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SUMMARY 
The twenty~one elastic moduli of a homogeneous anisotropic solid can be 

determined from the second~order acoustical tensors associated with wave motion in 
six phase directions. The directions may be quite arbitrary as long as they cannot be 
contained by less than three distinct planes through the origin and do not all lie on 
the curves formed by the intersection of the unit sphere with an elliptical cone. Two 
equivalent sets of conditions necessary and sufficient for the existence of a plane of 
material symmetry in an elastic solid are presented. The conditions are phrased in 
terms of acoustic waves, the first set involving polarization vectors, the second 
energy-flux vectors. Some consequences of the acoustic conditions are noted. 

1. Introduction 

THE subject of this paper concerns some general acoustic properties of 
homogeneous anisotropic elastic solids. The first issue addressed is the 
problem of determining the elastic constants of a given material. In a recent 
paper Van Buskirk, Cowin and Carter (1) proposed an acoustic-wave 
approach in which by a series of experiments one can obtain a sufficiency of 
data for determining all 21 independent moduli of an arbitrarily anisotropic 
specimen. Their procedure offers an alternative to the purely statical series 
of measurements proposed by Hayes (2) and may be preferable if only a 
single small specimen of the material is at hand. The method outlined in 
sections 2 and 3 generalizes that of Van Buskirk eta/. (1). The nature of the 
acoustic data required is such that one must be able to measure the three 
phase speeds and associated polarizations for six different phase directions. 
The question of what geometrical limitations are involved in the choice of 
the six directions is answered by Theorem 1 in section 4. 

The remainder of the paper discusses conditions necessary and sufficient 
for the existence of a plane of material symmetry. These conditions, derived 
by Cowin and Mehrabadi (3) and simplified by Cowin (4, 5), consist of 
algebraic relations satisfied by both the elastic stiffness and compliance 
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tensors. The symmetry conditions are presented in eection 5 in the concise 
form due to Cowin (5) although the present derivatiOn differs slightly from 
his (this is based upon information provided by a referee; I have not read 
the forthcoming paper (5)). Two interpretations of the algebraic conditions 
are given in section 6 in terms of acoustic waves. The first interpretation, 
Theorem 3, has previously been noted and discussed by Cowin (4, 5). 
Theorem 4 phrases the symmetry conditions as constraints upon energy-flux 
vectors and appears to be new. Some consequences of these observations 
are explored in section 7, where it is demonstrated for a material possessing 
a plane of symmetry that at least three distinct coordinate bases exist in 
which the stiffness tensor has only 12 non-zero components. 

2. Definitions and preliminary results 

The following notation will be adhered to as far as possible: fourth-order 
_ tensors and 6 x 6 matrices are denoted by capital letters, for example, C, B; 

· second-order tensors and six-dimensional vectors by lower case letters, for 
example, d, v; and unit vectors in IR 3 by Greek letters, for example, v. The 
summation convention on repeated subscripts is assumed with exceptions to 
the rule noted. 

Let C,ikl be the Cartesian components of the tensor of moduli for a 
homogeneous elastic solid, where i, j, k and I run from I to 3, and C 
possesses the symmetries 

cijkl = cjikl = c klij· (2.1) 

Define the tensor B by its components 

(2.2) 

then B also has the symmetries 

(2.3) 

Each of B and C has at most 21 independent components. An important 
property of B, and the one vital to the present purpose, is that the 
components of B uniquely define those of C. It is clear from (2.1) and (2.2) 
that 

ciju= Biijl (no sum), (2.4) 

which imply 15 components of C and 

C;ikt = 2B ikit- Biikt (no sum), (2.5) 

which yield the remaining six. 
The 21 components of C or B may be represented by the usual 6 x 6 
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sym~etric matrix rwtati~ri, for <;x~iti~le, t( 
c,;, ;C,, c,, c,, c ••. 
Czz c~ c24 c25 c26 

c,, c,. 
c,, c .. (2.6) 

c,, c,. 
c .. 

c,, c,. 
c .. 

where Cu"" C;i1Jand 1";'1;2, 3,4; 5, 6·correspond to ij = 11, 22, 33, 23, 13 
and 12, respectively.' Equation (2.2) becomes 

ell c .. c, c,. c,, 
Czz c .. c2, c .. 

c,, c,. c" B= 
!<c .. + c2,) !(c,, + c,.) 

