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An asymptotic method of solution is presented for scattering of acoustic waves from solid
elastic targets. The asymptotic parameter is the ratio of the fluid density to that of the solid,
and the solution is developed using the method of matched asymptotic expansions in this small
quantity. The perturbations to the background rigid scattered field are regular for frequencies
away from the frequencies of free vibration of the target in-vacuo, but, near these frequencies,
the perturbation is singular in that an asymptotically small value of the density ratio produces
a change in the scattered field of order unity. By combining the regularly and singularly
perturbed expansions, a solution is obtained that is uniformly correct at all frequencies. The
elements in the uniform solution depend only upon the in vacuo modes and frequencies, and
the Green’s function for the equivalent rigid target. At no stage is it necessary to solve the fully
coupled system. An analysis of the asymptotic approximation for a spherical target shows that
it is equivalent in the high-frequency limit to the approximation predicted by resonance

scattering theory.

PACS numbers: 43.20.Fn

INTRODUCTION

The scattering of acoustic waves from an almost rigid
elastic target displays all the features of a singular perturba-
tion problem. In order to see this, let us assume for simplicity
that the elastic target has a much greater mass density than
the fluid and define the small parameter € as the ratio of fluid
to solid density. The scattering process reduces to that of
scattering from a perfectly rigid, immovable object when € is
zero identically. When € is small but nonzero, then, for most
values of frequency, the target will still scatter as a rigid
object. The scattered field possesses an infinite number of
damped resonance frequencies, each located very close to a
frequency of free vibration of the solid body, and near every
resonance frequency there is a neighborhood in frequency
space, of order ¢ in width, as will be deduced later, within
which the scattered field is quite different in form compared
to the rigid scattered field. Thus, when viewed as a function
of ¢, the scattered field for the rigid target is a singular case in
the sense that the solution for small but nonzero € is not
everywhere close to the unperturbed rigid response. In prac-
tice, the effect of these singular perturbations, or resonances,
can alter the scattered field to such an extent that it hardly
resembles the rigid response, as illustrated in Fig. 1.

This paper describes the application of the method of
matched asymptotic expansions to the scattering of acoustic
waves from elastic targets for which € is a small parameter.
Similar methods have previously been demonstrated for
acoustic scattering from membranes and plates in an infinite
rigid bafle’ and from penetrable acoustic targets.* Here,
the scattered field is obtained in the form of an asymptotic
expansion in € which is composed of a rigid background
combined with an “inner” solution that is valid for frequen-
cies near the resonant frequencies of the target in vacuo. The
term “inner” is used by analogy with boundary layer theory,
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for which the inner solution usually exists in a region of
space. The corresponding region of validity in the present
problem is an interior layer in frequency space. The rigid
background field, which assumes the form of a regular per-
turbation in ¢, will be called the outer solution, again by
analogy with boundary layer theory.

It is well known that an incident acoustic wave can ex-
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FIG. 1. The far-field backscattering amplitude [see Eq. (79)] for the rigid
sphere and for a tungsten carbide sphere in water, € = 1/13.8. The fluid
wave number k is nondimensionalized with respect to the radius of the
sphere.
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cite the in vacuo resonances of elastic spheres, cylinders, and
shells, and these resonances exhibit distinctive peaks and
troughs in the scattered far-field amplitude. Reference 5 pro-
vides a current and extensive bibliography on this subject.
The effect of the fluid loading on elastic bodies shifts the
resonant frequencies from the real-valued in vacuo frequen-
cies to slightly perturbed complex values, and these may be
calculated numerically for simple targets like the sphere and
cylinder, for which the acoustic and elastic equations of mo-
tion are separable,®® and also for spheroids and related
shapes using a T-matrix approach.® The present method pro-
vides a means to find the perturbed complex frequencies for
arbitrarily shaped targets assuming that the in vacuo reson-
ances are known and that the corresponding acoustic scat-
tering from a rigid target can be solved. In general, it is prob-
able that both of these separate tasks can be reduced to
numerical problems, each of which is far simpler than the
coupled acoustic-elastic scattering problem.

The existence of identifiable resonances in the acoustic
far field provides a possible means of inferring something
about the target geometry and material properties. It is
therefore of some importance to have a fast and stable meth-
od for modeling the scattering problem in the neighborhood
of resonance frequencies for targets of complex geometry.
The present method is by its very nature stable near these
frequencies, and, provided one has an efficient code for gen-
erating the /n vacuo modes and modal frequencies of the
elastic body, it should be significantly faster than the nu-
merical solution of the coupled problem. In addition to its
computational possibilities, the method offers a simple
means to understand the character of the scattered field near
resonance. It will be shown in Sec. III that there is a com-
plete correspondence between the inner solution near reso-
nance and the generalized method of acoustic impedance
matching.

The scattering problem is formulated in the next sec-
tion, and the asymptotic solution is derived in Sec. II. Sec-
tion III contains a discussion on some of the main features of
the asymptotic result. The application of the general method
to the specific case of a spherical target is presented in Sec.
IV, and the asymptotic approximation is analytically com-
pared with the approximate solution of resonance scattering
theory.®

I. FORMULATION OF THE PROBLEM

The scatterer occupies the volume V with boundary S
and exterior ¥. All field variables are time harmonic, and the
dependence exp( — iw¢) will be omitted. The exterior region
¥ is occupied by an ideal inviscid fluid of density p, sound
speed ¢, and the total acoustic field there is defined by the
velocity potential

¢tot — ¢inc + ¢’ v= v¢t0t’ (1)

where ¢™™ is the incident wave and ¢ is the scattered field,
which satisfies

V¢ + k% =0, xin ¥, (2)
with the radiation condition that ¢ be outgoing at infinity.
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The wave number in (2) is K = w/cf, and the acoustic pres-
sure associated with ¢ is p = iwp 4.

