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The low-frequency tube wave speed is given explicitly for a variety of borehole environments.
The presence of a logging tool, the effects of casing, and bore eccentricity are considered. The
results are all relatively simple and indicate that the speed decreases in the presence of a tool or
borehole eccentricity. The speed increases in the presence of casing as long as the casing shear

modulus exceeds that of the formation.

PACS numbers: 43.20.Mv

INTRODUCTION

The subject of the present paper is the low-frequency
speed of the fundamental mode in a fluid-filled cylindrical
hole in an elastic matrix. This wave is known in the geophys-
ics community as the tube wave, and the hole is referred to as
the bore. At very low frequencies, the other guided modes
are evanescent, and the tube wave is of major significance as
. acarrier of acoustic energy. The tube wave speed for a circu-
lar bore is known to reduce to v = v, (1 + Ky/u;) ~ 2,
where vy is the acoustic sound speed in the borehole fluid,
K is the fluid bulk modulus, and g is the shear modulus of
the elastic formation surrounding the hole. This expression
was deduced by Biot' from the low-frequency asymptotic
expansion of the Stoneley wave root to the exact dispersion
relation.

A simpler and more appealing derivation of Biot’s result
was provided by White,” who used a quasistatic analysis.
This assumes the frequency is low enough that the deforma-
tion in the fluid and formation can be considered statically.
The same method is generalized here to consider more com-
plicated borehole configurations for which the fully dynamic
dispersion equation could not be found in a closed form. In
each case considered, the formation is an isotropic elastic
solid and the bore is cylindrical.

We first look at the effect of a logging tool on the wave
speed. Numerical simulations of acoustic signals in a bore-
hole containing a tool® indicate the speed is reduced by the
tool’s presence. The same conclusion follows from the sim-
ple analytical results below. White? extended his quasistatic
analysis to include the presence of concentric borehole cas-
ing in a circular bore. However, he only considered lubricat-
ed contact between the casings and formation, and then only
for casings much more rigid than the formation. The more
general results presented here include the possibility of no-
slip conditions as well as lubricated contact. Results are also
derived for the tube wave speed in an eccentric bore, i.e., one
which is not circular but is still cylindrical. No attempt is
made here to discuss the effects of formation permeability on
the tube wave speed as this topic has been treated adequately
elsewhere.*

Our results are given in the next section, and their deri-
vation is summarized in Sec. II.

|. SUMMARY OF RESULTS

The low-frequency tube wave speed may generally be
written

v=(K*/pg)"? (1)

where p is the mass density of the borehole fluid, the effec-
tive bulk modulus K * is
Al -
K* K, 1-f
where K is the bulk modulus of the borehole fluid, fis the
volume fraction the tool occupies in the borehole (see Fig.
1), and M and M, are moduli that depend upon the forma-
tion and tool, respectively. The low-frequency results do not
require that the tool be concentric with the borehole, only
that their axes be parallel.

A. Tool modulus

The logging tool is modeled as an annular elastic shell of
shear modulus &, and Poisson’s ratio v,-. The interior sur-
face of the shell is assumed to be traction-free; i.e., the acous-
ticimpedance of the inner region is much less than that of the
shell. The effective modulus is

My =p {0 —f2)/[fr+ A =vr)/(1+v) ]}
(3)

where /- is the volume fraction of the inner part of the tool.
A solid tool corresponds to f- = 0. It is obvious from Eq. (2)
that dK */df <0, and thus the tube wave speed is always di-
minished in the presence of the tool. Generally, unless the
tool is a very thin shell ( f; = 1), the modulus M, is of the
same order as g, which is typically that of a metal. Thus

£8

FIG. 1. Schematic of the tool in a cir-
cular cased borehole. The tool vol-
ume fraction is f=a’/b> and
the casing volume fraction is
fe=1—-b%d%
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M ;> M and so the major effect of the tool is to modify the
modulus K * through the volume term (1 —f) ' in Eq.
(2), i.e., to a good approximation,

1 1 1

21 * 4
KK, -, @

B. Formation modulus: Effects of casing

For a homogeneous isotropic solid formation of shearl

1 —ve + (fe/D(uc/pr — (1 = Bre)

modulus g surrounding a circular bore, it is well known'’
that

My =pr. (5)
This result is madified if the borehole is cased by a concentric
isotropically elastic annular shell that is fitted tight against
the formation. Let the casing have shear modulus u. and
Poisson’s ratio v.. If the inner radius of the casing is b and

the outer radius d, define the volume fraction the casing oc-
cupies as f = 1 — b2/d % see Fig. 1. Then,

