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Abstract-The effective moduli of platelet reinforced mcdia are derived for aligned and randomly 
oriented circular platelets at both dilute and finite concentrations. The platelets are modeled as very 
thin oblate spheroids in which edge effects caused by the presence of the sharp corners can be 
significant, depending upon the relative magnitudes of the thickness-to-diameter ratio and the ratio 
of the matrix stiffness to that of the reinforcer. The edge effects become negligible when the latter 
ratio greatly exceeds the former, in which case the platelets act effectively as infinite layers. In 
general, the non-uniform stress fields in the vicinity of the sharp corners or edges cause a reduction 
in the effective moduli. When the aspect ratio greatly exceeds the stiffness ratio, the inclusions 
become equivalent to rigid disks, and the pertinent concentration parameter is not the volume 
fraction, which is zero, but a number analogous to the crack density parameter for solids containing 
cracks. Effective medium theories for finite concentrations of rigid disks predict that the effective 
Poisson's ratio tends to the value 0.1557 ... as the concentration increases, and the self-consistent 
theory displays a critical disk density at which the composite becomes rigid. 

L INTRODUCTION 

The subject of this paper is the stiffening effect of platelet reinforcers in two-phase composite 
materials, While aligned fibers are known to be very efficient for providing uniaxial stiffen­
ing, randomly oriented short fibers do not compare with platelets for purposes of stiffening 
in all directions simultaneously, In fact, there is considerable evidence that the maximum 
isotropic stiffening for a given volume of filler can be achieved using thin platelets. Experi­
mental data, summarized by Maine and Shepherd (1974), shows that the Young's modulus 
of a plastic matrix composite is significantly improved when mica flakes are used, as 
compared with glass or boron fibers, The same general conclusions about the efficacy of 
platelets versus other filler shapes are predicted by the theoretical investigations of, for 
instance, Wu (1966), Walpole (1969), Boucher (1974) and Christensen (1979a, b), 

Previous theoretical studies (Wu, 1966; Walpole, 1969; Boucher, 1974; Christensen, 
1979a, b) have assumed that the effects due to the non-uniform stress fields in the vicinity 
of the sharp corners of the platelet are insignificant, and consequently the inclusion may be 
viewed as a layer of infinite lateral extent, an approximation which leads to considerable 
simplification, In particular, it can be shown that the dilute concentration predictions for 
randomly oriented layers coincide with the Hashin-Shtrikman (Christensen, 1979a; Hashin 
and Shtrikman, 1962) upper bounds for the bulk and shear moduli of the composite 
(Boucher, 1974; Christensen I 979b), The dilute concentration results may be extended to 
finite concentrations by using effective medium approximations, Thus, Wu (1966), Walpole 
(1969) and Boucher (1974) each employed the self-consistent technique of Hill (1965) and 
Budiansky (1965), but only Boucher recognized that the predicted moduli are the same as 
the bounds, Christensen (1979a, b) presented a theory that predicts moduli in accord with 
the bounds for finite concentrations, and Norris (1985) has noted that the Mori-Tanaka 
effective medium approximation yields the upper bounds. 

In practice, the maximum stiffness corresponding to the bounding moduli cannot be 
achieved because the platelets are not infinite in extent. The stress concentrations in the 
matrix near the sharp corners of the platelets cause a reduction in stiffness. Whether or not 
this effect is important depends, as we wi1l see, upon the relative magnitude of the platelet 
aspect ratio and the ratio of material stiffnesses in the matrix and filler. The corner or edge 
effects are included in the present theory by modeling the platelet as a very thin oblate 
spheroid. Previous theoretical results are obtained in the limit of vanishing thickness, 
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664 A. N. NORRIS 

However, for finite values of the aspect ratio, the edge effects are crucial for considering 
the limit of a rigid filler. Then the platelet acts as the dual to a crack, in which the compliance 
is infinite. As we will see, there is considerable similarity between the present theory for 
rigid platelets and the theory of solids containing aligned (Laws and Dvorak, 1987) and 
randomly oriented (Budiansky and O'Connell, 1976; Zimmerman, 1985; Hashin, 1988) 
penny-shaped cracks. 

After mathematical preliminaries in Section 2, the fundamental result for a dilute 
concentration of aligned platelets is derived in Section 3. Dilute concentrations of randomly 
oriented platelets are considered in Section 4. Lower bounds on the moduli for finite 
concentrations are established in Section 5. Finally, in Section 6, the special case of rigid 
platelets is considered at length, and several effective medium theories are discussed. 