The homogeneous linearly elastic solid in Vis of density
ps and C is the fourth-order tensor of moduli, which pos-
sesses the usunal symmetries for linearly elastic, anisotropic
hyperelastic solids; i.e., C has at most 21 independent ele-
ments. In rectangular components the moduli are Cy,,
where i, j, k, and | assume the values 1, 2, and 3, and the
symmetries imply that Cj, = C;; = Cy;. The displace-
ment field is u(x), the stress is ¢ = o(u) = Ce, where e is
the strain tensor, e = %[ (Vu) + (Vu)7], and the equations
of motion are

divo(u) + w’psu=0, x in V. 3

The conditions relating the interior and exterior fields
along the surface .S are that the displacement and tractions
be continuous: '

a

a inc v
T

¢ = — iwuen,
x on S, (4)

. 1
(prd™ + prdp)n = —— om,
iw

where n is the unit normal to S.

Let L be a typical length scale of the scatterer, e.g., its
average radius, and define the time unit T'= L /¢. Intro-
duce nondimensional parameters x' =x/L, k' =KL,
¢ =¢T/L* v =u/L,andC' = C/pscs, wherecy is a typi-
cal sound speed in the solid. Substituting these into Egs.
(1)-(4), and dropping the primes, Eq. (2) is recovered for
¢, and the equation for u becomes

diva(u) + k%c2u=0, x in V, : (5)
where
c=cgp/cs,

and the interface conditions are

L S
" " x on S, (6)

an,

1
— ikc?

6‘(¢inc + ¢)ll —

with € defined as

€ =pp/Ps. (7
Let G be the Green’s operator that solves the exterior
Neumann radiation problem:

V¥ +k*=0, x inV,
i=g, x on §, (8)
an

in the form f= Gg, and f'satisfies the radiation condition at
infinity. A specific example of G is presented in Sec. IV, and
generally Gg may be expressed as an integral over .S involv-
ing a Green’s function.* The field scattered from a rigid tar-
get of the same shape as V'is then ¢,, where

a¢inc
= _@G . 9
¢o n &)
The interface condition (6), thus implies
¢ = ¢ — ikGuen, (10)
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and, consequently, the traction continuity condition (6),
becomes

a(u)n= — ikc®e(¢™ + $, — ikGun)n, x on S.
(1)

It will be assumed for the remainder of the paper that the
rigid Green’s operator G is known, so that the scattering
problem may be reduced to a problem within and on the
surface of V, viz. Egs. (5) and (11).

Il. ASYMPTOTIC ANALYSIS

We develop a solution to (5) and (11) that is uniformly
valid in frequency & under the assumption that € of (7) is
small; i.e., € € 1. The solution is composed of matched inner
and outer asymptotic expansions'"'? in frequency £, the in-
ner regions in frequency space being defined by the in vacuo
resonance frequencies of V. The theory outlined here is
closely related to an earlier theory for acoustic scattering
from acoustic targets,* although the form of the final uni-
formly asymptotic solution is actually quite a bit simpler
than that of Ref. 4.

A. Quter solution

Assume a regular asymptotic expansion

n=eu, + €u, + . (12)
Substituting (12) into the equations of motion (5) and iden-
tifying the different order terms in € implies that (5) is satis-
fied separately by each u; for j = 1,2,... . The boundary con-
dition (11) becomes

o(u)n = — ik*[ ("™ + $4)8;; — ikGn-u, , ]n,

x on S, (13)
where j=1,2,..., up: =0, and §; is the Kronecker delta.
These interior boundary value problems may be solved se-
quentially in j, and thus, in principle, the outer expansion is

well defined. The associated outer expansion for the scat-
tered field is

p=do+ep, +Eh+ -, (14)
where

In practice, the rigid scattered field ¢, will be all that is
required of the outer solution, since the additional terms are
O(¢) in comparison. However, problems arise at those fre-
quencies for which (5) has nonzero solutions for zero
boundary tractions. To see this, let k,, be a frequency for
which there is a nonvanishing solution W,, to

dive(W,) +k2,*W,_ =0, xin V, (16)
o(W,)n=0, x on S
Then, k,, is a resonance frequency corresponding to free

vibrations of ¥and W, is the modal displacement, which we
normalize by

fwm-wm av=1. (17)
v
In particular, it follows from (5) and (16) that
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J div[o(v)W, —a(W,)u,]dV
Vv
:f kL — k)W, dV
| 4

=me-o(uj)ndS. (18)
s

For the remainder of the paper, it will be assumed that the
resonant frequencies are simple, and thus the body does not
exhibit degenerate modes. It can then be shown that the
modes are orthonormal; i.e., {,W,,*W,  dV =§,,,andsoa
formal eigenfunction expansion for u;, j = 1,2,..., may be ob-
tained from (18) and (13):

L& ((Bo+¢™)6; — ikGnen;_ ,neW,,)
=lkmz] JkZ_kZ J

; Ww,.,

(19)

where u,: = 0 and

(fg): = Lfg ds.

