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The low-frequency tube wave speed is given explicitly for a variety of borehole environments. 
The presence of a logging tool, the effects of casing, and bore eccentricity are considered. The 
results are all relatively simple and indicate that the speed decreases in the presence of a tool or 
borehole eccentricity. The speed increases in the presence of casing as long as the casing shear 
modulus exceeds that of the formation. 

PACS numbers: 43.20. Mv 

INTRODUCTION 

The subject of the present paper is the low-frequency 
speed of the fundamental mode in a fluid-filled cylindrical 
hole in an elastic matrix. This wave is known in the geophys- 
ics community as the tube wave, and the hole is referred to as 
the bore. At very low frequencies, the other guided modes 
are evanescent, and the tube wave is of major significance as 
a carrier of acoustic energy. The tube wave speed for a circu- 
lar bore is known to reduce to v = vB (1 + KB/pr)- t/2, 
where v• is the acoustic sound speed in the borehole fluid, 
Ks is the fluid bulk modulus, andpr is the shear modulus of 
the elastic formation surrounding the hole. This expression 
was deduced by Blot j from the low-frequency asymptotic 
expansion of the Stoneley wave root to the exact dispersion 
relation. 

A simpler and more appealing derivation of Biot's result 
was provided by White, 2 who used a quasistatic analYSiS. 
This assumes the frequency is low enough that the deforma- 
tion in the fluid and formation can be considered statically. 
The same method is generalized here to consider more com- 
plicated borehole configurations for which the fully dynamic 
dispersion equation could not be found in a closed form. In 
each case considered, the formation is an isotropic elastic 
solid and the bore is cylindrical. 

We first look at the effect of a logging tool on the wave 
speed. Numerical simulations of acoustic signals in a bore- 
hole containing a tool 3 indicate the speed is reduced by the 
tool's presence. The same conclusion follows from the sim- 
ple analytical results below. White 2 extended his quasistatic 
analysis to include the presence of concentric borehole cas- 
ing in a circular bore. However, he only considered lubricat- 
ed contact between the casings and formation, and then only 
for casings much more rigid than the formation. The more 
general results presented here include the possibility of no- 
slip conditions as well as lubricated contact. Results are also 
derived for the tube wave speed in an eccentric bore, i.e., one 
which is not circular but is still cylindrical. No attempt is 
made here to discuss the effects of formation permeability on 
the tube wave speed as this topic has been treated adequately 
elsewhere. 4 

Our results are given in the next section, and their deri- 
vation is summarized in Sec. II. 

I. SUMMARY OF RESULTS 

The low-frequency tube wave speed may generally be 
written 

lY = (K */ton ) 1/2, (1) 
where p• is the mass density of the borehole fluid, the effec- 
tive bulk modulus K * is 

K * -- K• + + , (2) Mr MT 

where K s is the bulk modulus of the borehole fluid, f is the 
volume fraction the tool occupies in the borehole (see Fig. 
1 ), and Mr and M r are moduli that depend upon the forma- 
tion and tool, respectively. The low-frequency results do not 
require that the tool be concentric with the borehole, only 
that their axes be parallel. 

A. Tool modulus 

The logging tool is modeled as an annular elastic shell of 
shear modulus Pr and Poisson's ratio vt. The interior sur- 
face of the shell is assumed to be traction-free; i.e., the acous- 
tic impedance of the inner region is much less than that of the 
shell. The effective modulus is 

Mr =PT{(] -- fr)/[fr + (1 -- VT)/(1 + VT) ]}, 
(3) 

wherefr is the volume fraction of the inner part of the tool. 
A solid tool corresponds tOfr = 0. It is obvious from Eq. (2) 
that 3K */c)f< O, and thus the tube wave speed is always di- 
minished in the presence of the tool. Generally, unless the 
tool is a very thin shell ( fr m 1 ), the modulus Mr is of the 
same order as Pt, which is typically that of a metal. Thus 

FIG. 1. Schematic of the tool in a cir- 

cular cased borehole. The tool vol- 

ume fraction is f=a•-/b -•, and 
the casing volume fraction is 
fc = l - b2/d 2. 
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Mr >)Me and so the major effect of the tool is to modify the 
modulus K* through the volume term (1 -f) i in Eq. 
(2), i.e., to a good approximation, 

1 1 1 
--4 (4) 

K*--K B (1 -f)M r 

B. Formation modulus: Effects of casing 

For a homogeneous isotropic solid formation of shear 
I 

modulus ttr surrounding a circular bore, it is well known TM 
that 

Mr =btr. (5) 