2. NOTATION AND PRELIMINARY RESULTS 

Let Land M denote tensors of stiffness and compliance, respectively, with components 
L ijkl and M ijkl referred to a rectangular coordinate system, and i, j, k, I = 1, 2, 3. Both 
modulus tensors satisfy the symmetries 

(1) 

Tensor products are defined by 

(AB)ijkl = AijmnBmnkl' (sum over m, n) (2) 

and so 

LM = ML = 1 

where 1 is the identity, I ijkl = ~(bikbjl + bi/bjk ). Isotropic tensors of the form 

(3) 

will be denoted concisely as (a, {3); thus, products are (ai, {31)(a2, {32) = (ala2, {31{32), and 
1=(1,1). 

We use the concise notation of Walpole (l966a) for transversely isotropic fourth order 
tensors. For example, a transversely isotropic solid with X3 as the symmetry axis possesses 
five independent stiffness moduli, C I I. C 13, C 33, C44 and C 66, and in Walpole's notation 

In general, a transversely isotropic tensor A with the symmetries A ijkl = Ajikl = Aijlk IS 

characterized by six constants, and may be denoted 

(4) 

The identity is 1 = (1,0,0,1, I, 1), the inverse of A is 

(5) 

and the product of A with B = (2a, bI. b2, c, 2d, 2e) is 
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3. A DILUTE CONCENTRATION OF ALIGNED PLATELETS 

Consider a matrix of moduli Lm containing a dilute concentration of aligned, identical 
inclusions of material with moduli L j • The effective moduli by definition relate the average 
stress to the average strain in the composite. Let Il be the average strain and suppose the 
average strain in the inclusions is Il j = Til, where T is the fourth order strain concentration 
tensor, then it can be easily shown that the effective moduli are 

(7) 

where c « I is the volume fraction of inclusions. 
If the inclusion shape is ellipsoidal we can avail of Eshelby's fundamental result for an 

isolated inclusion that 

(8) 

where P satisfies the symmetries (1) and is related to Eshelby's S tensor by P = SMm , see 
Hill (1965) for further discussion of these tensorial identities. The tensor P depends only 
upon the matrix moduli and the aspect ratios of the inclusion. 

Let the matrix be isotropic, with bulk modulus Km, shear modulus J.lm and Poisson's 
ratio Vm = (3Km-2J.lm)/(6Km+2J.lm), so that Lm = (3Km' 2J.lm). The inclusion is assumed to 
be a thin, oblate spheroid of radius a and aspect ratio rx « 1, which is aligned with the 
normal to its face in the X3 direction. The associated limiting form of S, and hence P, 
follows from Mura (1982) as 

1 ( 1-2vm ) 
P = 2J.lm 0,0,0, I-v

m 
,0,1 

(9) 

The platelet is also composed of isotropic material, with moduli Kj, J.lj and Poisson's 
ratio Vj. By assumption, the material in the platelet is much stiffer than the matrix, i.e., 
Kj» Km and J.lj » J.lm. Then, from eqns (7) and (8), 

L ~ Lm+c(P+MJ-l (10) 

where 

1 
M j = 2 (1 ) (1-Vj, -Vj, -Vj, 1, 1 +Vj, 1 +vJ 

J.lj +Vj 
(11) 

and the volume fraction of platelets is 

(12) 

n being the number of platelets per unit volume. 
The change in moduli due to the presence of the platelets depends upon the tensor 

(P + M j ) - I, in which both P and M j involve small quantitites, i.e., rx in P, and the ratio 
J.lmlJ.lj for Mi· To proceed further, we assume some scaling between these quantities. The 
limiting cases of ultimate interest will be: 
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(i) rx « flml fli; and (ii) rx » flml fli' Case (i) corresponds to the limit of a "large" platelet in 
which effects due to the presence of the sharp corners or edges of the platelet are unimpor­
tant, and case (ii) is realized when the inclusion is so stiff that only these effects matter, i.e., 
the platelet becomes in effect a rigid disk. As we will see, both limits may be considered by 
first assuming 

(13) 

The change in moduli then follows from eqns (5) and (9)-(13) as 

where E is the disk density parameter, 

(IS) 

Equation (14) is the fundamental result of this paper. The first thing to note is that 
the platelets only alter the in-plane moduli, i.e., CII and C66 if the platelets are aligned 
perpendicular to the xraxis. In the limit as the aspect ratio rx tends to zero, the terms in 
(14) involving c dominate, to give 

