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An asymptotic method of solution is presented for scattering of acoustic waves from solid 
elastic targets. The asymptotic parameter is the ratio of the fluid density to that of the solid, 
and the solution is developed using the method of matched asymptotic expansions in this small 
quantity. The perturbations to the background rigid scattered field are regular for frequencies 
away from the frequencies of free vibration of the target in.vacuo, but, near these frequencies, 
the perturbation is singular in that an asymptotically small value of the density ratio produces 
a change in the scattered field of order unity. By combining the regularly and singularly 
perturbed expansions, a solution is obtained that is uniformly correct at all frequencies. The 
elements in the uniform solution depend only upon the in vacuo modes and frequencies, and 
the Green's function for the equivalent rigid target. At no stage is it necessary to solve the fully 
coupled system. An analysis of the asymptotic approximation for a spherical target shows that 
it is equivalent in the high-frequency limit to the approximation predicted by resonance 
scattering theory. 

PACS numbers: 43.20.Fn 

INTRODUCTION 

The scattering of acoustic waves from an almost rigid 
elastic target displays all the features of a singular perturba- 
tion problem. In order •0 see this, let us assume for simplicity 
that the elastic target has a much greater mass density than 
the fluid and define the small parameter e as the ratio of fluid 
to solid density. The scattering process reduces to that of 
scattering from a perfectly rigid, immovable object when ß is 
zero identically. When e is small but nonzero, then, for most 
values of frequency, the target will still scatter as a rigid 
object. The scattered field possesses an infinite number of 
damped resonance frequencies, each located very close to a 
frequency of free vibration of the solid body, and near every 
resonance frequency there is a neighborhood in frequency 
space, of order ß in width, as will be deduced later, within 
which the scattered field is quite different in form compared 
to the rigid scattered field. Thus, when viewed as a function 
ofß, the scattered field for the rigid target is a singular case in 
the sense that the solution for small but nonzero ß is not 

everywhere close to the unperturbed rigid response. In prac- 
tice, the effect of these singular perturbations, or resonances, 
can alter the scattered field to such an extent that it hardly 
resembles the rigid response, as illustrated in Fig. 1. 

This paper describes the application of the method of 
matched asymptotic expansions to the scattering of acoustic 
waves fro m elastic targets for which ß is a small parameter. 
Similar methods have previously been demonstrated for 
acoustic scattering from membranes and plates in an infinite 
rigid baffle •-3 and from penetrable acoustic targets. 4 Here, 
the scattered field is obtained in the form of an asymptotic 
expansion in ß which is composed of a rigid background 
combined with an "inner" solution that is valid for frequen- 
cies near the resonant frequencies of the target in vacuo. The 
term "inner" is used by analogy with boundary layer theory, 

for which the inner solution usually exists in a region of 
space. The corresponding region of validity in the present 
problem is an interior layer in frequency space. The rigid 
background field, which assumes the form of a regular per- 
turbation in ß, will be called the outer solution, again by 
analogy with boundary layer theory. 

It is well known that an incident acoustic wave can ex- 
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FIG. I. The far-field backscattering amplitude [see Eq. (79) ] for the rigid 
sphere and for a tungsten carbide sphere in water, E = 1/13.8. The fluid 
wave number k is nondimensionalized with respect to the radius of the 
sphere. 
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cite the in vacuo resonances of elastic spheres, cylinders, and 
shells, and these resonances exhibit distinctive peaks and 
troughs in the scattered far-field amplitude. Reference 5 pro- 
vides a current and extensive bibliography on this subject. 
The effect of the fluid loading on elastic bodies shifts the 
resonant frequencies from the real-valued in vacuo frequen- 
cies to slightly perturbed complex values, and these may be 
calculated numerically for simple targets like the sphere and 
cylinder, for which the acoustic and elastic equations of mo- 
tion are separable, 5-8 and also for spheroids and related 
shapes using a T-matrix approach? The present method pro- 
vides a means to find the perturbed complex frequencies for 
arbitrarily shaped targets assuming that the in vacuo reson- 
ances are known and that the corresponding acoustic scat- 
tering from a rigid target can be solved. In general, it is prob- 
able that both of these separate tasks can be reduced to 
numerical problems, each of which is far simpler than the 
coupled acoustic-elastic scattering problem. 

The existence of identifiable resonances in the acoustic 

far field provides a possible means of inferring something 
about the target geometry and material properties. It is 
therefore of some importance to have a fast and stable meth- 
od for modeling the scattering problem in the neighborhood 
of resonance frequencies for targets of complex geometry. 
The present method is by its very nature stable near these 
frequencies, and, provided one has an efficient code for gen- 
erating the in vacuo modes and modal frequencies of the 
elastic body, it should be significantly faster than the nu- 
merical solution of the coupled problem. In addition to its 
computational possibilities, the method offers a simple 
means to understand the character of the scattered field near 

resonance. It will be shown in Sec. III that there is a com- 

plete correspondence between the inner solution near reso- 
nance and the generalized method of acoustic impedance 
matching. 

The scattering problem is formulated in the next sec- 
tion, and the asymptotic solution is derived in Sec. II. Sec- 
tion III contains a discussion on some of the main features of 

the asymptotic result. The application of the general method 
to the specific case of a spherical target is presented in Sec. 
IV, and the asymptotic approximation is analytically com- 
pared with the approximate solution of resonance scattering 
theory. 6 

I. FORMULATION OF THE PROBLEM 

The scatterer occupies the volume V with boundary S 
and exterior • All field variables are time harmonic, and the 
dependence exp ( -- loot) will be omitted. The exterior region 
Vis occupied by an ideal inviscid fluid of density PF, sound 
speed cF, and the total acoustic field there is defined by the 
velocity potential 

½,o, = ½,.c + ½, v=V½% (1) 

where 4•,c is the incident wave and • is the scattered field, 
which satisfies 

V24+k24=0, x in •, (2) 
with the radiation condition that ½ be outgoing at infinity. 