This result is modified if the borehole is cased by a concentric 
isotropically elastic annular shell that is fitted tight against 
the formation. Let the casing have shear modulus/•c and 
Poisson's ratio %. If the inner radius of the casing is b and 
the outer radius d, define the volume fraction the casing oc- 
cupies as fc = I -- b 2/d 2; see Fig. 1. Then, 

Mr =/.tr(.1 I-- v c + (fc/2)(bt½//.te- 
where/3 is a parameter that defines the state of contact be- 
tween the casing and formation. The two limits of interest 
are no-slip,/3 = 0, when the casing is restrained from mov- 
ing in the axial direction relative to the formation, and lubri- 
cated contact,/3 = 1, in which case such motion is allowed. 
Usually, the casing is put in place for the very reason that it is 
far more rigid than the formation,/t c >)/•r, which implies 
that Mr >/•r, independently of/3, and thus the tube wave 
speed is increased by the casing. It can easily be shown that 
M e and hence the wave speed decreases as the contact be- 
comes more lubricated, i.e., as/3 increases from 0 to 1. 

When the casing thickness h is much less than the bore 
radius d, thenfc - 2h/d, and M r of Eq. (6) can be approxi- 
mated accordingly. If the casing is also far more rigid than 
formation,/•c >)/zr, then, 

Mr=t•r + (h/2d)Ec[(1 --/3V2c)/(1 - V2c) ], (7) 
where E c = 21• c ( 1 + v c ) is the Young's modulus of the 
casing..The approximation (7) has been given by White 2 for 
lubricated contact,/3 = 1. The two limits of/3 = 0 and/3 = 1 
are also known as the tethered and untethered cases, respec- 
tivelyfi This reference contains an interesting discussion of 
the relevance of tube waves in biological pulse propagation 
phenomena. 

C. Formation modulus: Effects of bore eccentricity 

Holes of arbitrary shape can be considered using the 
methods of Zimmerman, 6 who discussed the compressibility 
of two-dimensional cavities in elastic solids. Let w(•) be the 
complex mapping function that maps the interior of the unit 
circle in the complex • plane into the exterior of the region 
defined by the hole in the complex z plane, where 
z = x + iy = w(•). In particular, w(.•) may be expressed in 
the form 

where a•, n = 1,2,3 ..... are complex numbers specified by 
the shape of the hole. The circular hole corresponds to 
w =•-l, and an ellipse of aspect ratio cs is given by 
a I = ( 1 -- 0•)/( 1 + ct), a,= 0, n > 1. Define a, 0<o< 1, by 

cr = • nla" I:; (9) 
n=l 

(6) 

I 

then the formation modulus is 

Mr:=lur{l+4(l_vr)/(a l__l)) I (10) 
It is clear from Eq. (10) that the modulus Mr for the 

circular ihole is greater than that for any other shape, 6 and 
therefore: the tube wave speed is fastest in a circular bore. 
When the hole is almost circular, rr is small, and 
Mr =btr[1 -4(1 --%)a+O(oa)]. For instance, 
o' = ( 1 -- or)2/( I + a) 2 for an ellipse of aspect ratio a, and 
so as cr-• 1, Mr•la r [ 1 -- ( 1 -- %) ( 1 -- re)2]. Shapes that 
are quite distinct from circular, such as the hypotrochoid, 
have been discussed by Zimmerman. 6 Equilateral, s-sided 
polygons may be considered by the two-term Schwartz- 
Christof[el approximation to the mapping function, 

w(•)=•-• + 2/[s(s--1)]•-•, (11) 
for which 

a -! = (S2/4)(S -- 1). (12) 

Thus the pseudosquare given by (11) with s = 4 has 
rr- l = 12, while the exact value that follows from the map- 
ping function for the square 6 is a- • = 11.62. 

D. Examples 

Consider a water-filled bore in Teapot sandstone, 4 for 
which K, = 2.25 GPa, vt; = 1500 m/s, •r = 6.45 GPa, and 
Vr = 0.2'0. Then, the tube wave speed for the simple circular 
bore is 1292 m/s, and, for a square bore v = 1244 m/s. Sup- 
pose the circular bore is cased with steel,/•c = 79.4 GPa, 
vc = 0.29, such that the casing is 1 cm thick with outer 
radius d = 10 cm. The tube wave speed then follows from 
Eq. (6) as 1410 m/s for perfectly bonded contact, and 1407 
m/s for rabricated contact. The corresponding approximate 
speeds according to Eq. (7) are 1413 and 1408 m/s, respec- 
tively. Next, consider the same circular bore of radius d = 10 
cm with no casing but which contains a steel tool in the form 
of a cylindrical shell of thickness 2 cm and exterior radius 6 
cm. The robe wave speed follows from Eq. (3) as 1201 m/s, 
and the approximation of Eq. (4) gives a speed of 1207 m/s. 

