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SUMMARY

The twenty-one elastic moduli of a homogencous anisotropic solid can be
determined from the second-order acoustical tensors associated with wave motion in
six phase directions. The directions may be quite arbitrary as long as they cannot be
contained by less than three distinet planes through the origin and do not all lie on
the curves formed by the intersection of the unit sphere with an elliptical cone. Two
equivalent sets of conditions necessary and sufficient for the existence of a plane of
material symmetry in an elastic solid are presented. The conditions are phrased in
terms of acoustic waves, the first set involving polarization vectors, the second
energy-flux vectors. Some consequences of the acoustic conditions are noted.

1. Introduction

THE subject of this paper concerns some general acoustic properties of
homogeneous anisotropic elastic solids. The first issue addressed is the
problem of determining the elastic constants of a given material. In a recent
paper Van Buskirk, Cowin and Carter (I) proposed an acoustic-wave
approach in which by a series of experiments one can obtain a sufficiency of
data for determining all 21 independent moduli of an arbitrarily anisotropic
specimen. Their procedure offers an alternative to the purely statical series
of measurements proposed by Hayes (2) and may be preferable if only a
A : single smail specimen of the material is at hand. The method outlined in
. sections 2 and 3 generalizes that of Van Buskirk ez al. (1). The nature of the
acoustic data required is such that one must be able to measure the three
phase speeds and associated polarizations for six different phase directions.
The question of what geometrical limitations are involved in the choice of
the six directions is answered by Theorem 1 in section 4.

The remainder of the paper discusses conditions necessary and sufficient
for the existence of a plane of material symmetry. These conditions, derived
by Cowin and Mehrabadi (3) and simplified by Cowin (4, 5), consist of
algebraic relations satisfied by both the elastic stiffness and compliance
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tensors. The symmetry conditions are presented in fection 5 in the concise
form due to Cowin (5) although the present derivation differs slightly from
his (this is based upon information provided by a referee; 1 have not read
the forthcoming paper (5)). Two interpretations of the algebraic conditions
are given in section 6 in terms of acoustic waves. The first interpretation,
Theorem 3, has previously been noted and discussed by Cowin (4, 5).
Theorem 4 phrases the symmetry conditions as constraints upon energy-flux
vectors and appears to be new. Some consequences of these observations
are explored in section 7, where it is demonstrated for a material possessing
a plane of symmetry that at least three distinct coordinate bases exist in
which the stiffness tensor has only 12 non-zero components.

2. Definitions and preliminary results

The following notation will be adhered to as far as possible: fourth-order
_ tensors and 6 X 6 matrices are denoted by capital letters, for example, C, B;
" second-order tensors and six-dimensional vectors by lower case letters, for
example, d, v; and unit vectors in R* by Greek letters, for example, v. The
summation convention on repeated subscripts is assumed with exceptions to
the rule noted.

Let Cyy be the Cartesian components of the tensor of moduli for a
homogeneous elastic solid, where i, j, & and / run from 1 to 3, and C
possesses the symmetries

Cirr= Ciia = Cray 2.1
Define the tensor B by its components
By = 3 Cips+ Ciy)s (2.2)
then B also has the symmetries
By = By = B (2.3)

Each of B and C has at most 21 independent components. An important
property of B, and the one vital to the present purpose, is that the
components of B uniquely define those of C. It is clear from (2.1) and (2.2)
that

ijj[ = B,‘,'j[ (HO Sum) y (24)
which imply 15 components of C and
Cir'k! = 2,8,-;“-; — B,‘;k[ (nO Sum), (2.5)

which yield the remaining six.
The 21 components of C or B may be represented by the usual 6 X6

LS
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(2.6)

where C}, C,;;(,‘"and 1£1,2,3, 4 5, 6 correspond to i = 11, 22, 33,23, 13
and 12, respectwely Equat:on (2 2) becomes