My =#F(

where 3 is a parameter that defines the state of contact be-
tween the casing and formation. The two limits of interest
are no-slip, 8 = 0, when the casing is restrained from mov-
ing in the axial direction relative to the formation, and lubri-
cated contact, £ = 1, in which case such motion is allowed.
Usually, the casing is put in place for the very reason that it is
far more rigid than the formation, g >y, which implies
that M > up, independently of 3, and thus the tube wave
speed is increased by the casing. It can easily be shown that
M and hence the wave speed decreases as the contact be-
comes more lubricated, i.e., as  increases from 0 to 1.

When the casing thickness 4 is much less than the bore
radius d, then f. ~2k /d, and M. of Eq. (6) can be approxi-
mated accordingly. If the casing is also far more rigid than
formation, >y, then,

Mp=pr+ (h/2d)Ec[(1 = Bvi) /(1 —+2)],  (7)

where E. = 2u.(1 + v) is the Young’s modulus of the
casing. The approximation (7) has been given by White? for
lubricated contact, 8 = 1. The two limits of 8 = Qand 8 = 1
are also known as the tethered and untethered cases, respec-
tively.” This reference contains an interesting discussion of
the relevance of tube waves in biological pulse propagation
phenomena.

C. Formation modulus: Effects of bore eccentricity

Holes of arbitrary shape can be considered using the
methods of Zimmerman,® who discussed the compressibility
of two-dimensional cavities in elastic solids. Let w(£) be the
complex mapping function that maps the interior of the unit
circle in the complex £ plane into the exterior of the region
defined by the hole in the complex z plane, where
z=x+ iy = w({). In particular, w({) may be expressed in
the form

W@ =6+ Sacn (8)

n=1
where a,, n =1,2,3,..., are complex numbers specified by
the shape of the hole. The circular hole corresponds to
w=¢"", and an ellipse of aspect ratio a is given by
a=(1—-a)/(1 +a),a, =0,n> 1. Define g, 0<o<1, by

o

n=1
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, (6)
V—ve + (fe/2)(pup/tic — (1 =20, +ﬁV2c))

then the formation modulus is

Mp=p {1 +4(01 —vp)/(c" "= 1)} (10)

It is clear from Eq. (10) that the modulus M, for the
circular hole is greater than that for any other shape,® and
therefore the tube wave speed is fastest in a circular bore.
When the hole is almost circular, ¢ is small, and
Mp=u,[1—4(1—v,)0+0(0*)]. For instance,
o= (1-a)’/(1 4+ a)? for an ellipse of aspect ratio , and
soasa— 1, My~pu,[1— (1 —vp)(1 —a)*]. Shapes that
are quite distinct from circular, such as the hypotrochoid,
have been discussed by Zimmerman.® Equilateral, s-sided
polygons may be considered by the two-term Schwartz—
Christoffel approximation to the mapping function,

wr =" +2/[s(s— 1)),
for which

ol =(s/4)(s—1). (12)
Thus the pseudosquare given by (11) with s =4 has

(11)

o~ ' = 12, while the exact value that follows from the map-
ping function for the square®is o ~' = 11.62.
D. Examples

Consider a water-filled bore in Teapot sandstone,* for
which K; =2.25 GPa, vy = 1500 m/s, u = 6.45 GPa, and
vr = 0.20. Then, the tube wave speed for the simple circular
bore is 1292 m/s, and, for a square bore v = 1244 m/s. Sup-
pose the circular bore is cased with steel, . = 79.4 GPa,
ve = 0.29, such that the casing is 1 cm thick with outer
radius d = 10 cm. The tube wave speed then follows from
Eq. (6) as 1410 m/s for perfectly bonded contact, and 1407
m/s for lubricated contact. The corresponding approximate
speeds according to Eq. (7) are 1413 and 1408 m/s, respec-
tively. Next, consider the same circular bore of radius d = 10
cm with no casing but which contains a steel tool in the form
of a cylindrical shell of thickness 2 cm and exterior radius 6
cm. The rube wave speed follows from Eq. (3) as 1201 m/s,
and the approximation of Eq. (4) gives a speed of 1207 m/s.