As expected, the speed is increased relative to that of the 
simple circular bore when the casing is present. On the other 
hand, bore eccentricity and the presence of a tool result in a 
slower speed. Suppose, however, that the tool and casing are 
both present, then the speed for a well-bonded casing is 1336 

415 J. Acoust. $oc. Am., Vol. 87, No. 1, January 1990 Letters to the Editor 415 



m/s. In this case, the decrease in speed due to the tool is more 
than made up for by the increase caused by the stiffening 
effect of the casing. 

II. DERIVATION OF THE RESULTS 

The general method of solution is a simple extension of 
White's (p. 146 of Ref. 2) quasistatic analysis. The acoustic 
pressure Pa and axial displacement u 2 in the borehole fluid 
are functions of time and the axial coordinate z only. The 
axial force balance in a thin slice of length Az of the fluid is 

Pa -- V-- -- V, (13) 
t•t 2 

wherepa is the fluid density, 
V=A•z, (14) 

and A is the cross-sectional area of the bore that is occupied 
by fluid. Thus A = A a - .4 r, where A r is the cross-sectional 
area of the tool, and A a the area inside the casing, or inside 
the formation in the absence of casing. The fraction fin Eq. 
(2) is Ar/A a. The fluid pressure is 

p• = -- K•( AV /V), (15) 

where Ka is the borehole fluid bulk modulus, 

A V= (A 8u2 AA )Az, •zz + (16) 
and •A is the static change in the area A due to the pressure 
Pa, Thus 

fcU. aS+ fcUaS, (17) B T 

where C r is the perimeter of the tool cross section, C a the 
outer perimeter of the bore cross section, and u, is the nor- 
mal fluid displacement in the direction away from the fluid. 
Combining Eqs. ( 14)-(17) gives 

Pa= --K*--, (18) 
8z 

where K * is defined in Eq. (2), and 

1 _ 1 fc Mr pBAa u• ds, (19) 
-- u• ds. (20) 

Mr Pa A r 

The modulus Mr follows from Eq. (20) by solving the 
problem of a tool subject to a uniform pressure pa on its 
outer surface. The tool is modeled as a homogeneous elastic 
circular shell, and its interior surface is assumed to be pres- 
sure free. The uniform displacement u, then follows by solv- 
ing a simple plane stress problem in static elasticity. 7 

The determination of the modulus M r requires solving a 
plane problem for an elastic material exterior to Ca subject 
to uniform pressurepa on C a. When the casing is present the 
problem becomes that of a circular hole with a lining of uni- 
form thickness. The condition at the interface between the 

casing and formation is that the radial stress and displace- 
ment are continuous. The solution is radially symmetric so 

that there is no shear stress at the interface. The no-slip con- 
tact condition [/3 = 0 in Eq. (6) ], requires solving plane 
strain problems in both the casing and formation. However, 
for lubricated contact (/3 - 1 ), the casing can undergo axial 
displacement, in which case the problem is one of plane 
strain in the formation but plane stress in the casing. 

The results for the modulus M r of an arbitrarily shaped 
hole follow from the work of Zimmerman 6 by noting that 
M • • -- Cpp, where in the notation of Ref. 6, Cp• is the com- 
pressibility of the cavity with respect to the inner or pore 
pressure. Zimmerman 6 showed, using complex variable 
methods developed by Muskhelishvili 8 and Sokolnikoff, • 
that 

Cp•, = (1//.tv) [(1 +Zc)/(1 --c)], (21) 
where a is defined in Eq. (9) and Z = 3 -- 4vr for plane 
strain, X = (3 -- vv)/( 1 + vv) for plane stress. The bore- 
hole problem is one of plane strain and so we obtain Eq. (10) 
for Mr. Finally, we note that one can also define different 
measures of compressibility for the same hole, if, for in- 
stance, the confining pressure is applied at infinity rather 
than inside the hole. The distinctions between these various 

compressibilities is discussed extensively by Zimmerman 6 
and Zimmerman et al. •o 

III. CONCLUSIONS 

Relatively simple and explicit formulas have been given 
for the low-frequency tube wave speed, including new results 
for the speed in the presence of a tool and when the bore is 
noncircular. These show that the speed always decreases in 
the presence of a tool, and for a given tool size it decreases as 
the tool becomes more elastically compliant. However, 
when the tool is relatively rigid, its main influence is to re- 
duce the effective cross-sectional area of the bore. The tube 

wave speed for the circular bore is greater than the speed for 
any other shaped hole. The only effect that can increase the 
tube wave speed is the presence of a casing stiffer than the 
formation, and the increase in speed is greatest when the 
casing is perfectly bonded, but is slightly diminished when 
the contact between the formation and the casing is lubricat- 
ed. None of these conclusions is surprising or unexpected, 
but the simplicity of the associated expressions make them 
very suitable for estimating the low-frequency tube wave 
speed in complicated environments where exact analytical 
techniques are of little or no use and numerical simulation is 
too cumbersome. 
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Underwater audiogram of a Hawaiian monk seal (Monachus 
schauinslandi) 

