5.3) and (2.11);, the second factor on the left is —(c¢,,¢5,) — ¢,, which is
forced by (2.19) to be negative. The first factor is therefore zero and we see from
(5.4) that x; = 0. Equations (2.16) accordingly hold and the material is
orthorhombic. When (5.10) applies, equation (5.7), requires x, to vanish and
again the prevailing symmetry is orthorhombic,

Case 5. Equation (3.14) is a sufficient condition for two of (5.2) to relate to
ellipses on the same cllipsoidal sheet of % and the roots of (2.8) are then of
the form

Ay =cpand 4 epond + chand,
Ay = 344("% +n3) + yn%, (5.11)

vn? + wn 4 zn.

S
I

We proceed, as in case 2, to equate the coefficients of corresponding terms in
the expressions for A; + 4, + A3, 4,45 + 434, + 4,4, and i,2,2, supplied by
{5.11) and by (2.8}, (2.9} and (5.1). The alternatives (3.20) and (3.21) once more
emerge from A, + 4, + Ay and 1,45 + A34, + 4,4,, together with the equalities
U= W= 666
and
Cee) "t €442 = C33C66 + Ci: - x%,} (5.12)
(c11 — ¢e6)(caa — Co6) — b3 = 0.

When (3.20) applies, equation (5.12); reduces to x, = 0.
When (3.21) holds, equations (5.12) ensure that all but one of the coefficients




SLOWNESS SURFACES IN ANISOTROPIC ELASTICITY 603

in 4,445 agree. The exceptional pair provide the refation

1

CaalCry + €22)Caa ~ €33 — Cog) + Caalcy €y + cés)

— ¢33b% + 2(bs — ce6)x3 = 0,

which, with the aid of (2.11);, (3.21) and (5.12), can be simplified to

(11 +€aa + 2¢1,xE = 0.

The vanishing of the first factor on the left would contravene {2.19),, so again

X

» =10

Case 6. The reasoning employed earlier for case 3 shows that when (5.2) come
from distinct roots of (2.8), B; = 0. Hence, from (5.1)1 2, x5 = 0 and the proof
of Theorem 2 is complete.
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