The wave number in (2) is k = w/cr, and the acoustic pres- 
sure associated with 4 isp = iwpv½. 

The homogeneous linearly elastic solid in Vis of density 
Ps and C is the fourth-order tensor of moduli, which pos- 
sesses the usual symmetries for linearly elastic, anisotropic 
hyperelastic solids; i.e., C has at most 21 independent ele- 
ments. In rectangular components the moduli are C•jkt, 
where i, j, k, and l assume the values 1, 2, and 3, and the 
symmetries imply that Cct= C•i• = C•j. The displace- 
ment field is u(x), the stress is •r = •r(u) = Ce, where e is 

the strain tensor, e = «[ (Vu) + (Vu)•], and the equations 
of motion are 

div •r(u) + W:ps u = 0, x in V. (3) 
The conditions relating the interior and exterior fields 

along the surface S are that the displacement and tractions 
be continuous: to 

8 •in, + • --1 iwu'n' 1 & c9n • = 
ß x on S, (4) 

(pr½'"' + pr½)n - • 7-•w o'n,j 
where n is the unit normal to S. 

Let L be a typical length scale of the scatterer, e.g., its 
average radius, and define the time unit T = L/cr. Intro- 
duce nondimensional parameters x' =x/L, k'=kL, 
O' = ½ T /L 2, u' = u/L, and C' = C/psC•, where Cs is a typi- 
cal sound speed in the solid. Substituting these into Eqs. 
( 1 )-(4), and dropping the primes, Eq. (2) is recovered for 
½, and the equation for u becomes 

div•(u) +k2c2u=0, X in V, (5) 

where 

C • CF/Cs, 

and the interface conditions are 

+ -- iku.n, 
Jn On 

6(4 i"': + ½)n -- -- 

with e defined as 

e = Pv/Ps' 

-- ikc 2 

(6) 011,} X on S, 
(7) 

Let G be the Green's operator that solves the exterior 
Neumann radiation problem: 

V2f+k2f=O, x in V, 

Jf =g, x on S, (8) 
c9n 

in the form f= Gg, andf satisfies the radiation condition at 
infinity. A specific example of G is presented in Sec. IV, and 
generally Gg may be expressed as an integral over S involv- 
ing a Green's function. • The field scattered from a rigid tar- 
get of the same shape as V is then ½o, where 

½o = -- G . (9) 
8n 

The interface condition (6) • thus implies 

½ = •o -- ikGu.n, (10) 
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and, consequently, the traction continuity condition (6) 2 
becomes 

a(u)n = - ikc2e(4 i"c + 4o - ikGu.n)n, x on S. 
(11) 

It will be assumed for the remainder of the paper that the 
rigid Green's operator G is known, so that the scattering 
problem may be reduced to a problem within and on the 
surface of V, viz. Eqs. (5) and ( 11 ). 

II. ASYMPTOTIC ANALYSIS 

We develop a solution to (5) and ( 11 ) that is uniformly 
valid in frequency k under the assumption that ß of (7) is 
small; i.e., e,• 1. The solution is composed of matched inner 
and outer asymptotic expansions I J.12 in frequency k, the in- 
ner regions in frequency space being defined by the in vacuo 
resonance frequencies of V. The theory outlined here is 
closely related to an earlier theory for acoustic scattering 
from acoustic targets, 4 although the form of the final uni- 
formly asymptotic solution is actually quite a bit simpler 
than that of Reft 4. 

A. Outer solution 

Assume a regular asymptotic expansion 

u = ßu I + e•u2 + '" . (12) 

Substituting (12) into the equations of motion (5) and iden- 
tifying the different order terms in ß implies that (5) is satis- 
fied separately by each uj forj = 1,2 ..... The boundary con- 
dition ( 11 ) becomes 

(r(uj)n = - ikc2[(4 i"½ + 4o)6•, - ikGn.uj , ]n, 
x on & (13) 

where j = 1,2 ..... Uo:--0, and 6• is the Kronecker delta. 
These interior boundary value problems may be solved se- 
quentially in j, and thus, in principle, the outer expansion is 
well defined. The associated outer expansion for the scat- 
tered field. is 

4 = 4o + •4, + d42 + '", (14) 
where 

4•=-ikGn.u•, j>0. (15) 
In practice, the rigid scattered field 40.will be all that is 

required of the outer solution, since the additional terms are 
O(ß) in comparison. However, problems arise at those fre- 
quencies for which (5) has nonzero solutions for zero 
boundary tractions. To see this, let k,, be a frequency for 
which there is a nonvanishing solution W,, to 

2 2 
div•(W,,)+k,,cW,,=0, x in V, 

(16) 
(r(W,,)n=0, x on S. 

Then, k,, is a resonance frequency corresponding to free 
vibrations of Vand W,,is the modal displacement, which we 
normalize by 

vW,•'W,• dV= 1. (17) 
In particular, it follows from (5) and (16) that 

fvdiv [ (r(uj)W,, - (r(W,,uj ]dV 
= fgc2(k 2 -- k2)W,,.nj dV rn 

= fs dS. (18) 

For the remainder of the paper, it will be assumed that the 
resonant frequencies are simple, and thus the body does not 
exhibit degenerate modes. It can then be shown that the 
modes are orthonormal; i.e., œvW,•.W, dV = $,•,, and so a 
formal eigenfunction expansion for ui,j = 1,2 ..... may be ob- 
tained from (18) and (13): 

' •. 4 )6• -- ikGn.u•_ I Wm ' u? = i•: ((4o + ,. ,n.W•), 
m=l 

where Uo: = 0 and 

(f,g): = fsfg ds. 