[Cin Ces Css ' Cs'é Cis - Cie ]
Cn C44 - Cy Cas Ca
. Cs  Cu Cas Cas
HCaus+Czs)  HCas+Cse) 3(Cas+ Cas)
3(Css + Ci3) $H(Css+ Ca)
. 3(Ces + Cr2)
2.7
and (2.4) and (2.5) are
”Bu 2Bg— Bj2 2355’“313 2B55— By, Bis By ]
Ba, 2B4— By By, 2B Bas B
C = Bas Ba4 Bis 2B 45— Bscs
B23 B36 BZS
BIS Bi4
L B
2.8)
3. The acoustical tensor and determining the moduli
Define the associated acoustical tensor a(v) for the direction v as
ay(v) = Cyvvi = Byyvivi. (3.1)

Alternatively, let the vectors v and a in R® be
v(v) =3, 3, v, 2v,vs, 2vivs, 2viva)T, (3.2)

a(v) =[ayy, as, a3, a2, a3, ay,)]” (3.3)



associated - polanzation :

b 3. .

see==1,3

rect:ons If these quantities can be measured'. .

experimentally-by.a-series . of . uitrasomc mspectxons of a sample then-a(v) -~ =
may be determined. The’ pra tzcal issues involved in the measurements are
discussed by Van Buskirk e, al. (1) and also by Cowin (4). It is assumed for. . . .
the purposes of this paper 1 that a(v) can be found.
It is clear from (3.4): that six relations of this type are necessary to
~*“~determine B. Let v¢¥, I =1,2,..., 6, be a set of six unit vectors in R? and let
vi?, a be the corresponding vectors in R® defined through (3.2) and (3.3).
Define the 6 X 6 matrices

and

Then

A= [a(l)’ 3(2), a(3)’ 3(4)’ 3(5), 8(6)], (3.6)
Vo= [v(l)’ ‘,(2), v(3)’ v("), v(S), v(6)]‘ 3.7
A=BV. (3.8)

If the inverse to V exists such VV™'=V~'V=diag (1,1, 1, 1,1, 1), then

B=AV, (3.9)

and the moduli follow from (2.8).
The general result expressed by (3.9) requires that both the wave speeds
and polarizations be known. Noting from (3.5) that

Tra(v)=p 2, ¢, (3.10)

«=1,3

then (3.9) in combination with (2.7) and (3.6) yields

Cop+ Coy+ Cgs
Cay+ Cyy + Css
Cps+ Cag+ Csg
Cis+ Cas+ Cyg

[Cy1+ Css+ Ces |

Lcm + Cas+ Cis |

=[Tra®, Tra®, Tra®, Tra®, Tra®, Tra@}v1,

(3.11)

9



ANISOTROPIC ELASTIC MODULI 417

In this way six elastic constants may be obtained from the 18 speeds without
recourse to the polarizations. If the latter are unknown it is not clear how
the remaining 12 wave-speed data can best be used to find the other
constants. At least three more speeds will probably be required since there
are 21 independent moduli.

The procedure of Van Buskirk, Cowin and Carter

Van Buskirk, Cowin and Carter (1) proposed a particularly convenient
set of six unit vectors ¥, I=1,2,..., 6, as three orthogonal vectors and
their three bisectors:

v0=(1,0,007, v®=(0,1,0)", v®@=(0,0,1)7,

Vv = 715 D4 v®), O = ._‘/1_2 O+ vy, O = :}2. (v + vy,

(3.12)
The matrix V and its inverse are
"0 00 4 47
01 03 0 4
0 014 1 0
V= s 3.13
0 0 01 6 O ( )
0 6 001 0
0 0 000 1l
' 00 0 —-% 1T
¢c 10 -3 0 i
001 -3 -1 0
Vi= 3.14
00 0 1 0 0 ( )
6 00 0 1 0
0 0 0 O 0 1.

The relatively simple expressions for the moduli Cp; given by Van Buskirk es
al. (1) then follow from (2.8), (3.3), (3.6), (3.9) and (3.14).

It is interesting that for this particular set of v an explicit tensorial
relation for B can be obtained from the identity

Br’kjl = Bikpqapj 617!