It is clear from (19) that u;, j>0, become unbounded as
k—k, . The outer expansions (12) and (14) thus break
down near the frequencies of free vibration of ¥, and another
type of asymptotic expansion is required there.

(20)

B. Inner solution

The inner solution specifically considers frequencies
near a resonance frequency k,,, kK — k,, = O(€). It is clear
from the form of the breakdown of the outer solution that the
critical dependence of the solution is through & in Eq. (5).
The appearance of k in the boundary condition (11) does
not seriously effect the solution near a resonance frequency.
For these reasons, £ in Eq. (5) will be replaced by &, where

2= (1+ae)k?, (21)

and « is a tuning parameter that measures the distance from
the in vacuo resonance frequency. The parameter k is kept as
is in the boundary condition (11). We now assume the an-
satz

u=U0+EU1+"'- (22)
Substituting (21) and (22) into (5) and invoking (11)
implies a sequence of interior problems for U,j=012,.:
diva(U)) + k.U, = —ak 2 U,

i_1, Xin ¥,

TR . (23)

o(U)n= —ikc*[(¢™ + ¢4)8,, — ikGn'U,_, ]n,
x on S,
where U_,: = 0. The first solution U, satisfies a homoge-

neous equation in ¥ and homogeneous boundary conditions
on §, and therefore

U, = AW (24)

m?

where the amplitude 4, = 4,(a) has yet to be determined.

Proceeding to the next order in the sequence of asymp-
totic equations (23) implies that U, satisfies an inhomogen-
eous equation in ¥ and inhomogeneous boundary conditions
on S. The unique solution to this boundary-value problem
must in some sense be orthogonal to the nontrivial solution
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W, of the homogeneous problem. The precise form of the
desired solvability condition for U, may be obtained by con-
sidering the identity (18) with u; replaced by U,. Expanding
the integrand in the left member of (18) and using (16),
(17), (23), and (24) yields

—ak? *A,=k*Pa, A, — ik*B,,,
where

a,(ky=(—GnW,_,nW_ ),

B (k) = (4" + $onW,,).
An explicit equation is then obtained for 4, from (25):

(25)

(26)

A, = ikB,,/(ak?, + kZa,,). (27)
Finally, the inner expansion for the radiated field is

g=0o+ b+, (28)
where

D, = o — ikA,GRW,,. (29)

C. The uniform expansion

A solution that is uniformly valid in kK may be construct-
ed by assuming the existence of an overlap region near k,,, in
which both the inner and outer expansions are asymptotical-
ly valid. There is some degree of arbitrariness in exactly how
one arrives at a uniform expansion, and so to allay any ambi-
guity, we define it as the sum of the inner and outer expan-
sions minus the inner expansion in the overlap region.'"'?
The inner expansion follows from (22), (24), and (27) as

u~ikB, /(ak? + k?a,,)W,,,. (30)

The overlap region is defined by the simultaneous limits of
a— w0, €¢—07", and so the inner expansion in the overlap
region is

u~ (ikf,, /ak?)W,,. (31)
The first term in the outer expansion is u~ eu,, where u, is
defined by (19), and the uniform expansion is formed by

combining (30) with the outer expansion and subtracting
(31) from the result, to give

u~eu, — [ik’a,, B, /ak’, (ak’, + k?a,)|W,,
~eu, — [ik’a,, B, €/(k*— k%)
X(k*—k3 +€k?a,)|W,,. (32)
The last expression is found after removing the inner vari-
able o in favor of the frequency k& through
a=(k*—k2%)/ek? [see Eq. (21)].
The uniform correction to the outer expansion for each
mode follows from (32). Combining the effects of all the

modes and eliminating u, from the uniform expansion using
(19) and (26), yield

= B.,
A= k2 — k2 +kla,e

u~ ek

(33)

This is the first-order asymptotic expansion for u that is uni-
formly valid for all k. The associated uniform expansion for
the scattered field follows from (10) and (33) as
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> B
~o + €k?
b~do mz:lkz—ki” + k2a,€

GnW,. (34)

Ill. INTERPRETATION
A. The complex resonance frequency

The first term of the inner solution defined by (22),
(24), and (27) possesses a complex resonance frequency
near the original real resonance frequency &, at the com-
plex value of k for which the uniform expression (32)
becomes unbounded; 1ie., the k& which solves
k=k,/[1+ ea, (k)]'"”. Expanding the rootin € yields, to
first order in €,

k=k, —lek, a,, (k). (35)

The imaginary part of the complex resonance frequency is
negative definite, which corresponds to radiation damping
caused by the fluid exterior. To see this, define ® as the
radiated field corresponding to mode m at k = k,,:

b =G6nW,,, (36)
and let F be the associated far-field pattern; i.e.,

b =F(e*/r) + O(r %), r- . (37)
It may be shown by simple means® that

a, =R+l (38)
where

R =J (IVO? — k2|D[)dV, I= kf IFFdQ >0,
v 41
(39)

and d(} is the element of solid angle. Equations (35), (38),
and (39) imply that the imaginary part of the complex reso-
nance frequency is always negative, as stated, and is simply
related to the radiation cross section of mode m.*

The perturbation of the resonance frequency depends
upon a,, of (26),. If we recall that the mode W,, is normal-
ized so that the integral of W, W, over Vis unity, then it is
clear that a,, depends strongly upon the spatial distribution
of the mode. Hence, if the mode is such that the displacement
is fairly evenly distributed about V, then the value of a,, is
expected to be significantly smaller in magnitude than if the
mode is confined to a neighborhood of the surface. It will be
shown below in Sec. I'V that a good example of the latter type
of mode is given by the (n,1) modes of a sphere,®’ which are
very much like Rayleigh waves, whereas the other modes,
(n,1) for /> 1, are examples of the former. The net effect of
this disparity in modal distribution is that the resonances of
the (n,1) modes are much broader than the (n,0),./> 1 re-
sonances.