(19) 

(20) 

It is clear from (19) that u•, j> 0, become unbounded as 
k-.k,,. The outer expansions (12) and (14) thus break 
down near the frequencies of free vibration of V, and another 
type of asymptotic expansion is required there. 

B. Inner solution 

The inner solution specifically considers frequencies 
near a resonance frequency k,,, k - k,, = O(•). It is dear 
from the form of the breakdown of the outer solution that the 

critical dependence of the solution is through k in Eq. (5). 
The appearance of k in the boundary condition (11) does 
not seriously effect the solution near a resonance frequency. 
For these reasons, k in Eq. (5) will be replaced by •c, where 

n a = (1 + ae)k•, (21) 
and a is a tuning parameter that measures the distance from 
the in vacuo resonance frequency. The parameter k is kept as 
is in the boundary condition ( 11 ). We now assume the an- 
satz 

U = U o -Jr- ßUl q- '" ß (22) 

Substituting (21) and (22) into (5) and invoking ( 11 ) 
implies a sequence of interior problems for U•,j = O, 1,2 .... : 
div•(U•) +k 2 2 ,.cUi= -ctk2.&U•_•, x in V, 

(23) 
{r(Uj)n = -- ikc2[ (4 '"• + 40)5/, -- ikGn. U/_, In, 

x on S, 

where U_ i: = 0. The first solution Uo satisfies a homoge- 
neous equation in V and homogeneous boundary conditions 
on S, and therefore 

U o = AoW,,, (24) 

where the amplitude A o = Ao(a) has yet to be determined. 
Proceeding to the next order in the sequence of asymp- 

totic equations (23) implies that U j satisfies an inhomogen- 
eous equation in Vand inhomogeneous boundary conditions 
on S. The unique solution to this boundary-value problem 
must in some sense be orthogonal to the nontrivial solution 
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W m of the homogeneous problem. The precise form of the 
desired solvability condition for U4 may be obtained by con- 
sidering the identity (18) with uj replaced by U 4. Expanding 
the integrand in the left member of (18) and using (16), 
(17), (23), and (24) yields 

-- ak 2.,½2A 0 = k 2C2am`4O -- ikc213,. (25) 
where 

a m (k) = ( -- Gn-W,• ,n.W,• ), 
(26) 

/•m (k) = (6i,c + •o,n.W m ). 

An explicit equation is then obtained for .4 o from (25): 

.40 = ik/3m/(ak• + k2a,, ). (27) 
Finally, the inner expansion for the radiated field is 

• = •o + e• + "' , (28) 
where 

•o = 6o -- ikAoGn'Wm ß (•9) 

C. The uniform expansion 

A solution that is uniformly valid in k may be construct- 
ed by assuming the existence of an overlap region near k,. in 
which both the inner and outer expansions are asymptotical- 
ly valid. There is some degree of arbitrariness in exactly how 
one arrives at a uniform expansion, and so to allay any ambi- 
guity, we define it as the sum of the inner and outer expan- 
sions minus the inner expansion in the overlap region. •'42 
The inner expansion follows from (22), (24), and (27) as 

u-ikl3,,,/(ctk2., + k2am )W.,. (30) 

The overlap region is defined by the simultaneous limits of 
ct--. •, ect--,O +, and so the inner expansion in the overlap 
region is 

u- ( ik/3,•/ctk • )W,.. (31) 

The first term in the outer expansion is u--eu 4, where u4 is 
defined by (19), and the uniform expansion is formed by 
combining (30) with the outer expansion and subtracting 
( 31 ) from the result, to give 

u--eu• -- [ik3am fim/ak• (ak• + k2a.•) ]W•. 

--LalIi -- [ ik 3am fime2/(k 2 -- 

x(k2-k• +ek2a•,)]W,•. (32) 
The last expression is found after removing the inner vari- 
able a in favor of the frequency k through 
ct= (k2-k•)/ek• [see Eq. (21)]. 

The uniform correction to the outer expansion for each 
mode follows from (32). Combining the effects of all the 
modes and eliminating U l from the uniform expansion using 
(19) and (26) 2 yield 

u-- •ik k 2 _ 2 ß •=4 k m +k2ame 
(33) 

This is the first-order asymptotic expansion for u that is uni- 
formly valid for all k. The associated uniform expansion for 
the scattered field follows from (10) and (33) as 

•_4od_ek • • [•m Gn.W m. (34) 
m=•k•-k•m + k2ame 

III. INTERPRETATION 

A. The complex resonance frequency 

The first term of the inner solution defined by (22), 
(24), and (27) possesses a complex resonance frequency 
near the original real resonance frequency k•, at the com- 
plex value of k for which the uniform expression (32) 
becomes unbounded; i.e., the k which solves 
k -- k m / [ 1 + earn (k) ] i/2. Expanding the root in e yields, to 
first order in e, 

k = k• - «6kma m (k m ). (35) 
The imaginary part of the complex resonance frequency is 
negative definite, which corresponds to radiation damping 
caused by the fluid exterior. To see this, define q> as the 
radiated field corresponding to mode m at k = k m: 

qb = Gn'Wm, (36) 

and let Fbe the associated far-field pattern; i.e., 

4p = F(ei•r/r) + O(r-2), r-• oc. (37) 

It may be shown by simple means 3 that 

am =R+iI, (38) 

where 

a = ( {Vq, I 2 - k I= IFI2d• > 0, 
(39) 

and dtl is the element of solid angle. Equations (35), (38), 
and (39) imply that the imaginary part of the complex reso- 
nance frequency is always negative, as stated, and is simply 
related to the radiation cross section of mode m. 4 

The perturbation of the resonance frequency depends 
upon am of (26) •. If we recall that the mode Wm is normal- 
ized so that the integral of W•'Wm over Vis unity, then it is 
clear that a,, depends strongly upon the spatial distribution 
of the mode. Hence• if the mode is such that the displacement 
is fairly evenly distributed about V, then the value of am is 
expected to be significantly smaller in magnitude than if the 
mode is confined to a neighborhood of the surface. It will be 
shown below in Sec. IV that a good example of the latter type 
of mode is given by the (n, 1 ) modes of a sphere, 6•? which are 
very much like Rayleigh waves, whereas the other modes, 
(n,l) for l > 1, are examples of the former. The net effect of 
this disparity in modal distribution is that the resonances of 
the (n,1) modes are much broader than the (n,l),l> 1 re- 
sonances. 