and (2.4) and (2.5) are 

C= 

2Bss- B13 

2B44 - B23 

B, 

!(Css + C13) 

2B56 - B 14 

B2, 
B,. 
B23 

3. The acoustical tensor and determining the moduli 

c,. 
c26 
c,, 

!(C46 + C25) 

!(C,6 + c,,) 
}(c .. + c,2) 

(2.7) 

(2.8) 

Define the associated acoustical tensor a(v) for the direction vas 

a1k(v) = C,iktviv1 = B1kitviv1• 

Alternatively, let the vectors v and a in IR 6 be 

v(v) =[vi, v~, v~, 2v2v3 , 2v1v3 , 2v,v2f, 
a(v) = [a 1b a22 , a33 , a23 , a13 , a12]r. 

(3.1) 

(3.2) 

(3.3) 



Here p is the materialderi~ity,c<«l, ~ = 1, 2, 3, are the phase speedsfor 
wave motion with plane phase .fronts perpendicular to v, and t;<«l im;' the 
associated polarizati011 directions. If these quantities can be measured 
experimentally by a series,of,ultrasonic inspections of a sample thewa(v} 
may be determined. The practical issues involved in the measurements are 
discussed by Van Buskirk,et al. (1) and also by Cowin (4}. It is assumed for 
the purposes of this paper thata(v) can be found. 

It is clear from (3.4) that six relations of this type are necessary to 
-"-''-determine B. Let v(ll, I= l, 2, ... , 6, be a set of six unit vectors in ~3 and let 

v<l), a<!) be the corresponding vectors in ~6 defined through (3.2) and (3.3). 
Define the 6 X 6 matrices 

and 

Then 

A= [a<•J a<2J a<'l a<•> a<5l a<6lj ' ' ' ' ' ' 

A=BV. 

(3.6) 

(3.7} 

(3.8) 

If the inverse to v exists such vv-• = v-•v = diag (1, 1, 1, 1, 1, 1}, then 

B=AV- 1, (3.9) 

and the moduli follow from (2.8). 
The general result expressed by (3.9) requires that both the wave speeds 

and polarizations be known. Noting from (3.5) that 

Tr a(v) = p 2: c<«l', (3.10) 
«=1,3 

then (3.9) in combination with (2.7) and (3.6) yields 

Ca + Css + C66 

C22 + c .. + c66 

C33 +c .. + Css ( 
= [Tra •>, Tra<2>, Tra<3l, Tra<•>, Tra<5l, Tra<6>jv-•. 

C24 + c,;+ Cs6 

C15 + C 35 + C46 

c,6 + c26 + c.s 
(3.11} 

• 

() 
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In this way six elastic constants may be obtained frpm the 18 speeds without 
recourse to the polarizations. If the latter are unknown it is not clear how 
the remaining 12 wave-speed data can best be used to find the other 
constants. At least three more speeds will probably be required since there 
are 21 independent moduli. 

The procedure of Van Buskirk, Cowin and Carter 

Van Buskirk, Cowin and Carter (1) proposed a particularly convenient 
set of six unit vectors v<I), I= 1, 2, ... , 6, as three orthogonal vectors and 
their three bisectors: 

v<'l = (1 0 Of v(2l = (0, 1, o)r, •"'~ (0, 0, ')', } ' ' ' 
1 1 

v<•J = )2 ( v<'l + v<2J). v<•J =- (v<2J + v(3l) v<'l =- ( v(ll + v(3l) 
/2 ' /2 ' 

(3.12) 
The matrix V and its inverse are 

1 0 0 0 1 1 2 2 
0 1 0 1 0 1 

2 2 

0 0 1 1 1 0 
V= 

2 2 
(3.13) 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

1 0 0 0 -! l -, 
0 1 0 -! 0 1 -2 

v-'= 0 0 1 -! -! 0 
(3.14) 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

The relatively simple expressions for the moduli Cu given by Van Buskirk et 
a/. (1) then follow from (2.8), (3.3), (3.6), (3.9) and (3.14). 