In general, a target will possess modes associated with
surface waves and the corresponding resonances will be rela-
tively broad. At the other extreme are modes that have no
normal surface displacement. These are called nonradiating
modes and will be dealt with below in Sec. II1 B. However,
there may also be what we will call “almost nonradiating
modes.” Consider an arbitrarily shaped, unsymmetric body
with two points on its surface that have the same normal
direction, and the line perpendicular to the surface at one
passes through the other. Then, it is entirely reasonable,
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especially at higher values of frequency, that there is a mode
composed mainly of transverse waves bouncing back and
forth between the surfaces about these points, and the result-
ing normal surface displacement will be small. The nonra-
diating modes of spheres and cylinders are of this type. The
lack of symmetry in the general target will, however, necessi-
tate that the mode also contain a “small” amount of
compressional waves and a “small” component of normal
displacement caused by the oblique incidence of the trans-
verse waves at the surface. For reasons outlined in Sec. III B,
this type of mode will always be a poor radiator of energy and
will give rise to a very narrow acoustic resonance in the scat-
tered field, and hence is not of great practical significance.

B. Nonradiating modes

It is possible that the elastic body can possess modes of
free vibration for which the normal displacement on S is
everywhere zero, as occurs, for instance, with torsional
modes of a sphere.’? Such modes are nonradiating, and there
has been some discussion recently on their influence upon
the scattered field.'* The purpose of this subsection is to
show, using rather crude but physically appealing argu-
ments, that nonradiating modes may be safely ignored in the
asymptotic theory.

Consider a nonradiating mode as the limit of a radiating
mode, i.e., one for which the normal displacement n-W ,, is
small. In particular, let nW,, be of the order 4 €1 indepen-
dent of ¢; then, it follows from (26) that ¢,, and 3, are of
order &% and 8, respectively. The influence of this mode on
the scattered field is thus, by (34), of order 5%/(x + i§%),
where x is roughly the relative frequency k — k,,,, and the
dependence upon € has been ignored. As § 0, the L ? norm
of the modal contribution, i.e., the integral of |6°/
(x + i5%)|? over x, is of order &% and so the total contribu-
tion from this mode vanishes as 0. In other words, as a
mode becomes nonradiating, its resonance width shrinks to
zero, but the resonance height remains of fixed order. There-
fore, the total energy associated with the mode vanishes. In-
stances of such almost nonradiating modes will be presented
in the example of Sec. IV.

C. Comparison with the exact solution

An exact, formal solution for the interior problem (5)
and (11) may be constructed using the modes of free vibra-
tion. Thus let

u=3 4w, (40)
i=1
Substituting into (11) and using (18) yields
eik o
dm = W (Bm + lkj;l bjmdj) , M= 1,2,...,
(41)

where

b, = ( — Gn'W,nW, ). (42)

Note that b,,,, = a,, and that b,,, = b,,;, which follows by
applying Green’s theorem in V. The coefficients d; can be
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found, in principle, from the infinite system of linear equa-
tions

S M,d, = eikB,, m=12,.., (43)
i=1

where the infinite, symmetric matrix M has elements
M, = (k*—k2)8,, +€k’b,,. (44)

The outer and inner, expansions of Sec. II may be seen to
correspond to different ways of approximating the inverse
M. Let us write

M=M0'+‘6Ml, (45)
where M, = diag(k? — k 1,k ? — k3,...); then, the outer ex-
pansion follows from the asymptotic approximation

M~ '=M;'—eM; ' MMy ' + 0(é). (46)
This expansion obviously breaks down when M, becomes
singular, which is at the real resonance frequencies %,,,

m = 1,2,... . The singularities may be removed by using the
alternative expression

M=1€IO+61\711,
where

IQIO =diag(k?—k? + €k?a,, k?—k?} +e€k’a,..),
and

M, = k(b —@,5,,).

m¥jm

(47)

(48)

The first term in the uni/f\'orm expansion (33) then follows
from (43) with M™'~M,; '. An important feature of this
approximation is that it only involves the diagonal elements
of M, specifically the integrals g,,. The full, exact solution
must, of course, require calculation of all the coupling con-
stants b,,,, j#m. If one were to calculate these terms, then
the expansion of M ™' using (47) provides, with (43), a
straightforward means to develop higher-order corrections
to (33).

D. Relation with acoustic impedances

In the study of acoustic scattering from elastic targets
for which the equations admit separable solutions, e.g., the
sphere, it is well known that the complex resonance frequen-
cy occurs when the modal specific acoustic impedances of
the fluid and solid are identical. It will now be shown that the
same general principle applies here also, and the frequency
obtained by matching impedances is precisely the frequency
of Eq. (35) to the same order in €.