Jeanette Thomas, Patrick Moore, Reid Withrow, al and Mark Stoermer 
Naoal Ocean Systems Center, Kailua, Hawaii 96734 

(Received 15 January 1989; accepted for publication 22 September 1989 ) 

Underwater audiograms are available for a few pinnipeds from the families otariidae and 
phocidae, but little is known about hearing abilities in the monachid seals. A young male 
Hawaiian monk seal (Monachus schauinslandi) was trained at Sea Life Park on Oahu, Hawaii 
for an underwater hearing test using a go/no-go response paradigm. Over a 6-month period, 
auditory thresholds from 2 to 48 kHz were measured using an 'ap/down staircase psychometric 
technique. The resulting audiogram shows a somewhat narrower hearing range than for other 
pinnipeds. The monk seal's hearing was most sensitive (20 dB above maximum sensitivity) 
between 12 and 28 kHz. Below 8 kHz, the Hawaiian monk seal's hearing was less sensitive 
than other pinnipeds measured. High-frequency sensitivity dropped off sharply above 30 kHz, 
as has been reported for other otariids, Callorhinus and Zalophus. Phocid seals, Phoca hispida, 
P. groenlandica, and P. vitulina, have a broader hearing range with the upper limit near 60 
kHz. 

PACS numbers: 43.66.Cb, 43.80.Lb, 43.66.Gf [NFV] 

INTRODUCTION 

Hawaiian monk seals (Monachus schauinslandi) are 
largely solitary animals, congregating at traditional beaches 
on the outer Hawaiian island chain during a short breeding 
season (Johnson et al., 1982). They are an endangered spe- 
cies because of high mortality of pups and a surplus of adult 
males. However, National Marine Fisheries Service has a 
rehabilitation program for captive pups (Gilmartin, 1983; 
Gilmartin and Gerrodette, 1986; Gilmartin et aL, 1986). 
One of these captive male pups was the subject for our study. 

Little is known about the sensory abilities of the seclu- 
sive Hawaiian monk seal. They produce a few vocalizations 
while hauled out on the beach. Although there have been a 
few attempts to record their vocalizations at sea, none has 
been reported (Gilmartin, personal communcation). 

Antarctic seals, like the Weddell seal (Leptonychotes 
weddelli), the leopard seal (Hydrurga leptonyx), and the 
crabeater seal (Loborlon carcinophagus), are members of the 
family Monachidae. Hearing abilities in these seals also are 
unknown, but, in contrast to the Hawaiian monk seal, they 
are highly vocal (Thomas and Kuechle, 1982; Stirling and 
Siniff, 1979). A report by Thomas et al. (1982) indicates 
that leopard seals produce very high-frequency vocaliza- 
tions, up to 130 kHz. This observation led us to suspect that 
monachid seals might have a broader high-frequency hear- 
ing range than other pinnipeds. Our objectives were to mea- 
sure the underwater hearing ability of a Hawaiian monk seal 

• At Waikiki Aquarium, Honolulu, Hawaii 96815. 

and corapare our results with audiograms from other pin- 
nipeds. 

I. METHODS 

A. Subject 

A 3-year-old, male Hawaiian monk seal, "Maka," was 
our test subject. At the end of the study, this animal weighed 
120 kg, was about 1.6 m long, and had been in captivity for 2 
years. The seal lived in a quiet test pool, with only a skimmer 
filter system that did not require mechanical pumps. This 
untrained animal learned the testing paradigm in about 3 
months We tested the seal's hearing twice per day from De- 
cember 1987 to February 1988. The animal received a daily 
ration of 3 kg of herring during the tests. 

B. Apparatus 

We conducted the study in a 6.1-m-diam X 1.2-m-deep 
fibergla•,;s pool in a quiet back holding area at Sea Life Park 
on Oahu, Hawaii. The equipment setup in this pool is shown 
in Fig. 1. A slatted redwood platform (A in Fig. 1 ) served as 
a hauloat site for the animal, a stage for the trainer, and 
support for the signal projection equipment. A cage (B in 
Fig. 1 ) attached to the pool provided a holding area for the 
seal during equipment installation and removal. The seal's 
test station (C in Fig. 1 ) was a headstand with a short rim 
shaped to the contour of the lower jaw. The seal's ears and 
face were unobstructed from the projector's sound field. The 
headstand was attached to the pool bottom by three glass- 
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