= B,.kpq( ;‘]‘3 V.,(,“)Vf(“})( Z vff”v?m). (3.15)

B=1,3
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Expanding the last expression and using (3.1) Wifhl_identities of the form

) : AL
VP 4 vV = 2y By P=e=f) :ﬁ-?‘gabyga) ~ VP, (3.16)

where 1 < a <=3, one arrives at

1 - |
Buy= 2, a}g){v}m)vfa)__‘/__2_[1’,}«)1,5114-3)_4_v}a)vj(a+3)]} +
o=1,3 : ) .

IR e e (3.17)
.ﬁ>“’ ’

4. Geometrical limitations on the six vectors

The six unit vectors v¥,..., v € R® may be quite arbitrary in general as

long as V is invertible, which enables B to be found from (3.9). The

~ geometrical constraint imposed by this requirement can be found by
“"examining the circumstances under which it is violated.

The six associated vectors v,...,v®@ e R® are lincarly dependent, or

equivalently V is not invertible, if there exists a non-zero vector b & R® such

that
' b7V =0. (4.1)
) Hence, from (4.1) and (3.2),
bvi+ byvi + bavi+ 2b4vovs -+ 2bsviva + 2b v Ve = 0, (4.2) ( )
or equivalently
vibv=0, (4.3)
where
b1 b6 bs
b= b6 b2 b4 . (4 4)
lt"-.“ bs b4 b3
) Let p be the orthogonal matrix that diagonalizes b as
pbp” = diag (d4, da, ds), (4.5)
; where d,, d,, and d; are the eigenvalues of b; then (4.2) becomes
dypi + dopts + dapi3=0, (4.6)
and )
' B=pV. (4.7)

Equations {4.2) and (4.6) represent a quadratic surface in R>. Three
i possibilities arise: (i) all three eigenvalues are non-zero, (ii) one is zero, or
) (iii) two are zero.

Case (i). If all three of dy, d, and d, are non-zero, one must be of
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opposite sign to the other,;iwo." S;ﬁeciﬁcally let d;l and d; be positive and
dy=—1, then the surfaceis . '

which is an elliptical cone, The intersection of the cone with the unit sphere
forms two similar curves whose projections in the plane u;=0 are the
ellipse ‘

(A +dyui+ (L +dyui=1. (4.9)

Thus, if all six v¢? lic on an elliptical cone, the image vectors v do not span
RS. Equivalently, the v are linearly dependent if the projections of the six
v® on some plane lie on an ellipse.

Case (ii). Let d3=0; then the surface is

dy 2+ dopt2 =0, (4.10)

which implies that d, and d, are of opposite sign, and the surface is two
planes through the origin.
Case (iii). Let d, = d;=0; then the surface is

dypi =0, (4.11)
which is a single plane.
Further degeneracy must be contained in these three cases. The following
summarizes the results.

TuroreM 1. A set of necessary and sufficient conditions that the 6 X 6 matrix
V formed from ¥V,..., v be invertible are that the six vectors do not lic on a
cone through the origin and cannot be contained in less than three distinct
planes through the origin. '

The results of Theorem 1 are also rélevant to the acoustical measurement
of tensorial quantities other than the elastic moduli. For instance, Kohn and
Rice (6) showed that the long-wavelength elastic scattering from an
anisotropic defect in a uniform isotropic medium is characterized by 22
parameters. These are the excess mass of the defect and the 21 independent
components of a tensor D possessing the symmetries D= Dy = Dy
This fourth-rank tensor depends upon the deviation in the modulus tensors
of the medium and the defect, and upon the shape and orientation of the
defect. If the excess mass is known, the scalar D ticiy; can be related to
the scattered longitudinal amplitude in the direction g for an incident plane
wave in the direction 1. Therefore, the 36 separate measurements of the
scattered longitudinal-to-longitudinal amplitude for six directions of in-
cidence and six directions of scattering gives enough data to determine all 21
components of D, provided the two sets of six vectors are independent in
the sense of Theorem 1. For example, the directions v(V,..., v¢¥ of (3.12)
could be used for both the directions of incidence and scattering.
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!
5. Necessary and sufficient conditions for a plan¢:of symmetry

The remainder of this paper is concernmed with the identification of
material symmetry in elastic solids. Having determined the tensor C by the
acoustic procedure discussed above, or by other means (2), one would like
to determine if the material possesses a plane of symmetry. This problem
was first solved by Cowin and Mehrabadi (3) and the following simplified
version is due to Cowin (4, 5).