In general, a target will possess modes associated with 
surface waves and the corresponding resonances will be rela- 
tively broad. At the other extreme are modes that have no 
normal surface displacement. These are called nonradiating 
modes and will be dealt with below in Sec. III B. However, 
there may also be what we will call "almost nonradiating 
modes." Consider an arbitrarily shaped, unsymmetric body 
with two points on its surface that have the same normal 
direction, and the line perpendicular to the surface at one 
passes through the other. Then, it is entirely reasonable, 
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especially at higher values of frequency, that there is a mode 
composed mainly of transverse waves bouncing back and 
forth between the surfaces about these points, and the result- 
ing normal surface displacement will be small. The nonra- 
diating modes of spheres and cylinders are of this type. The 
lack of symmetry in the general target will, however, necessi- 
tate that the mode also contain a "small" amount of 

compressional waves and a "small" component of normal 
displacement caused by the oblique incidence of the trans- 
verse waves at the surface. For reasons outlined in Sec. III B, 

this type of mode will always be a poor radiator of energy and 
will give rise to a very narrow acoustic resonance in the scat- 
tered field, and hence is not of great practical significance. 

B. Nonradiating modes 

It is possible that the elastic body can possess modes of 
free vibration for which the normal displ.acement on S is 
everywhere zero, as occurs, for instance, with torsional 
modes of a sphere. •3 Such modes are nonradiating, and there 
has been some discussion recently on their influence upon 
the scattered field. •4 The purpose of this subsection is to 
show, using rather crude but physically appealing argu- 
ments, that nonradiating modes may be safely ignored in the 
asymptotic theory. 

Consider a nonradiating mode as the limit of a radiating 
mode, i.e., one for which the normal displacement n-W,, is 
small. In particular, let n'Wm be of the order 5 • 1 indepen- 
dent of 6; then, it follows from (26) that am and tim are of 
order 52 and 5, respectively. The influence of this mode on 
the scattered field is thus, by (34), of order 5:/(x + i52), 
where x is roughly the relative frequency k -- k,,, and the 
dependence upon 6 has been ignored. As 5-• 0, the L: norm 
of the modal contribution, i.e., the integral of 
(X q- i•2)l: over x, is of order •5:, and so the total contribu- 
tion from this mode vanishes as 5-, 0. In other words, as a 

mode becomes nonradiating, its resonance width shrinks to 
zero, but the resonance height remains of fixed order. There- 
fore, the total energy associated with the mode vanishes. In- 
stances of such almost nonradiating modes will be presented 
in the example of Sec. IV. 

C. Comparison with the exact solution 

An exact, formal solution for the interior problem (5) 
and ( 11 ) may be constructed using the modes of free vibra- 
tion. Thus let 

u = • djWj. (40) 
j=l 

Substituting into ( 11 ) and using (18) yields 

k 2--- 2 +ik bj,,,d• , -k,,'" j=l 
(41) 

where 

bj,, = ( - Gn. Wj,n. Wm ). (42) 

Note that b•,,= am and that_b•m = b,,, which follows by 
applying Green's theorem in V. The coefficients d• can be 

found, in principle, from the infinite system of linear equa- 
tions 

• Mi,,d • = 6ikfi,, m = 1,2 ..... (43) 
j=• 

where the infinite, symmetric matrix M has elements 

= +e:'bjm. (44) 
The outer and inner, expansions of Sec. II may be seen to 

correspond to different ways of approximating the inverse 
M- •. Let us write 

M = Mo + 6M•, (45) 

where M o = diag(k 2 _ k •,k 2 _ k 22 .... ); then, the outer ex- 
pansion follows from the asymptotic approximation 

M -• = M6 -• - 6Mo •M•M• -• + O(ea). (46) 

This expansion obviously breaks down when M o becomes 
singular, which is at the real resonance frequencies k,,, 
m = 1,2 ..... The singularities may be removed by using the 
alternative expression 

M = M o + 6M•, (47) 
where 

l•lo=diag(k2-k• +6k2a•, k2-k22 +6k2a2,...), 
and 

A 

My,, = k2(bj,, - amSj,, ). (48) 
The first term in the uniform expansion (33) then follows 
from (43) with M-' •My i. An important feature of this 
approximation is that it only involves the diagonal elements 
of M, specifically the integrals am. The full, exact solution 
must, of course, require calculation of all the coupling con- 
stants bj,,,j•m. If one were to calculate these terms, then 
the expansion of M-• using (47) provides, with (43), a 
straightforward means to develop higher-order corrections 
to (33). 

D. Relation with acoustic impedances 

In the study of acoustic scattering from elastic targets 
for which the equations admit separable solutions, e.g., the 
sphere, it is well known that the complex resonance frequen- 
cy occurs when the modal specific acoustic impedances of 
the fluid and solid are identical. It will now be shown that the 

same general principle applies here also, and the frequency 
obtained by matching impedances is precisely the frequency 
of Eq. (35) to the same order in 6. 