We first define the modal specific acoustic impedances,
beginning with the fluid. Let ¢ be the solution to the radi-
ation problem

V+ k=0, xin ¥,
ﬁ=u0, X on S, (49)
an

then the associated pressure is ikp - Gv,. The acoustic imped-
ance is generally defined as the ratio of acoustic pressure to
acoustic velocity. The specific acoustic impedance Z (k,v,)
at frequency k for normal surface velocity v, is defined by a
ratio of averaged surface pressure to averaged velocity:
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Ze = —ikpe[( — Gugy)/ (Ug06) 1. (50)
The modal specific acoustic impedance for mode m is de-
fined as

Z{M (k) = Zp(knW,,). &1))

The specific acoustic impedance of the solid is defined
similarly. Let w be the displacement in the solid for given

normal velocity of v, on S and zero shear tractions on S; i.e.,
w solves

dive(w) + k%*w=0, x in V,
on — (n'on)n =0,]
S. 52
— iknw = vy, X on (52)

The impedance is defined again as the ratio of averaged sur-
face pressure to averaged velocity:

Zs (k) = psc™*[(— mo(WIn,u)/ (ve,00) ] (53)
Note that the definitions (50) and (53) contain p, and
psc”?, respectively, which give Z. and Z; the correct di-

mensions. Finally, the modal specific acoustic impedance of
the solid for mode m is

Z(k) = Zs(knW,,,). (54)

The principle of matching impedances says that the
complex resonance frequency associated with mode m is
that value of k& for which the impedances are identical:

ZM (k) =Z (k). (55)

Note that Z¢(k,v,) is imaginary for real k& and v, and so
Z {™ (k) is imaginary. The complex character of the reso-
nance frequency is due to the fact that, for real k and vu,,
Z . (k,vy) is complex valued rather than purely imaginary.

The condition (55) may be expressed, using (52) and
the definitions of the acoustic impedances, as

(o (w)n,nW,)) = eikc?a,, (k), (56)
where o(w) follows from (52) with v,=nW,_ . When
k =k, the left member of (56) vanishes since ¢(W, )n

=0 and thus Z {™ (k,,) = 0. The surface integral may be
expanded near k = k,, so that the root of (56) becomes

k—k, =eik,c’a,, (k,)/(na(w)nnW, )+ O().
(57)

Here, w' = dw/dk at k = k,,, and the equations for w’ follow
by differentiating (52), using w=(—1ik, )" 'W,,
+ (k—k,, )W + -+, and then setting k = k,,:

dive(w) + k2w = —2iW,,

o(w)n — [no(w)nln=20,

x in V,

on S. (58)

nw —0,

Application of an identity similar to (18), and use of (16)
implies that the integral in (57) isequal to — 2ic?, and so the
complex resonant frequency is again given by kX —k,,
= — ek,,a,,(k,) + O(€),in complete accord with (35).
This result shows that the shifted position of the real reso-
nant frequency and the width of the associated resonance
agree asymptotically with predictions based upon imped-
ance matching.

The resonant amplitude may also be determined
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through the use of impedances. The usual type of pointwise
impedance boundary condition is

I _ RPr o
an VA ’
where Z is the surface acoustic impedance, assumed con-
stant. The impedance is not uniform for the general case
under consideration here, but there is an averaged imped-
ance boundary condition

(59)

tot ik
(8¢ ,,..wm) -t (¢°'nW,,). (60)
an z{m
Let the total field be
¢tot — ¢inc + ¢0 + ¢e, (61)

where ¢° is the extra field to be determined. It follows from
(26) and (60) that
(m) a¢e . e .
Zy E;,ﬂ'wm — ikpp($°nW,,) = ikpr B, (k).
(62)

If it is assumed that the extra field ¢° is generated by the
resonant mode m; i.e.,

W _ _ kWA,

(63)
dn
then the amplitude 4 follows from (50) and (62) as
A=prBn (KY/(ZP —Z{y(eW,,,n W),  (64)

which can easily be shown to be asymptotically equivalent to
A, of (27).

IV. EXAMPLE: A SPHERICAL TARGET
A. General theory

The formalism of Sec. I1 is easily applied to the case of
an isotropic spherical target subject to plane-wave incidence.
Let 8 = 0 be the direction of incidence, where 8, 0<0<r is
the spherical polar angle. Owing to the symmetry of the scat-
tering configuration, there is no dependence upon the azi-
muthal angle in any of the field variables. The rigid Green
operator for an arbitrary function g defined upon S, the unit
sphere (i.e., we are explicitly taking the reference length L
equal to the sphere radius) can be expressed by first repre-
senting g in terms of spherical harmonics of the required
symmetry:

g= i g. P, (cos 0). (65)
n=0
Then, the associated rigid exterior field is
2 hV(kr)
8. P, (cos ), (66)

8= 2 o)

where / (" are spherical Hankel functions. In particular, an
incident plane wave of amplitude B is

g7 =3 e, j,(kr)P,(cos 8), e, = ())"(2n+ 1)B,
n=0

(67
and so the rigid scattered field is
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< Ju (k)
P= T 2

The modes of free vibration of an elastic sphere may be
split into families such that, for each n = 0,1,2,..., there is an
infinite number of modal frequencies k = k,,, [ = 1,2,3,...,
and define k, and &k, by k,; = (¢, /cp)k;, = (cp/cp)ky,
where ¢, and c; are the longitudinal and transverse wave

speeds of the isotropic solid. The modal frequencies are roots
of 7

d?zdgs —d;':,d;'z:O (69)

where the terms d | are defined in Appendix A, and the asso-
ciated modal dlsplacement is