TuroreM 2. The necessary and sufficient conditions that the direction € be
normal to a plane of symmetry are

Cijkfgjgkgl = (CpqrsEquErEs)Eb (5' 1)
erkthVk‘Ef = (CpqrszVrEqu)gi; (5.2)
for all directions v perpendicular to €.

The original theorem of Cowin and Mehrabadi (3) phrased the solution in
a slightly different manner. In addition to the relations (5.1) and (5.2) they
gave the conditions

Cikkjgj = (Cpkkq &p&q)gb (5 3)
Cijkk&j = (Cqukgpgq)gi' (5.4}

Let v and v be two orthogonal directions each orthogonal to E. Then
(5.3) follows from (5.1) by adding (5.2) for v =v" and v=v®, and using
the identity

S = E&x + vV + vy ), (5.5)

In regard to (5.4), for =1 and 2
Cr)'kk&jvr(a) = Cip Ex&r + Vﬁ”"p) + Vﬁz)vfz))gjv:(d)
= CuiBEEv® + CypvIVIVIVE + CuvivPvRE,  (5.6)

The first term on the right-hand side of (5.6) vanishes using (5.1) and the
second and third terms are zero by virtue of (5.2). Therefore Cj&; is
perpendicular to vt/ and ¥*?, so it must be parallel to &, and (5.4) follows.
The relations (5.3) and (5.4) are therefore consequences of (5.1) and
(5.2). The former are useful (3, 4) if one is interested in finding the planes
of symmetry of a given elastic tensor C. Thus (5.3) and {5.4) imply that §
must be a common eigenvector of the second-order tensors Cyy; and Cyyy.
Any common eigenvectors that also satisfy (5.1) and (5.2) are automatically
normal to symmetry planes. Conversely, the material has no planes of
symmetry if C,,; and Cu, have distinct eigenvectors. The six-vector
corresponding to the second-rank tensor Cy,; is equal to the left-hand side
of (3.11) and thus can be found using only wave speeds. Alternatively, Cuyy
can be determined from the acoustical tensors associated with three
orthogonal directions. Let v'", ¥ and v be mutually orthogonal, then it
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mformatlon may therefore be: gleaned sfrom the acoustical datafor

.__hree orthogonal directions. Suppose that the material is known to possess
~orthotropic symmetry, or three planes of symmetry, and the . orientations of

he - symmetry axes are to be determmed Then the three exgenvectors of
kak; ‘correspond to the desired axes. Fedorov. (7) dlscussed further the
ensor. Cyy; which he called the convquted tensor. for ,fthe ‘elastic moduli.
The full ramifications of (5.1) to (5 4) were mvestlgated in detanl by Cowm

and Mehrabad1 (3). ‘ il :

6 Equwalent acoustic conditions for a plane of symmetry

_Consxder a wave represented by the displacement field:

M}-" . w(x, ) = wF(y.xfc—1), L (6.1)

where p is the polarization direction, vy is the phase direction, c is the phase

'speed and F is some C? function. The following relations must be satisfied
(for example, (7)):

Cijkiyj}’kﬂl = (CpqrsYp}'ruqﬂs)ﬂi 2 (62) ’
pe? = ComrYiYethiths. (6.3)
The wave is called longitudinal if p and ¥ are parallel and transverse if they

are orthogonal. The conditions (5.1) and (5.2) can then clearly be rephrased
in the following statement which is due to Cowin (4, §).

THeEOREM 3. The direction § is normal to a plane of symmetry if it is a
longitudinal direction and if a transverse wave polarized in the E-direction
exists for any phase direction perpendicular to E.