(
1 + Vi ) L-Lm = c2fli --,0,0,0,1,0 . 
I-Vi 

(16) 

This is precisely the same as the change in moduli caused by a dilute concentration of 
parallel infinite layers of inclusion material (Christensen, 1979a, b; Postma, 1955). Con­
versely, when the included material is extremely stiff, tending to the rigid limit fli ~ 00, the 
terms in (14) with E dominate, and 

(17) 

Willis (1980, 1981) gave a similar expression for a composite containing flat rigid platelets; 
however, there appears to be a typographical error in his expressions [1980, eqn (5.25); 
1981, eqn (4.101)]. 

The crossover between these two limits of a flat layer and of a rigid platelet occurs when 
the terms involving E and c in (14) are of equal magnitude. The appropriate dimensionless 
parameter is rxfld flm' where rx is the aspect ratio. Taking both Poisson's ratio to be 1/4, the 
contributions to the two elements of the tensor in (14) are of equal magnitude when 
rxfldflm = 0.895 and 0.764, respectively. In general then, we have 

[ 

» 1 : Rigid platelets 

rx ~ = o( I) : Crossover 

flm « I : Flat layers 

where, in the crossover regime, the platelets are neither "rigid" nor "flat". 
The main feature of the present theory that distinguishes it from previous studies is 

the inclusion of the effects caused by the presence of the sharp corners or edges of the 
platelets. Although we have not calculated the matrix stresses around the corners, it is 
expected that they will be far from uniform. The same type oflocalized stress concentration 
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is found near the edges of cracks, or more generally, voids with sharp vertices. For this 
reason we refer to the effects attributable to the presence of the sharp platelet corners as 
edge effects, even though the theory has assumed the platelets to be spheroids of smoothly 
varying curvature. It is clear from (14) that the moduli will always be less than those 
predicted by ignoring the edge effects (e = co). Similarly, the moduli will always be less 
than the predictions based upon the approximation of the filler as a rigid material 
(Pi -+ co). 

4. RANDOMLY ORIENTED PLATELETS IN DILUTE CONCENTRA nON 

The effect of a dilute distribution of randomly oriented similar platelets can be deter­
mined by averaging the tensor on the right hand side of (14) over all orientations. Any 
fourth order tensor with the symmetries expressed by (I) reduces to the isotropic tensor 
OAiijj , ~Aijij - fsAiij) when averaged over all possible orthogonal transformations. In 
particular, a transversely isotropic tensor of the form (20:, 0, 0, 0, 2b, 0) becomes the 
isotropic tensor (~o:, no: + ~b), see Walpole (1981). 

Application of these generalities to the specific case of eqn (14) implies the effective 
bulk and shear moduli are K and p, where 

(18) 

(19) 

The same comments apply to these formulae as to the previous result for aligned 
platelets. In particular, we note the change in moduli caused by randomly oriented rigid 
platelets in dilute concentration, e « I, 

where the functions f and g are 

64 (I-x)(1-2x) 
f(x) = 9 (I +x)(3 -4x) 

32 (I-x)(43-56x) 
g(x) =45 (3-4x)(7-8x)' 

(20a) 

(20b) 

(2Ia) 

(2Ib) 

These forms will be used in Section 6 to develop finite concentration predictions for rigid 
disks. 

5. RESULTS FOR FINITE CONCENTRATIONS 

5.1. Aligned platelets 
There are many ways to extend the dilute concentration results of Sections 3 to higher, 

finite values of the volume fraction c and the disk density parameter e. We will consider the 
application of several alternative effective medium approximations in Section 6 for the 
particular case of rigid platelets. The same approximate techniques could be applied to the 
general case of finite rigidity, but we do not present the details. Rather, we will confine our 
attention to the estimation of lower bounds on the effective modulus tensor L. 
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Unlike the bounds of Hashin and Shtrikman (1962) which make no assumptions on 
the geometry of the phases, the present bounds contain some shape dependence. These 
generalizations of the Hashin-Shtrikman bounds were first proposed by Walpole (l966a, b), 
and may be deduced from the Hashin-Shtrikman variational principle, as shown by Willis 
(1977). We restrict our attention to the lower bounds of the moduli, which by definition 
are such that all physically attainable moduli at the same concentration of filler exceed the 
lower bounds by a positive semidefinite tensor. The general expression for the lower bounds 
follows from Willis (1977) as L, where 

(22) 

and P is the tensor defined in (9), i.e., it is related to the Eshelby tensor for a single platelet 
in an infinite matrix. The moduli L of (22) are identical to those predicted by the Mori­
Tanaka effective medium approximation, as discussed, for example, by Norris (1989). We 
also note that in the limit in which the platelets act as infinite layers, i.e., IX -> 0 in (9), then 
(22) provides the exact expression for the transversely isotropic moduli of the two-phase 
layered composite (Christensen, 1979a; Postma, 1955). 