It is interesting that for this particular set of vUl an explicit tensorial 
relation for B can be obtained from the identity 

(3.15) 
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Expanding the last expression and using (3.1) withjdentities of the form 

v<«>v<P> + v<«>v<P) = 2v<•-«-P>v<•-a-p)- v<i.?v(a)- v<P>v<P> (3 16) 
P q q p. p q P. q p q ' • 

where 1 "" a< p"" 3, one arrives at 

(3.17) 

4. Geometrical limitations on the six vectors 

The six unit vectors v<•>, ... , v<•> e ll\l 3 may be quite arbitrary in general as 
long as V is invertible, which enables B to be found from (3.9). The 
geometrical constraint imposed by this requirement can be found by 

.v··examining the circumstances under which it is violated. 
The six associated vectors v<•>, ... , v<•> e ll\l 6 are linearly dependent, or 

equivalently V is not invertible, if there exists a non-zero vector be ll\l 6 such 
that 

Hence, from (4.1) and (3.2), 

b,vi + b2v~ + b3v~ + 2b4VzV3 + 2b,v,v3 + 2b 6v1v2 = 0, 

or equivalently 

where 

[

b, b. b,] 
b = b• b2 b4 . 

b, b. b, 

Let p be the orthogonal matrix that diagonalizes b as 

pbpr = diag (d1 , d2 , d,), 

where d1 , d2, and d3 are the eigenvalues of b; then (4.2) becomes 

d,~i + d2~~ + d3~~ = 0, 
and 

11 = pv. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Equations (4.2) and (4.6) represent a quadratic surface in ll\l 3
• Three 

possibilities arise: (i) all three eigenvalues are non-zero, (ii) one is zero, or 
(iii) two are zero. 

Case (i). If all three of d., d2 and d3 are non-zero, one must be of 

A 
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opposite sign to the other two. Specifically let d11 and d2 be positive and 
d3 = -1, then the surface is · 

(4.8) 

which is an elliptical cone. The interse.ction of the cone with the unit sphere 
forms two similar curves whose projections in the plane fl 3 = 0 are the 
ellipse 

(4.9) 

Thus, if all six v<l) lie on an elliptical cone, the image vectors v<l) do not span 
[J;l6. Equivalently, the y(l) are linearly dependent if the projections of the six 
v(Il on some plane lie on an ellipse. 

Case (ii). Let d 3 = 0; then the surface is 

(4.10) 

-"-"'·which implies that d 1 and d2 are of opposite sign, and the surface is two 
planes through the origin. 

Case (iii). Let d2 = d3 = 0; then the surface is 

(4.11) 
which is a single plane. 

Further degeneracy must be contained in these three cases. The following 
summarizes the results. 

THEOREM 1. A set of necessary and sufficient conditions that the 6 x 6 matrix 
V formed from v<'l, ... , v<•J be invertible are that the six vectors do not lie on a 
cone through the origin and cannot be contained in less than three distinct 
planes through the origin. 

The results of Theorem 1 are also relevant to the acoustical measurement 
of tensorial quantities other than the elastic moduli. For instance, Kohn and 
Rice (6) showed that the long-wavelength elastic scattering from an 
anisotropic defect in a uniform isotropic medium is characterized by 22 
parameters. These are the excess mass of the defect and the 21 independent 
components of a tensor D possessing the symmetries D,1• 1 = D1,.1 = Dklii· 
This fourth-rank tensor depends upon the deviation in the modulus tensors 
of the medium and the defect, and upon the shape and orientation of the 
defect. If the excess mass is known, the scalar D,1• 1TJ1TJiflkfLI can be related to 
the scattered longitudinal amplitude in the direction !' for an incident plane 
wave in the direction tJ. Therefore, the 36 separate measurements of the 
scattered longitudinal-to-longitudinal amplitude for six directions of in­
cidence and six directions of scattering gives enough data to determine all 21 
components of D, provided the two sets of six vectors are independent in 
the sense of Theorem 1. For example, the directions v<'l , ... , v<•J of (3.12) 
could be used for both the directions of incidence and scattering . 
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! 
5. Necessary and sufficient conditions for a plane•of symmetry 

The remainder of this paper is concerned with the identification of 
material symmetry in elastic solids. Having determined the tensor C by the 
acoustic procedure discussed above, or by other means (2), one would like 
to determine if the material possesses a plane of symmetry. This problem 
was first solved by Cowin and Mehrabadi (3) and the following simplified 
version is due to Cowin (4, 5). 