Kolodner (8) proved that three or more longitudinal directions exist in
every anisotropic solid. Consequently the first condition in Theorems 2 and
3 is satisfied by at least three directions. If for one of these directions the
plane normal to it supports transverse waves in the E-direction for any phase
vector in the plane then the plane is one of symmetry. Fedorov (7) observed
that the acoustic conditions of Theorem 3 are satisfied when E is normal to a
plane of symmetry, aithough he does not appear to have observed that these
same conditions are sufficient for § to be normal to a symmetry plane. It is
also possible to state a set of conditions which are equivalent to Theorems 2
and 3 but which involves waves propagating in the direction E only. This
requires the notion of the energy-flux vector and is as follows.

THEOREM 4. Necessary and sufficient conditions that the direction & be
normal to a plane of symmetry are that it be a longitudinal direction and that
the energy-flux vector be in the direction § for any combination of transverse
waves with phase direction .
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Proof. Sufficiency will be demonstrated first. Equation (5.1) follows from
the fact that E is a longitudinal direction. Let' ¥V, v be the other
eigenvectors of Cy,&&;, so that (v, ¥, E) form an orthonormal triad. The
most general form of transverse wave motion with phase direction  is of the
form
u=vOF (") + vOF(¢®), (6.4)
where
P =E.x/c™—t,  a=1or2, (6.5)

F, and E, are arbitrary C* functions, and ¢V, ¢® are phase speeds. The
i-component of the energy flux vector is

0. 24 . %O
o T ax,
= S CPUCPEGOFP), (6.6
where ,
CoP = CuvfvPE), a, f=1,2 (6.7)

The vector in (6.6) is parallel to § by hypothesis. Selecting in turn F| and F}
to be identically zero implies that (5.2) holds for v=+v% and v=+v{),
respectively. Consequently,

CiPy® = CEIvD =0, (6.8)
and in addition, as a result of (5.1),
COPE = CPVE, = (. 6.9
When F; and F; are both non-zero, equation (6.6) implies that
cOCIDY®) 4 LAY =) w=1,2 (6.10)
Therefore, from (6.8) to (6.10},
Ci? = P =9, (6.11)

and (5.2) follows since any v perpendicular to & can be written as a linear
combination of ¥'! and v&®.

It remains to show that the conditions of Theorem 4 are necessary if E is
normal to a plane of symmetry. To this end it will be shown that (6.11) is a
consequence of (5.1) and (5.2). Equation (5.2) for

1
v:ﬁ(v(”+v(”), vyl v =@

in combination with (5.1), yields after some elimination
CoD 4 CPY =0, (6.12)

Equations (6.11) follow from (6.8), (6.9) and (6.12), thus completing the
proof.
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The proof of Theorem 4 relies upon the condition that any transverse
wave motion has energy flux in the E-direction. It is not enough to assume
that each transverse mode has energy flux paraﬂel to E as this does not
imply (6.11). These relations follow from the requirement that the cross
term in the flux be parallel to § for a combination of transverse waves. The
cross term turns out to be identically zero, so that the flux of the sum of the
two distinct transverse modes is equal to the sum of the individual fluxes.
The longitudinal wave automatically has energy flux in its direction of
propagation.

7. Discussion

As mentioned above, Kolodner (8) showed for an arbitrarily anisotropic
elastic solid that there are always at least three directions which satisfy
(5.1). Let & be one of these directions and let ¥\, ¥ be the associated

orthogonal eigenvectors of Cyu&&,. With no loss in generality let
Ty =(1,0, 07, v® =(0,1,0)" and E= (0,0, 1)". Then (5.1) implies that

Cizas = Ci330:3, (7.1)
while the eigenvalue equations for v yield
Cirza= Cazzabia: a=1,2 (nosumon a). (7.2)
These relations imply that
Ciu=Cy5=Cy5 =0, (7.3)

and so there are only 18 independent elastic constants in this particular
basis. The remaining three parameters can be thought of as the Euler angles
that define the basis (", v® E). The fourth-order tensor still has 21
independent constants but has only 18 when referred to this particular
coordinate system. It has long been known (7,9, 10) that three of the 21
elastic constants can be set to zero by an appropriate choice of coordinate
system. However, the existence of at least three such systems does not
appear to have been previously noted.