We first define the modal specific acoustic impedances, 
beginning with the fluid. Let •b be the solution to the radi- 
ation problem 

v2•p+khp=0, x in V, 

c9½ (49) --=0o, X on •', 
can 

then the associated pressure is ikprGoo. The acoustic imped- 
ance is generally defined as the ratio of acoustic pressure to 
acoustic velocity. The specific acoustic impedance Zf (k,v o) 
at frequency k for normal surface velocity vo is defined by a 
ratio of averaged surface pressure to averaged velocity: 
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Z F = -- ikp •: [ ( -- Gvo, vo ) l ( %,Vo ) ]. (50) 

The modal specific acoustic impedance for mode m is de- 
fined as 

z(•m)(k) = ZF(k,n.W,,). (51) 

The specific acoustic impedance of the solid is defined 
similarly. Let w be the displacement in the solid for given 
normal velocity of Vo on S and zero shear tractions on $; i.e., 
w solves 

div(r(w)+k2c2w=O, x in V, 

o• -- (n-o-n)n = 0,] -- ikn-w = Vo, J x on S. (52) 
The impedance is defined again as the ratio of averaged sur- 
face pressure to averaged velocity: 

Zs(k, vo) =psC-2[( -- n'•(w)n,Vo)/(vo,Vo)]. (53) 

Note that the definitions (50) and (53) contain Pr and 
psc -•, respectively, which give Zr and Z s the correct di- 
mensions. Finally, the modal specific acoustic impedance of 
the solid for mode m is 

Z<s'")(k) -- Zs(k,n.W,, ). (54) 

The principle of matching impedances says that the 
complex resonance frequency associated with mode m is 
that value of k for which the impedances are identical: 

z•s•(k) = Z•'•(k). (55) 

Note that Zs(k,%) is imaginary for real k and Oo and so 
Z •s '" (k) is imaginary. The complex character of the reso- 
nance frequency is due to the fact that, for real k and 
Zr (k,vo) is complex valued rather than purely imaginary. 

The condition (55) may be expressed, using (52) and 
the definitions of the acoustic impedanees, as 

(n.tr(w)n,n-W,.) = eikc2a,. (k), (56) 

where tr(w) follows from (52) with %----n.W.•. When 
k = k•, the left member of (56) vanishes since tr(Wr• )n 

0 and thus = Zs (k.•) = 0. The surface integral may be 
expanded near k = k.• so that the root of (56) becomes 

k - kr• = eikr•c2a,. (k.•)/(n.•(w')n,n-Wr•} 
(57) 

Here, w' = dw/dk at k = kr•, and the equations for w' follow 
by differentiating (52), using w 
+ (k -- kr• ) w' + ..., and then setting k = k,,: 

divtr(w')+k•c%'= --2ic2Wm, x in V, 

tr(w')n -- [n.t•(w')n]n = 0,} (58) x onS. 
II'W' O, 

Application of an identity similar to (18), and use of (16) 
implies that the integral in ( 57 ) is equal to -- 2ic •, and so the 
complex resonant frequency is again given by k- k m 
= -- •ek • a,. ( k • ) + O (e • ), in complete accord with ( 35 ). 

This result shows that the shifted position of the real reso- 
nant frequency and the width of the associated resonance 
agree asymptotically with predictions based upon imped- 
ance matching. 

The resonant amplitude may also be determined 

through the use of impedances. The usual type of pointwise 
impedance boundary condition is 

O•tøt -- ikp•r 4 tøt, (59) 
c•n Z 

where Z is the surface acoustic impedance, assumed con- 
stant. The impedance is not uniform for the general case 
under consideration here, but there is an averaged imped- 
ance boundary condition 

•--•'sm ) (•tøt,l!*Wrn). (60) 
Let the total field be 

•tot = •inc _[_ •O •_ •e ' (61) 

where •b • is the extra field to be determined. It follows from 
(26) and (60) that 

- = 
(62) 

If it is assum• that the extra field • is generat• by the 
reson•t mode m; i.e., 

• -- i•.W•A, (63) 
•n 

then the amplitude A follows from (50) and (62) as 

--Zs )(n-W•,n.W•), (•) A =pv•(k)/(Z• • 
which can easily be shown to be asymptotically equivalent to 
Ao of (27). 

IV. EXAMPLE: A SPHERICAL TARGET 

A. General theory 

The formalism of Sec. lI is easily applied to the case of 
an isotropic spherical target subject to plane-wave incidence. 
Let 0 = 0 be the direction of incidence, where 0, 0<0<•r is 
the spherical polar angle. Owing to the symmetry of the scat- 
tering configuration, there is no dependence upon the azi- 
muthal angle in any of the field variables. The rigid Green 
operator for an arbitrary function g defined upon S, the unit 
sphere (i.e., we are explicitly taking the reference length L 
equal to the sphere radius) can be expressed by first repre- 
senting g in terms of spherical harmonics of the required 
symmetry: 

g = • g,P,, (cos 0). (65) 
Then, the as,ociated rigid exterior field is 

Gg= • h?(kr) ,-o kh •"'(k) g"• (cos •), (66) 
where h •l• are spherical Hankel functions. In particular, an 
incident plane wave of amplitude B is 

•inc= • e.j.kr)P.(cosO), e.= (i)"2n + 1)B, 
(67) 

and so the rigid scattered field is 
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j; (k) ½o = -- e. •h(l)(kr)P.(cosO). (68) 

The modes of free vibration of an elastic sphere may be 
split into families such that, for each n = 0,1,2 ..... there is an 
infinite number of modal frequencies k = k•t, l = 1,2,3,,.., 
and define kL and k r by k•t = (CL/cF)kL = (cr/cr)kr, 
where % and c r are the longitudinal and transverse wave 
speeds of the isotropic solid. The modal frequencies are roots 
of 7 

d•2d•3 -d•3d•2 = 0, (69) 

where the terms d • are defined in Appendix A, and the asso- 
ciated modal displacement is 