THEOREM 2. The necessary and sufficient conditions that the direction !; be 
normal to a plane of symmetry are 

C,ik,I;J;k!;, = ( Cpq,/;p/;q/;,1;, )1;1, 

cijk/vjvk/;1 = ( cpq, vp v,/;q/;,)1;,, 

for all directions v perpendicular to !;. 

(5.1) 

(5.2) 

The original theorem of Cowin and Mehrabadi (3) phrased the solution in 
a slightly different manner. In addition to the relations (5.1) and (5.2) they 
gave the conditions 

c,kkjl;j = c cpkkql;pl;q )I;,, 

c,jkkl;j = (Cpqkkl;p/;q)t;,. 

(5.3) 

(5.4) 

Let v(l) and v<2l be two orthogonal directions each orthogonal to !;. Then 
(5.3) follows from (5.1) by adding (5.2) for v = v<'l and v = v<2l, and using 
the identity 

oik = l;il;k + vjl)vPl + vj2lvi2J 

In regard to (5.4), for ll' = 1 and 2 

cijkkl;jvi") = cijkl(l;k/;1 + vi'lvf'l + vflv}2l)l;jvi") 

(5.5) 

= cijkll;kl;/l;jvi") + cijk/vi"lvi'lvf'li;j + cijk/vi"lvi2)v?li;j. (5.6) 

The first term on the right-hand side of (5.6) vanishes using (5.1) and the 
second and third terms are zero by virtue of (5.2). Therefore C,ikkl;i is 
perpendicular to v(ll and v121 , so it must be parallel to!;, and (5.4) follows. 

The relations (5.3) and (5.4) are therefore consequences of (5.1) and 
(5.2). The former are useful (3, 4) if one is interested in finding the planes 
of symmetry of a given elastic tensor C. Thus (5.3) and (5.4) imply that !; 
must be a common eigenvector of the second-order tensors C1kkf and Cifkk· 

Any common eigenvectors that also satisfy (5.1) and (5.2) are automatically 
normal to symmetry planes. Conversely, the material has no planes of 
symmetry if C,kki and C,ikk have distinct eigenvectors. The six-vector 
corresponding to the second-rank tensor C,kki is equal to the left-hand side 
of (3.11) and thus can be found using only wave speeds. Alternatively, C,kki 
can be determined from the acoustical tensors associated with three 
orthogonal directions. Let v(ll, v121 and v(3l be mutually orthogonal, then it 
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.··. !,,Som6:'infonriation ·may .thereford bd gleaned from the ilcotistlcat' data • for 

three orthogonal directions. Suppose that the .material is· known to possess 
· orthotropic symmetry, or three planes of symmetry, and the orientations of 
·the symmetry axes are to be determiped. Then the. three ·eigenvectors of 

• (.C1kki correspond to the desired axes, 'Fedorov (7) dispussed further the 
.. tenso~ C 1kkiwhich he called the conv9luted tensor for, the elastic moduli. 
.'The full ramifications of (5.1) to (5.4) were investigated in detail by Cowin 
.andMehrabadi (3). 

6. Equivalent acoustic conditions for a plane of symmetry 

Consider a wave represented by the displacement field 

u1(x, t) = l';F(y. x/c- t), (6.1) 

where I' is the polarization direction, y is the phase direction, c is the phase 
speed and F is some C2 function. The following relations must be satisfied 
(for example, (7)): 

C,ikiYiYkl'l = (Cpq~YpYrl'qf',)l';, (6.2) . 

pc2 = C,ikiYiYkl'il'l· (6.3) 

The wave is called longitudinal if Jl and y are parallel and transverse if they 
are orthogonal. The conditions (5.1) and (5.2) can then clearly be rephrased 
in the following statement which is due to Cowin (4, 5). 

THEOREM 3. The direction !,; is normal to a plane of symmetry if it is a 
longitudinal direction and if a transverse wave polarized in the !;-direction 
exists for any phase direction perpendicular to !,;. 

Kolodner (8) proved that three or more longitudinal directions exist in 
every anisotropic solid. Consequently the first condition in Theorems 2 and 
3 is satisfied by at least three directions. If for one of these directions the 
plane normal to it supports transverse waves in the !;-direction for any phase 
vector in the plane then the plane is one of symmetry. Fedorov (7) observed 
that the acoustic conditions of Theorem 3 are satisfied when !,; is normal to a 
plane of symmetry, although he does not appear to have observed that these 
same conditions are sufficient for !,; to be normal to a symmetry plane. It is 
also possible to state a set of conditions which are equivalent to Theorems 2 
and 3 but which involves waves propagating in the direction !,; only. This 
requires the notion of the energy-flux vector and is as follows. 