For the present applications, we can simplify (22) using the assumption that the 
inclusion is much stiffer than the matrix, to get 

(23) 

Note that this expression ignores changes in the moduli of the order of the original matrix 
moduli. The P of (23) is the same as in (9), and therefore the inverse in (23) can be 
performed explicitly. Noting that (I -c)/e; ~ lie;, it is easy to see that (23) actually reduces 
to the same expression as in (14). 

It may at first appear surprising that the lower bound estimate has the same form as 
the dilute result; however, this estimate agrees with the bound of Willis (1980,1981), valid 
in the limit of rigid platelets. In the opposite limit of fiat layers, the bound agrees with the 
exact results of Postma (1955) for media composed of stacks of isotropic layers, with the 
appropriate approximations made for the platelet being much stiffer than the matrix. The 
expression (14) is also restricted to values of c such that I -c = 0(1), i.e., the limiting value 
of c -> I is not covered. Finally, we reiterate that (14) is correct only to order Lm. The out 
of plane moduli may not be given accurately by (14), but the in-plane moduli, which change 
the most, will be. 

5.2. Randomly oriented platelets 
The appropriate generalization of the Walpole-Willis bound (22) is achieved by re­

writing it as 

(24) 

and then replacing the strain concentration tensor T by its average over all orientations. 
However, according to (8) 

(L;-Lm)T = P+L;-Lm 

= [P+M;][I+O(LmM;)] (25) 

and since LmM; is small by assumption, we have 

(26) 

where the brackets < > signify the orientational average. The bounds on the bulk and shear 
moduli are then K and /1, which follow from (18), (19) and (26), as 
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_I _I 9 [I (I-Vi) 3 (3-4Vm)] (K-Km ) = (Ki-Km) +(l-c)- - -- +-- --_-
4 Cf.1i I +Vi e32f.1m I Vm 

(27) 

2 [ I 3 (7 - 8v )]-1 }-l 
+"5 cf.1, + e64f.1: I_vm

m (28) 

These expressions produce the correct values as c ~ 1 and as c ~ O. In the limit in 
which the platelets act like flat layers, the terms involving e disappear, and it is a straight­
forward matter of algebra to show that (27) and (28) coincide with the Hashin-Shtrikman 
(1962) upper bounds on the isotropic moduli of a two-phase composite made of (Km' f.1m) 
and (K;, f.1;). This is to be expected, since it is known (Norris, 1989) that the Mori-Tanaka 
theory for randomly oriented flat layers of stiffer material embedded in the more compliant 
material predicts the H-S upper bounds. However, in the present situation, the upper 
bounds have been shown to follow from an expression for the lower bounds. Hence the 
estimates must be exact for the flat layer limit. This limit is also equivalent to an isotropic 
"rank-n laminate," with n ;::, 3. The theory ofrank-n laminates is discussed by, for example, 
Francfort and Murat (1986). These classes of composites have interesting theoretical proper­
ties, not least of which is that they can be realized, in principle, by a well defined lamination 
process on successively smaller length scales. 

In general, the moduli given by (27) and (28) are less than those predicted on the basis 
of a flat layer approximation for the platelets. The difference is due to the edge effects and 
is contained in the terms involving e. 

6. EFFECTIVE MEDIUM THEORIES FOR FINITE CONCENTRATIONS OF RANDOMLY 
ORIENTED RIGID DISKS 

6.1. Lower bounds 
In the limit that the platelets are infinitely rigid, the expressions (27) and (28) for the 

lower bound estimates of the moduli reduce to 

(29a) 

(29b) 

where f and 9 are defined in (2Ia, b). As mentioned in Section 5, these results are the same 
as the extension of the dilute concentration estimates to finite values of e. Note that as e 
increases, the effective moduli increase monotonically, with no critical value for e at which 
the medium becomes effectively rigid. 