W,. = V&• + VA VA (x½), (70) 
where 

•L = •J,, ( kr r)P• (cos 0), 

½ = gyj. (krr)P.(cos 0). (71) 

For n > 0, 

d n d•2 12 

,% -- -- -- , (72) 
d t'l' 3 d •3 

and 7/in (71) is the normalization constant required by 
(17). It is shown in Appendix B that 

7,= [(2n q- 1)/4rrl•/2[F•(k•) q- k•j,(kL)j'•(k•) 
+ A 2n(n + 1)[F.(kr) +j2.(kr) 

2 + kTj. (kr)j,; (kr) + •j,, (k•)j,, (k r ) , 
(73) 

where F• (x) is defined in (B6). For n = 0, the characteristic 
equation (69) factors into d ø• 2 = 0, or d •o3 = 0. The latter 
set of roots do not correspond to actual modes, since any ½ in 
(70) that does not depend upon 0 automatically gives zero 
displacement everywhere in V. The only physical modes for 
n = 0 are the roots of d 72 = 0, and these are pure compres- 
sional modes withA = 0 in (71) and (73). 

Once the modal displacement is known, it is straightfor- 
ward to compute the quantities a,• (k) and/3,, (k)of Eq. 
(26) with rn-, nl, since these only involve surface integrals 
of the type (B3) and (B4). For each mode let us define the 
constant 

6.• = [4rr/(2n + 1)]1/27, 

x[kLi;,(k•)+gn(n+l)j.kr) ]. (74) 
The quantity •5. should not be confused with the Kronecker 
delta; it will only be used in this section and always with the 
subscripts nl. Equations (26) •, (65), (66), (70), and (71 ) 
imply that 

a.t(k) : - [h (•l)(k)/kh (nl"(•)]l•2n/, (75) 
while (26) 2, (65)-(67), (70), (71), and the Wronskian re- 
lation for spherical Bessel function½ 5 yield 

/3,t(k) = [ie,/k2h (•l)'(k) ] [4rr/(2n + 
(76) 

In the same manner, it follows that 

Gn.W,, t (2n + l•'/2fi h(.')(kr) =lx•'• j ,a •,')'(k-•-'• P.(cos0). (77) 
Combining all of these results and using (29) yield the 

uniform asymptotic approximation to the scattered field: 

½•. o '•?;(• h•')(k)h•,')'(k) 

• anl ) (k k = -- ,,t + ek2a•t)' 
Xe. •)(kr)P.(cos 0). (78) 

The first term in the large parentheses represents the rigid 
scattered field. 

B. Comparison with previous results 

A far-field form function f(k,O) and its nth spherical 
harmonicf.(k) may be defined by 

qb•Bf(k,O)(d•/r), r-•m; f= • f.P,,(cosO). 
(79) 

Define the phases •. (k) by 

eag"=-h(•2)'(k)/h(•l)'(k), n = 0,1,2 ..... (80) 
Then, it follows from (78)-(80), the Wronskian relation, 
and the asymptotic behavior of Hankel functions •s that 

f._ (2n+ 1) el2/;,,( e i•"sin(•.) k 

l • iek2a,,, ), (81) -3 1---ix. t=•kZ-k2nl+6k2a•t 
where 

_k 2 
x.(k) - (Ih •')(k)12) '. (82) 

2 

The scattering of acoustic waves from an elastic sphere 
is a classical problem with an exact analytical solution 16 and 
a comprehensive literature, which is documented by Brill. 
and Gaunaurd. •7 Motivated by previous analyses in the 
quantum theory of scattering, Flax et al. 6 and other½ have 
rearranged the solution into an approximate form suggestive 
of a rigid background field with an additional resonance con- 
tribution. In particular, Flax et al. 6 obtained 

f,_ (2n + 1) eag,,(e_• s•n(•,) k 

• 2F" (83) 
/=1 knl 

where k •t is close to, but not exactly the same as, k.•, and 
is defined in Ref. 6. Comparing (81) and (83), the two ex- 
pressions are seen to be very similar if x. •0 and 

F,], = -- iek.•a.•. (84) 

The former condition is satisfied if k.t>> 1, since x. (k) 
= O(k - • ) for k>> 1. In the same limit, i.e., k.t >> 1, it is clear 

from (75) that 
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a,, t ( k,, t ) • ( i/knt )62n•, (85) 

and so a,a(k,•) is almost purely imaginary, and (84) be- 
comes very simply 

In summary, the uniform asymptotic approximation (81 ) is 
equivalent to the approximation (83) of resonance scatter- 
ing theory 6 if the resonance frequency k.; is large. 

It is well known that the exact complex resonance fre- 
quencies are roots of 7 

n n ,, kh }•)'(k) ' (87) •,d•2d33 -- d23d32 

where d • are defined in Appendix A. Equation (69) for the 
frequencies of free vibration follows by setting ß = 0, while 
the complex roots of (87) for ß,• 1 can be found by a regular 
perturbation procedure. The resulting expression, when 
compared with (35) and (75), implies the identity 

ti2.1 = - 2 • r ..... k (d22d33-d23d32) (d •2d33 
-d73d•2 )lk=k• , (88) 

which may be shown analytically for n = 0, and we have 
verified (88) numerically for the remaining 22 roots of Table 
I with n>l. 