THEOREM 4. Necessary and sufficient conditions that the direction !,; be 
normal to a plane of symmetry are that it be a longitudinal direction and that 
the energy-flux vector be in the direction !,; for any combination of transverse 
waves with phase direction !,;. 
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Proof. Sufficiency will be demonstrated first. Eq!Jation (5.1) follows from 
the fact that s is a longitudinal direction. Let' v<'>, v<2> be the other 
eigenvectors of C,iktl;/;1, so that (v<'>, v<2>, s) form an orthonormal triad. The 
most general form of transverse wave motion with phase direction sis of the 
form 

(6.4) 
where 

<t><~> = s. x/c<~>- t, <Y = 1 or 2, (6.5) 

Fi and F2 are arbitrary C2 functions, and c(l>, c<2> are phase speeds. The 
i-component of the energy flux vector is 

-a aui _ -C aui auk 
ij at - ijkl at ax, 

= 2: c<~>-'ci~~> F~( <t><~>)F{,( <t><m), (6.6) 
a,f3=1,2 

where 
Ci~m = C,iktv]~>vV'>t;,, <Y, {3 = 1, 2. (6.7) 

The vector in (6.6) is parallel to s by hypothesis. Selecting in turn F; and F~ 
to be identically zero implies that (5.2) holds for v = v<2> and v = v(l>, 
respectively. Consequently, 

cp2>vF> = c~21 >vp> = o, 
and in addition, as a result of (5.1), 

cp2> 1;, = c}Z'> 1;, = o. 
When F; and F~ are both non-zero, equation (6.6) implies that 

<Y = 1, 2. 

Therefore, from (6.8) to (6.10), 

cpz> = cfzr> = 0' 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

and (5.2) follows since any v perpendicular to s can be written as a linear 
combination of v(l) and v<2 >. 

It remains to show that the conditions of Theorem 4 are necessary if s is 
normal to a plane of symmetry. To this end it will be shown that (6.11) is a 
consequence of (5.1) and (5.2). Equation (5.2) for 

1 v =- (v(l) + v<2>) 
/2 ' 

v=v<I), v = "(2), 

in combination with (5.1), yields after some elimination 

ci'2> + c}Z'> = o. (6.12) 

Equations (6.11) follow from (6.8), (6.9) and (6.12), thus completing the 
proof. 

f'"'\ .. \, } 
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The proof of Theorem 4 relies upon the condition that any transverse 
wave motion has energy flux in the !;-direction. I.ti is not enough to assume 
that each transverse mode has energy flux parallel to !; as this does not 
imply (6.11). These relations follow from the requirement that the cross 
term in the flux be parallel to !; for a combination of transverse waves. The 
cross term turns out to be identically zero, so that the flux of the sum of the 
two distinct transverse modes is equal to the sum of the individual fluxes. 
The longitudinal wave automatically has energy flux in its direction of 
propagation. 

7. Discussion 

As mentioned above, Kolodner (8) showed for an arbitrarily anisotropic 
elastic solid that there are always at least three directions which satisfy 
(5.1). Let !; be one of these directions and let v<I), v<2

) be the associated 
orthogonal eigenvectors of C;iklSiSk· With no loss in generality let 

·· · v<') = (1, 0, 0) 7 , v<2) = (0, 1, 0) 7 and!;= (0, 0, 1)7 • Then (5.1) implies that 

ci333 = c3333bi3, 

while the eigenvalue equations for v<«) yield 

a= 1, 2 (no sum on a). 

These relations imply that 

(7.1) 

(7.2) 

(7.3) 

and so there are only 18 independent elastic constants in this particular 
basis. The remaining three parameters can be thought of as the Euler angles 
that define the basis ( v(l), v<2), !;) . The fourth-order tensor still has 21 
independent constants but has only 18 when referred to this particular 
coordinate system. It has long been known (7, 9, 10) that three of the 21 
elastic constants can be set to zero by an appropriate choice of coordinate 
system. However, the existence of at least three such systems does not 
appear to have been previously noted. 