6.2. A self-consistent theory 
A "self-consistent" estimate can be obtained by first writing the dilute result (20a, b) 

for randomly oriented rigid disks as 

(30) 

where 

B(v) = (I(v), 9(V». (31) 

The tensor B accounts for the effect of the matrix through its dependence upon Vm . The 
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self-consistent method, as developed by Hill (1965) and Budiansky (1965), allows for 
interaction between inclusions at finite concentration by embedding the inclusion in the 
effective medium rather than in the matrix. It can be shown in the present context, that the 
self-consistent approximation amounts to making the substitution B(vm ) --+ B(v), where v 
is the Poisson's ratio of the effective medium. This yields an implicit equation 

which reduces to explicit expressions for the bulk and shear moduli K, 11, as 

Km - = I-ef(v) 
K 

11m = l-eg(v) 
11 

(32) 

(33a) 

(33b) 

and an implicit equation for the effective Poisson's ratio v is obtained from the ratio 
KII1 = 2(1 +v)/[3(1-2v)]; thus, 

( 
I+v)[l-ef(v)] I+vm 

1-2v l-eg(v) =1-2vm' (34) 

Unlike the estimates for the lower bounds, the effective moduli of (33a, b) and (34) predict 
a rigid effective medium for a finite value of e. As e approaches this critical value, en from 
below, both K and 11 tend to infinity, and v --+ Ve where Ve is the unique root of 

f(vJ = g(vc) (35) 

that lies in (- I, ~). Simplifying (35) implies that 

(36) 

or 

6 
ve = 23+J241 = 0.155746 .... (37) 

The critical concentration is then 

ee = Ilf(ve) 

9 27 
=-+ 

16 16(1 +)241) 

= 0.6646 .... (38) 

The self-consistent theory therefore predicts a rigidity threshold at ee' This phenom­
enon is similar to the threshold in Budiansky and O'Connell's (1976) theory of cracked 
solids. They found, using a similar self-consistent theory, that the bulk and shear moduli 
vanish when the crack density parameter, which is exactly the same as our disk density 
parameter e, approached the value 9/16. The present threshold exceeds this value, as can 
be seen from (38). The other point in common with the theory of Budiansky and O'Connell 
is that a unique, limiting value is obtained for the Poisson's ratio as the threshold is 
approached. The value for cracks is zero, whereas for rigid disks we have Vc as given by 
(37). One should not put undue emphasis on the exact value of the critical concentration; 
in particular it does not equal the percolation threshold for a random assortment of circular 
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disks. However, the qualitative feature of the appearance ofa rigidity threshold is physically 
appealing since one can expect the composite to eventually assume the stiffness of the 
platelets, if the platelets are allowed to become interpenetrating and connected. The single 
particle model upon which the self-consistent theory is based does not include such phenom­
ena, and so one should not put too much credence in the quantitative predictions at high 
values of the concentration. 

It should be noted that if the matrix is such that Vm = v" then (34) is satisfied by v = Vc 

for all e < ec • The Poisson's ratio of the effective medium therefore has a fixed point at Vo 

at which value the moduli of (33a, b) become simply 

(39a) 

(39b) 

The value v = Vc is also a fixed point for the lower bound estimates (29a, b), at which value 

K=Km(l+t} 0::;; e < 00 (40a) 

P = Pm(l + t} 0::;; e < 00. (40b) 

6.3. The differential scheme 
The dilute concentration result (30) can be expressed as 

(41) 

This can serve as the generator of a system of ordinary differential equations for M = M(e) 
by extending it to finite values of e as 

dM 
~ = -M(e)B(v(e)), e ~ 0, (42) 

with initial condition M(O) = Mm. This type of differential effective medium theory is 
completely analogous to that for cracked solids, which is discussed at length by Hashin 
(1988). It should be noted that the same eqn (42) is obtained whether we start with the 
dilute change in compliance, as we have done here, or with the dilute form of the stiffness 
tensor. 

It is not difficult to extract from (42) a single differential equation for the Poisson's 
ratio vee), 

dv 32 (1-v)(1-2v)(24v2_23v+3) 

de 13 (3-4v)(7-8v) 
(43) 

with v(O) = vm . This may be integrated by the method of partial fractions. Let Ve be the 
extraneous root of (36), i.e., Ve = (8v,.) - I, or 

Ve = 0.802587 ... (44) 

then (43) integrates to 
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01-------.------,~----_.------_,----__, 
0.0 0.3 0.6 0.9 1.2 1.5 

Fig. 1. The effective bulk modulus of a composite containing randomly oriented rigid disks, 
according to the lower bound estimates (LB), the self-consistent method (SC) and the differential 
scheme (DS) : solid curves, Vm = 0.3; dashed curves, Vm = 0.1. Note that, since the reciprocal of K 

is plotted, the lower bounds appear as the highest curves. 