As expected, the speed is increased relative to that of the
simple circular bore when the casing is present. On the other
hand, bore eccentricity and the presence of a tool result in a
slower speed. Suppose, however, that the tool and casing are
both present, then the speed for a well-bonded casing is 1336
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m/s. In this case, the decrease in speed due to the tool is more
than made up for by the increase caused by the stiffening
effect of the casing.

{l. DERIVATION OF THE RESULTS

The general method of solution is a simple extension of
White's (p. 146 of Ref. 2) quasistatic analysis. The acoustic
pressure p, and axial displacement 4, in the borehole fluid
are functions of time and the axial coordinate z only. The
axial force balance in a thin slice of length Az of the fluid is

3%u — Jpy
Y= v, 13
Ps o2 92 (13)
where p is the fluid density,
V=AAz, (14)

and A is the cross-sectional area of the bore that is occupied
by fluid. Thus 4 = 4, — A, where A is the cross-sectional
area of the tool, and 4, the area inside the casing, or inside
the formation in the absence of casing. The fraction fin Eq.
(2) is A;./A . The fluid pressure is

s = — Kz (AV /1), (15)
where K5 is the borehole fluid bulk modulus,
d
AV=(A “’+AA)AZ, (16)
Jz

and AA is the static change in the area A due to the pressure
pp- Thus

AA:I u, ds+f u, ds,
Cg C,

r

(17

where C; is the perimeter of the tool cross section, Cy the
outer perimeter of the bore cross section, and u,, is the nor-
mal fluid displacement in the direction away from the fluid.
Combining Eqgs. (14)-(17) gives

du,
pB = _K* ’ (18)
9z
where K * is defined in Eq. (2), and
L: 1 u, ds, (19)
My ppdg Jo,
1 = ! fu,, ds. 20)
M;  pgdr Je,

The modulus M follows from Eq. (20) by solving the
problem of a tool subject to a uniform pressure pg on its
outer surface. The tool is modeled as a homogeneous elastic
circular shell, and its interior surface is assumed to be pres-
sure free. The uniform displacement %, then follows by solv-
ing a simple plane stress problem in static elasticity.’

The determination of the modulus M. requires solving a
plane problem for an elastic material exterior to C, subject
to uniform pressure py on Cyz. When the casing is present the
problem becomes that of a circular hole with a lining of uni-
form thickness. The condition at the interface between the
casing and formation is that the radial stress and displace-
ment are continuous. The solution is radially symmetric so
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that there is no shear stress at the interface. The no-slip con-
tact condition [ #=0 in Eq. (6)], requires solving plane
strain problems in both the casing and formation. However,
for lubricated contact ( 3 — 1), the casing can undergo axial
displacement, in which case the problem is one of plane
strain in the formation but plane stress in the casing.

The results for the modulus M. of an arbitrarily shaped
hole follow from the work of Zimmerman® by noting that
Mo = C,,, where in the notation of Ref. 6, C,, is the com-
pressibility of the cavity with respect to the inner or pore
pressure. Zimmerman® showed, using complex variable
methods developed by Muskhelishvili®* and Sokolnikoff,’
that

Cp = (/pp) (1 + yo)/(1 —0a)], (21)

where ¢ is defined in Eq. (9) and y = 3 — 4v for plane
strain, y = (3 — v )/(1 + v) for plane stress. The bore-
hole problem is one of plane strain and so we obtain Eq. (10)
for M. Finally, we note that one can also define different
measures of compressibility for the same hole, if, for in-
stance, the confining pressure is applied at infinity rather
than inside the hole. The distinctions between these various
compressibilities is discussed extensively by Zimmerman®
and Zimmerman et al.'®

lli. CONCLUSIONS

Relatively simple and explicit formulas have been given
for the low-frequency tube wave speed, including new results
for the speed in the presence of a tool and when the bore is
noncircular. These show that the speed always decreases in
the presence of a tool, and for a given tool size it decreases as
the tool becomes more elastically compliant. However,
when the tool is relatively rigid, its main influence is to re-
duce the effective cross-sectional area of the bore. The tube
wave speed for the circular bore is greater than the speed for
any other shaped hole. The only effect that can increase the
tube wave speed is the presence of a casing stiffer than the
formation, and the increase in speed is greatest when the
casing is perfectly bonded, but is slightly diminished when
the contact between the formation and the casing is lubricat-
ed. None of these conclusions is surprising or unexpected,
but the simplicity of the associated expressions make them
very suitable for estimating the low-frequency tube wave
speed in complicated environments where exact analytical
techniques are of little or no use and numerical simulation is
too cumbersome. :
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Underwater audiogram of a Hawaiian monk seal (Monachus
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Underwater audiograms are available for a few pinnipeds from the families otariidae and
phocidae, but little is known about hearing abilities in the monachid seals. A young male