—— h " (kr)P,(cos 6). (68)

W, =Vé, + VA VA (x¢f), » (70)
where
b, =y, (k. r)P,(cos 8),
Y= Ayj, (kyr)P,(cos 6). (71)
For n>0,
io_dh__dn -
dis d5,

and ¥ in (71) is the normalization constant required by
(17). It is shown in Appendix B that

y=1[Q2n+ 1)/471"2[Fn(kL) + kp jn (kL) (ky)

+A%n(n+ 1)[Fn(kr) +Ju k)

172

+kT.]n(k )jn(k )+_.]n(k ).]n(k )]]
- (73)

where F, (x) isdefined in (B6). For n = 0, the characteristic
equation (69) factors into dJ, =0, or 43, = 0. The latter
set of roots do not correspond to actual modes, since any ¢ in
(70) that does not depend upon & automatically gives zero
displacement everywhere in V. The only physical modes for
n = Q are the roots of d 9, = 0, and these are pure compres-
sional modes with A = Q01in (71) and (73).

Once the modal displacement is known, it is straightfor-
ward to compute the quantities a,, (k) and S, (k)of Eq.
(26) with m - nl, since these only involve surface integrals
of the type (B3) and (B4). For each mode let us define the
constant

8, =[4m/(2n + 1)]"%y

X [kp ji(ky) + An(n + 1)j, (k) ]. (74)
The quantity 8, should not be confused with the Kronecker
delta; it will only be used in this section and always with the
subscripts nl. Equations (26),, (65), (66}, (70), and (71)
imply that
a, (k)= [h‘”(k)/kh“’(k)]&,,,, (75)
while (26),, (65)-(67), (70), (71), and the Wronskian re-
lation for spherical Bessel functions'” yield
Bou(k) = [ie,/k*h V' (k) [47/(2n + 1)]'7%5,,.
(76)
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In the same manner, it follows that
2n 4 1\'2 . hP(kr)
4r ) "h (k)
Combining all of these results and using (29) yield the
uniform asymptotic approximation to the scattered field:

an'W,, = ( P, (cos ). (77)

> —J.(k) i€
¢~n;o< RO RO (k)R D (k)

& anl
X
1;1 (k*—k2, + Ekza,,,))
Xe,h'V(kr)P,(cos 8). (78)

The first term in the large parentheses represents the rigid
scattered field.

B. Comparison with previous results

A far-field form function f(%,6) and its nth spherical
harmonic f,, (k) may be defined by

¢ ~Bf(k,0)(e¥/r), r-ow; f= i £, P, (cos B).
= (79)
Define the phases £, (k) by
= —h®'k)/hV(k), n=0,12,... (80)

Then, it follows from (78)~(80), the Wronskian relation,
and the asymptotic behavior of Hankel functions'’ that

fa :—(Zn +1) e (ef'f” sin(&,)
k
1 @ iek %a,, )
+ ) (81)
1—ix, 1;1 k*— k2, +¢€k’a,
where
x, (k) = (|h“)(k)| ). (82)

The scattermg of acoustic waves from an elastic sphere
is a classical problem with an exact analytical solution'® and
a comprehensive literature, which is documented by Brill
and Gaunaurd.'” Motivated by previous analyses in the
quantum theory of scattering, Flax et al.® and others® have
rearranged the solution into an approximate form suggestive
of a rigid background field with an additional resonance con-
tribution. In particular, Flax et al.® obtained

[ = (2nk 1) o2 (e-ig,, sin(£,)

- irY,
+ _—, (83)
121 ki, —k—ly, )

where k 7, is close to, but not exactly the same as, k,,;, and I';,;
is defined in Ref. 6. Comparing (81) and (83), the two ex-
pressions are seen to be very similar if x, ~0 and

r,, = —iek,a,.- (84)
The former condition is satisfied if k,;> 1, since x, (k)
= O0(k ') for k> 1. In the same limit, i.e., k,, > 1, it is clear
from (75) that
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anl(knl)""(i/knl)aih (85)

and so a,,(k,;) is almost purely imaginary, and (84) be-
comes very simply

I, ~€eb,. (86)
In summary, the uniform asymptotic approximation (81) is
equivalent to the approximation (83) of resonance scatter-
ing theory® if the resonance frequency k,, is large.

It is well known that the exact complex resonance fre-
quencies are roots of ’

k_z(d'llz Bn—dl 22)_
T =

n Jn n n
d22d33 _d23 32

eh " (k)
khV'(k)

where d ; are defined in Appendix A. Equation (69) for the
frequencies of free vibration follows by setting € = 0, while
the complex roots of (87) for € €1 can be found by a regular
perturbation procedure. The resulting expression, when
compared with (35) and (75), implies the identity

(87)

k3 d
6i,=—27T(d32 ;a—dssdsn/ﬁ(drz %

_d;'sd;z)lk:k,”» (88)
which may be shown analytically for n = 0, and we have
verified (88) numerically for the remaining 22 roots of Table
I with n>1.