C. Numerical results 

Since the exact solution for the elastic sphere can be 
obtained as a sum of partial waves, 16 this canonical problem 
is used here as a check on the asymptotic theory. Any phys- 
ical quantity associated with the scattered field depends 
upon the singularities in k space associated with the per- 
turbed complex resonance frequencies of Eq. (35). The acid 
test of the asymptotic approximation is therefore whether or 
not it accurately predicts the locations of these poles in the 
complex k plane. The computations summarized in Table I 
are for a tungsten carbide sphere in water, an example that 
has been discussed extensively in the literature. •-7'•7-•9 The 
relevant densities are Pr = 1 g/cm 3, Ps = 13.80 g/cm :, so 
that ß = 0.072 464 .... and the wave speeds are cr = 1.476 
X 10 s cm/s, c• = 6.860X 10 • cm/s, and c r = 4.185X 10 s 
cm/s. 

The real resonance frequencies of free vibration less 
than k = 32 are listed in the left column of Table I. The 

complex resonance frequencies are slightly shifted from 
these values, and both the exact and asymptotic results are 
shown in Table I. Note the uniformly excellent agreement, 
particularly for the imaginary parts of the frequencies. The 
real part of the perturbations are generally much less than 
the imaginary parts because even for the lowest modal fre- 
quency of a radiating mode, k21 •--- 7.46, the approximation 
(85) is reasonable, and it becomes more accurate as k,• in- 
creases. Also shown in Table I are the numbers 6•n•, which 

TABLE I. Comparison of the exact and asymptotic theories for the first 24 modes of free vibration of a tungsten carbide sphere in water. The real, in vacuo 
resonance frequencies are k, where n is the spherical harmonic (there are actually no I = I modes for n = 0 and 1, but this ordering convention is adopted in 
order to remain consistent with Ref. 7). The associated exact complex resonance frequencies are k ,•,• and the predictions of the asymptotic theory are k 
= k, - (e/2)k,ta• (k,•), which follow from Eqs. (35) and (73)-(75). The numbers •5,,• are defined in Eq. (74). Some of the roots have been previously 
reported: k,• and k •, n = 0,1,..,7, were presented by Gaunaurd and 0herall (Ref. 7), although we note that errors in k23 , k •, and k • are here corrected; 
k •, k ,•], and k •.• were given by Williams and Marston. 

0 3 11.469 727 
0 6 28.031 617 
I 2 9.415 125 
I 3 18.274 795 
I 4 21.635 143 

I 5 30.268 063 

2 I 7.466 222 

2 2 13.405441 

2 3 22.984 267 

2 4 26.854 539 
3 I 11.042 275 

3 2 17.873 799 
3 3 26.985 319 
4 I 14.097 086 
4 2 22.422603 
4 3 30.769 789 
5 I 16.959 476 
5 2 26.903 860 
6 1 19.732 099 
6 2 31.260255 
7 1 22.455 371 
8 1 25.148 206 

9 I 27.820 672 

10 I 30.478 666 

- 0.009 861 -/0.114 176 

--0.002 842 -/0.077 151' 

- 0.002 056 --/0.019 219 

--0.004295 --/0.081 086 

--0.000860 --/0.012 550 

-- 0.000032 --/0.001 354 

--0.012 034 --/0.080 989 

-- 0.000412 --/0.004907 

--0.001 934 --t0.054 967 

-- 0.002 136 --/0.042 597 

--0.011066 -/0.112265 

-- 0.000002 -/0.000017 
--0.001 101 --/0.038 497 

--0.010 193 --/0.134 169 

-- 0.000212 --/0.003 919 

--0.000732 --•.028 428 

--0.009 434 --/0.152 263 

--0.000536 --/0.012 046 

--0.008 795 --/0.168 743 

- 0.000860 --/0.022 432 

--0.008 255 --/0.184 422 

- 0.008 108 --/0.199 700 

-- 0.007 671 --/0.214 400 

- 0.007 467 --/0.229 000) 

-- 0.009 944 -/0.114 050' 

--0.002 752 --/0.077 143 

--0.002 086 --/0.019 208' 

--0.fi04461 --/0.081 033' 

--0.000584 --/0.012 581' 

-- 0.000045 --/0.001 353' 

--0.012 081 --/0.080 799' 

- 0.000379 --/0.004913' 

--0.002 416 --•.054911' 

-- 0.001 601 --/0.042 632' 

--0.011246 --/0.112 079' 

-- 0.000001 -/0.000018 
-- 0.001449 -- •.038 466 

--0.010566 --/0.133 974 

-- 0.000182 --/0.003 922 

--0.000943 --/0.028 413 

--0.010014 --/0.152 063 
--0.000467 --/0.012 052 
--0.009 581 --•.168538 

--0.000750 --/0.022 438) 
-- 0.009 238 --/0.184 212) 
--0.008 960 --/0.199 425) 
--0.008 730 --/0.214 339) 
-- 0.008 537 --/0.229041) 

3.171 712 

2.131 854 

0.530 402 

2.236 591 

0.347 239 

0.037 349 

2.157 548 

0.134 121 

1.509 868 

1.173 412 

2.969 068 

0.000478 
1.054402 

3.530 248 

0.106 317 

0.776 732 

3.990 697 

0.326 172 

4.409 033 

0.606 531 

4.806 767 

5.192 789 

5.571 299 

5.944 529 
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are independent of the fluid parameters. There is obviously a 
large range in the values of •52,/. Thus the extremely small 
value for the (3,2) mode means that it is almost nonradiat- 
ing and so is expected to have little influence on the scattered 
field for reasons given in Sec. III. Conversely, the (n,1) 
modes have uniformly large, i.e., of order unity, values of S•/ 
and are expected to strongly affect the scattered field. These 
expectations are borne out by Fig. 2, which compares the 
exact backscattering amplitude of Fig. 1 with the amplitude 
given by the uniform asymptotic expansion. The latter was 
computed from Eq. (78) using the 24 radiating modes of 
Table I and the exact rigid scattering of Fig. l, which was 
calculated by summing the first 50 spherical harmonics. 