Consider a materiai possessing a single plane of symmetry, that is,
monoclinic, for which it follows from (5.1) and (5.2) (3), or by other means,
for example, (9), that the eight moduli Cy4, Cis, Coy, Cus, Caq, Cas, Cug
and Cs¢ are all zero. Equation (7.3) also holds for the particular basis
chosen, and therefore only twelve of the moduli are non-zero when the
coordinate axes are defined by the polarization axes for phase vector in the
normal direction. The tensor C for a monoclinic solid thus has 15
independent parameters: 12 non-zero moduli plus three Euler angles to
define the basis (7, 9). Alternatively, there are 13 non-zero moduli plus two
Euler angles to define the normal direction.

There are two other specific bases with respect to which a monoclinic
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solid has only 12 non-zero moduli, aithough one of these bases may coincide
with the one previously discussed. The two bases are defined by the
longitudinal axes in the plane §.x =0, and their existence can be proved as
follows. Let v be any direction in this plane, then it follows from (5.2) that
two of the eigenvectors of CyV;v, lie in the plane because the third is
automatically in the E-direction. Define the map v— f(v)v, where

f(\') = ijkaiVijVh (7.4)

which maps the unit circle in the plane E.x=0 onto a continuous curve
about the origin in the same plane, with reflection symmetry about the
origin. The curve must therefore have at least four points at which its
normali is in the same direction as v. Two of these points are images of the
other two and the pair of distinct directions defines longitudinal axes in the
plane of symmetry. Let v('Y be one such direction and define the basis
(v, v E), where v is orthogonal to v and &, that is, it is the vector
orthogonal to v in the plane of symmetry. Again let v, v@, E be the
(x1, X2, X3)-coordinate axes, respectively, so that

Cry= Cis = Coa = Cys = C3y = C35= Cy = C56 =0,

as before. Furthermore, a longitudinai wave exists for phase direction
vt 5o
b
Ciiir=Cun i1 (7.5)

The additional identity Cic =0 follows from this equation with { = 2,
In summary, these results may be stated as follows.

THEOREM 5. An elastic solid has at least three coordinate systems with respect
to which there are only 18 non-zero elastic constants. If the solid possesses a
plane of symmetry, three of the coordinate systems have as common direction
the normal to the plane of symmetry and the solid has 12 non-zero moduli
when referred to these coordinate systems.

It is well known (7,9, 10) that there exists a coordinate system in which a
monoclinic solid has only 12 non-zero moduli. Theorem 5 goes further in
showing the existence of at least three such coordinate systems. It should be
pointed out that two or possibly all three of these coordinate systems may
coincide for certain values of the elastic constants. Furthermore, these
coordinate systems have no relation to symmetry coordinate systems (3).
The distinction is obvious when one considers the compliance tensor,
§=C"%, Both § and C have eight zero components for a monoclinic solid
referred to a symmetry system. While C has nine zero components in the
acoustic coordinate systems, S will generally have only eight zero com-
ponents in the same systems. However, the compliance tensor is positive
definite and hence strongly elliptic (11). It therefore possesses the property

that (8)
Sz‘jklgj&kgl == (‘S})qnsgpgqgrgs)‘gi . (76)
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TaBLE 1. A characterization of material ariisotropies

Minimum !

Type of number of  Numben Number of

material elastic of Euler  independent

symmetry constants anglest parametersi
Triclinic 18 3 21
Monoclinic 12 3 15
Orthotropic 9 3 12
Hexagonal 6 3 9
Tetragonal 6 3 9
Transverse isotropy 5 2 7
Cubic 3 3 6
Isotropic 2 t] 2

1 This is the number of parameters necessary to define a coordinate system
in which the stiffness or compliance tensor has the minimum number of
elastic constants.

1 This is the minimum number of parameters characterizing the elastic
tensors. It is the sum of the entries in the previous two columns.

for at least three distinct §. If there exists a plane of symmetry then at least
two of these directions lie in that plane. The results of Theorem 5 therefore
apply equally to § and C, although there is no acoustical interpretation for
the preferred coordinate axes that minimizes the number of non-zero
components in S. In conclusion, Table 1 summarizes the present discussion
and offers a slightly different way of looking at the distinct material
symmetries in elastic solids.
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