C. Numerical results

Since the exact solution for the elastic sphere can be
obtained as a sum of partial waves, '¢ this canonical problem
is used here as a check on the asymptotic theory. Any phys-
ical quantity associated with the scattered field depends
upon the singularities in k space associated with the per-
turbed complex resonance frequencies of Eq. (35). The acid
test of the asymptotic approximation is therefore whether or
not it accurately predicts the locations of these poles in the
complex k plane. The computations summarized in Table I
are for a tungsten carbide sphere in water, an example that
has been discussed extensively in the literature.>"-!"~'° The
relevant densities are pr = 1 g/cm’, ps = 13.80 g/cm?, so
that € = 0.072 464..., and the wave speeds are ¢, = 1.476
X 10° cm/s, ¢, = 6.860X 10° cm/s, and ¢, = 4.185x 10°
cm/s.

The real resonance frequencies of free vibration less
than & = 32 are listed in the left column of Table I. The
complex resonance frequencies are slightly shifted from
these values, and both the exact and asymptotic results are
shown in Table I. Note the uniformly excellent agreement,
particularly for the imaginary parts of the frequencies. The
real part of the perturbations are generally much less than
the imaginary parts because even for the lowest modal fre-
quency of a radiating mode, k,, = 7.46, the approximation
(85) is reasonable, and it becomes more accurate as k,, in-
creases. Also shown in Table I are the numbers 6%, which

TABLEI. Comparison of the exact and asymptotic theories for the first 24 modes of free vibration of a tungsten carbide sphere in water. The real, in vacuo
resonance frequencies are k,,,, where nis the spherical harmonic (there are actually no / = 1 modes for n = Oand 1, but this ordering convention is adopted in

order to remain consistent with Ref. 7). The associated exact complex resonance frequencies are & £} and the predictions of the asymptotic theory are k"

nl ul

=k, — (e/2)k,a, (k,), which follow from Egs. (35) and (73)—(75). The numbers §,, are defined in Eq. (74). Some of the roots have been previously
reported: k) and k 3}, n =0,1,...,7, were presented by Gaunaurd and Uberall (Ref. 7), although we note that errors in k,y, k <}, and k &} are here corrected;

ki, kS), and k53 | were given by Williams and Marston.

n ! K ko —ky ko — ko 5
0 3 11.469 727 ( —0.009 861 — [0.114 176) (—0.009944 —0.114050) 3.171 712
(] 6 28.031 617 (—0.002 842 — 0.077 151) (—0.002 752 —i0.077 143) 2.131 854
1 2 9.415 125 (—0.002056 — 0.019219) (—0.002086 —i0.019208) 0.530 402
1 3 18.274 795 (—0.004295 — 0.081086) ( —0.004 461 — 0.081033) 2.236 591
1 4 21.635 143 ( — 0.000 860 — /0.012 550) ( —0.000584 — i0.012 581) 0.347 239
1 5 30.268 063 (—0.000032 —/0.001 354) (—0.000045 — 0.001 353) 0.037 349
2 1 7.466 222 (—0.012034 —0.080989) (—0.012081 — /0.080799) 2.157 548
2 L2 13.405 441 (—0.000412 — 0.004907) (—0.000379 —0.004913) 0.134 121
2 3 22.984 267 (—0.001934 —/0.054967) (—0.002416 — 0.054911) 1.509 868
2 4 26.854 539 (—0.002 136 — 0.042 597) (—0.001 601 —i0.042 632) 1.173 412
3 1 11.042 275 (—0.011066 — 0.112265) (—0.011246 —0.112079) 2.969 068
3 2 17.873 799 (—0.000002 — £0.000017) (—0.000001 — 0.000018) 0.000 478
3 3 26.985 319 ( —0.001 101 — £0.038 497) (—0.001 449 — /0.038466) 1.054 402
4 1 14.097 086 (—0.010193 — 0.134 169) (—0.010566 —i0.133974) 3.530 248
4 2 22.422 603 (—0.000212 — 0.003919) (—0.000182 —.0.003922) 0.106 317
4 3 30.769 789 (—0.000732 — [0.028 428) (—0.000943 — 0.028 413) 0.776 732
5 1 16.959 476 (—0.009434 —0.152263) (—0.010014 — /0.152063) 3.990 697
5 2 26.903 860 (—0.000536 —i0.012046) (—0.000467 — 0.012052) 0.326 172
6 1 19.732 099 (—0.008 795 — /0.168 743) (—0.009 581 — f0.168 538) 4.409 033
6 2 31.260 255 ( —0.000860 — 10.022 432) (—0.000750 —i0.022438) 0.606 531
7 1 22.455 371 ( —0.008 255 — 0.184 422) (—0.009238 —i0.184212) 4.806 767
8 1 25.148 206 ( —0.008 108 — 0.199 700) (—0.008960 — i0.199425) 5.192 789
9 1 27.820 672 (—0.007 671 — 0.214 400) (—0.008730 —.0.214 339) 5.571299
10 1 30.478 666 ( —0.007 467 — 0.229 000) (—0.008 537 —i0.229041) 5.944 529
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are independent of the fluid parameters. There is obviously a
large range in the values of &2,. Thus the extremely small
value for the (3,2) mode means that it is almost nonradiat-
ing and so is expected to have little influence on the scattered
field for reasons given in Sec. III. Conversely, the (n,1)
modes have uniformly large, i.e., of order unity, values of 5%,
and are expected to strongly affect the scattered field. These
expectations are borne out by Fig. 2, which compares the
exact backscattering amplitude of Fig. 1 with the amplitude
given by the uniform asymptotic expansion. The latter was
computed from Eq. (78) using the 24 radiating modes of
Table I and the exact rigid scattering of Fig. 1, which was
calculated by summing the first 50 spherical harmonics.