v. DISCUSSION 

The test case of the sphere illustrates the accuracy of the 
asymptotic method; however, the full potential of this tech- 
nique lies in its application to nonsymmetric 3-D targets for 
which "exact" numerical methods would be prohibitively 
time consuming and costly. One possible use for which the 
technique is well suited would be in determining the scatter- 
ing from a target of a given shape, of which the interior is a 
highly complex body. One might also want to slightly modi- 
fy the interior and see the result of such alterations on the 
response. The conventional approach to tackling such a 
project is to solve the fully coupled fluid-elastic scattering 
problem each time using one of various alternative numeri- 
cal schemes. With the present method, one need only com- 
pute the exterior Green's operator G once, since the target 
shape is fixed. In practice, this could be achieved by discre- 
tizing the surface S and computing a matrix Green's func- 
tion that gives the pressure at every point for a force at any 
single point, subject to the condition that the normal velocity 
is zero everywhere on S. Then, for each realization of the 
interior, the modes of free vibration could be found using 
existing fast and efficient codes. The modes and the exterior 
Green's function are then combined to compute the surface 
integrals of (26), after which the uniform expansion of (34) 
can be quickly determined. 

The key step in applying the asymptotic method is in 
calculating the terms fi,, and a,• of (26). The magnitude of 
a,• is closely.related to the magnitude of the normal surface 

EXACT 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 
k 

FIG. 2. The backscattering amplitude for a tungsten carbide sphere in wa- 
ter. The dashed curve is the exact result, as shown in Fig. 1, and the solid 
curve is the asymptotic approximation obtained using the first 24 modes of 
the sphere, i.e., the modes of resonance frequency k,a < 32. The mode asso- 
ciated with each feature can be identified by referring to Table I. 

' ASYMPTOTIC 

WC 

EXACT 

0.0 .0 10.0 15.0 20.0 25.0 30.0 

k 

FIG. 3. The backscattering amplitude for a tungsten carbide sphere. The 
exact solution is the dashed line, and the solid curve is the asymptotic result 
using the 12 modes of frequency k,,/< 32, which are of sufficient breadth 
that •5:•/> 2. This removes very narrow resonances but retains the significant 
Rayleigh-wave resonances (see Table I). 

displacement and will be small if this displacement is small. 
Therefore, even before the scattered field is calculated, some 
estimate of the radiation strength of each mode may be sur- 
mised from the surface integrals (n.W,,n.W,,), subject to 
the normalization of Eq. (17). In the example of the sphere 
considered in Sec. IV, the resonance width is very accurately 
given by (e/2)•52,• [see Eqs. (35) and (85) ], and the ampli- 
tude is proportional to 62,• also. Thus the broader resonances 
are also the stronger resonances, and a reasonable approxi- 
mation might be to disregard very narrow resonances, em- 
phasizing the effect of the strong resonances. Figure 3 shows 
the asymptotic backscattering amplitude computed using 
only the first 12 resonances below k = 32, which have 62,• > 2 
(see Table I). The strong (n, 1 ) Rayleigh resonances remain, 
but some of the other resonances of lesser significance, such 
as (1,2) and (2,2), have disappeared from the approximate 
solution. Despite this, the overall appearance of the asymp- 
totic result in Fig. 3 is very good considering that it uses only 
half of the modes in that frequency range. In general, the 
narrow modes will not be significant since internal dissipa- 
tion tends to wipe them out, leaving only the broader reson- 
ances. s 

In conclusion, the numerical results show quite con- 
vincingly that the present asymptotic method is suitable for 
targets such as tungsten carbide in water, with e = 0.07. Fu- 
ture work will examine the applicability of the theory to tar- 
gets for which e is not quite so small. 

APPENDIX A 

The elements d ,• and d ,•3, i = 1,2,3, for an elastic sphere 
are 7 

d;2 

d•3 

d•2 

dg3 

dg2 

= [2n(n + 1) - k3,]j,,(k L) - 4kaj;(ka), 
= 2n(n + 1)[k•(kr) -j,,(kr)], 
= kLj•(kL), 

= n(n + l•.(kr), 

=2•n(kL) --kLj•(kL)], 
= 2k•(kr) + [k3-- 2(n 2 + n - 1)]j,,(kr). 
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APPENDIX B 

Each mode W.• of an arbitrary isotropic elastic body V 
may be expressed in terms of potentials 

W,• =V•L +VAf, (B1) 

where div f = 0, and both •L and f satisfy Helmholtz equa- 
tions. Substituting (B 1 ) into (17) and integrating by parts 
yields the normalization constraint 

;v 2 2 k•f2)dV+fsn. i 2 (k•q•L + [•V(•L q-f2) 

+ 2•LYAf-- (f.V)f]dS= 1. (B2) 
For the particular case of the sphere, •L and f follow from 
( 70)- (72). Using the identities •5 

p2,(cos O)d cos 0 - -- (B3) 
-t 2n+ I ' 

f_ (.• )2 2•(• q- l, • d p•(cosO) dcosg= , (B4) 
• 2n+ 1 

it is fairly easy to show that the volume integral in (B2) 
becomes 

fv 2 2 k •f2)dV (k LqbL + 

_ 47_• [F.(kL)+22n(n+l)F.(kr)], (BS) 
2n+l 

where 2ø 

F.(x) =__1 t)t2dt 

=«([x 2-- n(n + 1)]i2.(x) 

q- x2j;2(X) q- Xjn (x)j; (x)}. (B6) 

The surface integrals in (B2) can be evaluated directly by 
again using (B3) and (B4), and, when combined with (B5), 
the normalization factor 7 of (73) is obtained. 
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