Hawaiian monk seal (Monachus schauinslandi) was trained at Sea Life Park on Qahu, Hawaii
for an underwater hearing test using a go/no-go response paradigm. Over a 6-month period,
auditory thresholds from 2 to 48 kHz were measured using an up/down staircase psychometric
technique. The resuiting audiogram shows a somewhat narrower hearing range than for other
pinnipeds. The monk seal’s hearing was most sensitive (20 dB above maximum sensitivity)
between 12 and 28 kHz. Below 8 kHz, the Hawaiian monk seal’s hearing was less sensitive
than other pinnipeds measured. High-frequency sensitivity dropped off sharply above 30 kHz,
as has been reported for other otariids, Callorhinus and Zalophus. Phocid seals, Phoca hispida,

P. graenlandica, and P. vitulina, have a broader hearing range with the upper limit near 60

kHz.

PACS numbers: 43.66.Cb, 43.80.Lb, 43.66.Gf [NFV]

INTRODUCTION

Hawaiian monk seals (Monachus schauinslandi) are
largely solitary animals, congregating at iraditional beaches
on the outer Hawaiian island chain during a short breeding
season (Johnson et al., 1982). They are an endangered spe-
cies because of high mortality of pups and a surplus of adult
males. However, National Marine Fisheries Service has a
rehabilitation program for captive pups (Gilmartin, 1983;
Gilmartin and Gerrodette, 1986; Gilmartin ez al., 1986).
One of these captive male pups was the subject for our study.

Little is known about the sensory abilities of the seclu-
sive Hawaiian monk seal. They produce a few vocalizations
while hauled out on the beach. Although there have been a
few attempts to record their vocalizations at sea, none has
been reported (Gilmartin, personal communcation).

Antarctic seals, like the Weddell seal (Leptonychotes
weddelli), the leopard seal (Hydrurga leptonyx), and the
crabeater seal (Lobodon carcinophagus), are members of the
family Monachidae. Hearing abilities in these seals also are
unknown, but, in contrast to the Hawaiian monk seal, they
are highly vocal (Thomas and Kuechle, 1982; Stirling and
Siniff, 1979). A report by Thomas et al. (1982) indicates
that leopard seals produce very high-frequency vocaliza-
tions, up to 130 kHz. This observation led us to suspect that
monachid seals might have a broader high-frequency hear-
ing range than other pinnipeds. OQur objectives were to mea-
sure the underwater hearing ability of a Hawaiian monk seal

“) At Waikiki Aquarium, Honolulu, Hawaii 96815.

and corapare our results with audiograms from other pin-
nipeds.

I. METHODS
A. Subject

A l-year-old, male Hawaiian monk seal, “Maka,” was
our test subject. At the end of the study, this animal weighed
120 kg, was about 1.6 m long, and had been in captivity for 2
years. The seal lived in a quiet test pool, with only a skimmer
filter system that did not require mechanical pumps. This
untrained animal learned the testing paradigm in about 3
months We tested the seal’s hearing twice per day from De-
cember 1987 to February 1988. The animal received a daily
ration of 3 kg of herring during the tests.

B. Apparatus

We conducted the study in a 6.1-m-diam X 1.2-m-deep
fiberglass pool in a quiet back holding area at Sea Life Park
on Oahu, Hawaii. The equipment setup in this pool is shown
in Fig. 1. A slatted redwood platform (A in Fig. 1) served as
a haulout site for the animal, a stage for the trainer, and
support for the signal projection equipment. A cage (B in
Fig. 1) attached to the pool provided a holding area for the
seal during equipment installation and removal. The seal’s
test station (C in Fig. 1) was a headstand with a short rim
shaped 1o the contour of the lower jaw. The seal’s ears and
face were unobstructed from the projector’s sound field. The
headstand was attached to the pool bottom by three glass-
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