Consider a material possessing a single plane of symmetry, that is, 
monoclinic, for which it follows from (5.1) and (5.2) (3), or by other means, 
for example, (9), that the eight moduli c14, c,,, c24> c25> c,., c,,, c.6 
and C56 are all zero. Equation (7.3) also holds for the particular basis 
chosen, and therefore only twelve of the moduli are non-zero when the 
coordinate axes are defined by the polarization axes for phase vector in the 
normal direction. The tensor C for a monoclinic solid thus has 15 
independent parameters: 12 non-zero moduli plus three Euler angles to 
define the basis (7, 9). Alternatively, there are 13 non-zero moduli plus two 
Euler angles to define the normal direction. 

There are two other specific bases with respect to which a monoclinic 
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solid has only 12 non-zero moduli, although one of these bases may coincide 
with the one previously discussed. The two bases are defined by the 
longitudinal axes in the plane s . x = 0, and their existence can be proved as 
follows. Let v be any direction in this plane, then it follows from (5.2) that 
two of the eigenvectors of C,iktviv1 lie in the plane because the third is 
automatically in the !;-direction. Define the map v--> f(v)v, where 

(7.4) 

which maps the unit circle in the plane s . x = 0 onto a continuous curve 
about the origin in the same plane, with reflection symmetry about the 
origin. The curve must therefore have at least four points at which its 
normal is in the same direction as v. Two of these points are images of the 
other two and the pair of distinct directions defines longitudinal axes in the 
plane of symmetry. Let v1'l be one such direction and define the basis 
(v(l>, vl2>, !;), where vC2> is orthogonal to vl'l and !;, that is, it is the vector 
orthogonal to v(ll in the plane of symmetry. Again let v(l>, v12>, s be the 
(x 1 , x2 , x3)-coordinate axes, respectively, so that 

G,=C,,=~=~=~=~=~=~=O, 

as before. Furthermore, a longitudinal wave exists for phase direction 

cilll = Cuu ()H· (7.5) 

The additional identity C16 = 0 follows from this equation with i = 2. l, 
In summary, these results may be stated as follows. 

THEOREM 5. An elastic solid has at least three coordinate systems with respect 
to which there are only 18 non-zero elastic constants. If the solid possesses a 
plane of symmetry, three of the coordinate systems have as common direction 
the normal to the plane of symmetry and the solid has 12 non-zero moduli 
when referred to these coordinate systems. 

It is well known (7, 9, 10) that there exists a coordinate system in which a 
monoclinic solid has only 12 non-zero moduli. Theorem 5 goes further in 
showing the existence of at least three such coordinate systems. It should be 
pointed out that two or possibly all three of these coordinate systems may 
coincide for certain values of the elastic constants. Furthermore, these 
coordinate systems have no relation to symmetry coordinate systems (3). 
The distinction is obvious when one considers the compliance tensor, 
S = c- 1

• Both S and C have eight zero components for a monoclinic solid 
referred to a symmetry system. While C has nine zero components in the 
acoustic coordinate systems, S will generally have only eight zero com­
ponents in the same systems. However, the compliance tensor is positive 
definite and hence strongly elliptic (11). It therefore possesses the property 
that (8) 

(7.6) 
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TABLE 1. A characterization of material ariisotropies 

Type of 
material 

symmetry 

Tridinic 
Monoclinic 
Orthotropic 
Hexagonal 
Tetragonal 
Transverse isotropy 
Cubic 
Isotropic 

Minimum 
number of 

elastic 
constants 

18 
12 
9 
6 
6 
5 
3 
2 

Numbe'~. 
of Euler 
anglest 

3 
3 
3 
3 
3 
2 
3 
0 

Number of 
independent 
parameters+ 

21 
15 
12 
9 
9 
7 
6 
2 

t This is the number of parameters necessary to define a coordinate system 
in which the stiffness or compliance tensor has the minimum number of 
elastic constants. 

:j: This is the minimum number of parameters characterizing the elastic 
tensors. It is the sum of the entries in the previous two columns. 
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for at least three distinct !;. If there exists a plane of symmetry then at least 
two of these directions lie in that plane. The results of Theorem 5 therefore 
apply equally to S and C, although there is no acoustical interpretation for 
the preferred coordinate axes that minimizes the number of non-zero 
components in S. In conclusion, Table 1 summarizes the present discussion 
and offers a slightly different way of looking at the distinct material 
symmetries in elastic solids. 
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