The following equation for K as a function of v can be obtained from (42) and (43), 

din K 

dv 

10 (7-8v) 
3 (1 +v)(24v2_23v+3)' 

(45) 

(46) 

Again using the method of partial fractions, with the appropriate initial condition, we get 

(47) 

The solution to the differential scheme then follows by first solving (45) for v = vee), which 
is then substituted into (47) to give K = K(e), and the shear modulus can be calculated 
from Jl = 3K(0.5-v)/(l+v). These equations are similar in form to those obtained by 
Zimmerman (1985) in applying the differential scheme to cracked solids. 

It is interesting to note that v = Vc is again a fixed point, i.e., if Vm = Vc then v = Vc for 
aile> 0, and the bulk and shear moduli become simply 

K = Km exp (e/ec ) 

Jl = Jlm exp (e/eJ. 

6.4. Numerical comparisons and discussion 

(48a) 

(48b) 

The three theories discussed above are compared in Figs I, 2 and 3 for two values of 
the matrix Poisson's ratio: one less than and the other greater than the value Vo which is 
a fixed point for all three theories. Of the three, only the self-consistent theory predicts a 
finite rigidity threshold at ee- As expected, the self-consistent and differential schemes give 
moduli greater than those of the lower bounds. The general behavior of the curves in Figs 
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04-------.-------,-~----,_------._----__. 

0.0 0.3 0.6 0.9 1.2 1.5 

Fig. 2. The same as Fig. I, but for the effective shear modulus. 
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1 and 2 is very reminiscent of similar curves for the effective moduli of solids containing 
cracks (Budiansky and O'Connell, 1976; Laws and Brockenbrough, 1987; Hashin, 1988). 
It can be seen from the relevant equations that v -+ Vc as B -+ Be in the self-consistent theory 
and as B -+ 00 in the differential scheme. However, the lower bounds estimates predict a 
limiting value of v that depends upon Vrn as B -+ 00, viz., v -+ (9 - 8vrn)j(61-72vrn). 

Although we have a multiplicity of theories at our disposal, it is a simple fact that a 
given composite has only set of moduli, which begs the inevitable question: which theory 
is right? The simple answer is none of the above. However, there are arguments to be made 
in favor of each theory. First, the estimates (29a, b) provide us with confident lower bounds: 
any physical example must comply with these. The favorable features of the self-consistent 
theory have been discussed by Hill (1965), Budiansky (1965), and Budiansky and O'Connell 
(1976), among others. In the present context, we note that it displays the intuitively 
appealing feature of a finite rigidity threshold. However, as discussed in Section 6.2, there 
is no reason to expect that the value Be is actually correct. The differential scheme, like the 
self-consistent method, is essentially a mathematical technique. In contrast to both the 
lower bounds and the self-consistent method, the differential scheme has the significantly 
property that it is realizable. Thus, the predicted moduli can be realized, in principle, by 
successively embedding larger and larger disks into the matrix material. In practice, the 
differential scheme can be expected to be applicable to a composite containing a distribution 

0 
C') 

0 

In 
C\I 
0 

II 

0 
"l DS 
0 

In SC .... 
ci 

LB 

0 .... 
0 

0.0 0.3 0.6 0.9 1.2 1.5 

Fig. 3. The Poisson's ratio corresponding to Figs I and 2. 
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of disk sizes. The self-consistent scheme, as suggested by Budiansky and O'Connell (1976), 
may be better suited to cases in which only one disk size is present. 

7. CONCLUSIONS 

A theory for the effective moduli of platelet reinforced solids has been developed. The 
main innovation in the present theory as compared with previous studies is the inclusion 
of finite size or edge effects, which tend to diminish the effective moduli. The edge effects 
become critical when the reinforcing material becomes rigid. The theory of solids containing 
rigid disks has been explored in detail, and it has been shown to be very similar to the 
theory of solids permeated by circular cracks. The self-consistent theory predicts a finite 
rigidity threshold, and it has been shown that the Poisson's ratio of the composite will 
probably tend towards the value 0.1557 ... as the concentration of rigid disks is increased. 
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