V. DISCUSSION

The test case of the sphere illustrates the accuracy of the
asymptotic method; however, the full potential of this tech-
nique lies in its application to nonsymmetric 3-D targets for
which “exact” numerical methods would be prohibitively
time consuming and costly. One possible use for which the
technique is well suited would be in determining the scatter-
ing from a target of a given shape, of which the interior is a
highly complex body. One might also want to slightly modi-
fy the interior and see the result of such alterations on the
response. The conventional approach to tackling such a
project is to solve the fully coupled fluid—elastic scattering
problem each time using one of various alternative numeri-
cal schemes. With the present method, one need only com-
pute the exterior Green’s operator G once, since the target
shape is fixed. In practice, this could be achieved by discre-
tizing the surface S and computing a matrix Green’s func-
tion that gives the pressure at every point for a force at any
single point, subject to the condition that the normal velocity
is zero everywhere on S. Then, for each realization of the
interior, the modes of free vibration could be found using
existing fast and efficient codes. The modes and the exterior
Green’s function are then combined to compute the surface
integrals of (26), after which the uniform expansion of (34)
can be quickly determined.

The key step in applying the asymptotic method is in
calculating the terms A, and a,, of (26}. The magnitude of
a,, is closely related to the magnitude of the normal surface

2.0

1.5

l ml

A_MTS:/M;TOTIC\/\ MPM M /ﬁ / '/ \

10.0 15.0 20.0 25.0 30.0
k

FIG. 2. The backscattering amplitude for a tungsten carbide sphere in wa-
ter. The dashed curve is the exact result, as shown in Fig. 1, and the solid
curve is the asymptotic approximation obtained using the first 24 modes of
the sphere, i.e., the modes of resonance frequency k,, < 32. The mode asso-
ciated with each feature can be identified by referring to Table I.
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FIG. 3. The backscattering amplitude for a tungsten carbide sphere. The
exact solution is the dashed line, and the solid curve is the asymptotic result
using the 12 modes of frequency &, < 32, which are of sufficient breadth
that 52, > 2. This removes very narrow resonances but retains the significant
Rayleigh-wave resonances (see Table I).

displacement and will be small if this displacement is small.
Therefore, even before the scattered field is calculated, some
estimate of the radiation strength of each mode may be sur-
mised from the surface integrals (nW,,,n‘W ), subject to
the normalization of Eq. (17). In the example of the sphere
considered in Sec. IV, the resonance width is very accurately
given by (€/2)8%, [see Eqgs. (35) and (85) ], and the ampli-
tude is proportional to 6%, also. Thus the broader resonances
are also the stronger resonances, and a reasonable approxi-
mation might be to disregard very narrow resonances, em-
phasizing the effect of the strong resonances. Figure 3 shows
the asymptotic backscattering amplitude computed using
only the first 12 resonances below k = 32, which have 5, > 2
(see Table I). The strong (n,1) Rayleigh resonances remain,
but some of the other resonances of lesser significance, such
as (1,2) and (2,2), have disappeared from the approximate
solution. Despite this, the overall appearance of the asymp-
totic result in Fig. 3 is very good considering that it uses only
half of the modes in that frequency range. In general, the
narrow modes will not be significant since internal dissipa-
tion tends to wipe them out, leaving only the broader reson-
ances.’

In conclusion, the numerical results show quite con-
vincingly that the present asymptotic method is suitable for
targets such as tungsten carbide in water, with € = 0.07. Fu-
ture work will examine the applicability of the theory to tar-
gets for which ¢ is not quite so small.

APPENDIX A

Theelementsd % andd %, = 1,2,3, for an elastic sphere

are’

diy = [2n(n+ 1) — k7 ]j, (k) — 4k, J, (k),
diy =2n(n+ 1) [kejy, (ky) —j, (k) ],

d =k j.(kp),

d3y =n(n+1)j,{ks),

dgz :2[jn(kL) —ij;.(kL)],

diy =2k, (ky) + [k} —2(n* + n— 1) ]j, (k7).
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APPENDIX B

Each mode W,,, of an arbitrary isotropic elastic body ¥
may be expressed in terms of potentials

W, =Vé, + VAT, (B1)

where div f = 0, and both ¢, and f satisfy Helmholtz equa-
tions. Substituting (B1) into (17) and integrating by parts
yields the normalization constraint

f (k2g? +k2Tf2)dV+J‘n- [1V(eL + )
| 4 S
+ 26,V A f— (£V)f]dS = L. (B2)

For the particular case of the sphere, ¢, and f follow from
(70)-(72). Using the identities'>

1

f P2 (cos 0)dcos0=L, (B3)
-1 2n+1
1 2

f (-i P, (cos 6’)) dcos6=w, (B4)
-1 \dé 2n+1

it is fairly easy to show that the volume integral in (B2)
becomes

f (k242 + k2 f2dV
Vv
4my?

=m[Fﬂ(kL)+,12n(n+1)F,,(kT)], (BS)
where?°
F,(x) =if FAGIRE
X Jo
={[x*—n(n+ 112X
+ x%7:2(x) + xj, (x);, (x) }. (B6)

The surface integrals in (B2) can be evaluated directly by
again using (B3) and (B4), and, when combined with (BS),
the normalization factor ¢ of (73) is obtained.
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