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The reflection of sound from the end of a flanged pipe is solved in a manner simpler
than the procedure of Nomura et al. (1960 Journal of the Physical Society of Japan 15,
510-517). Numerical calculations give the low-frequency end correction length as
0-82159 . .. radii, which is very close to Rayleigh's conjectured value of 0-82 radii. The
power gain in the transmitted region is illustrated as a function of angle for frequencies
“below the first cut-off. The related problem of the acoustic response in a flanged pipe
when a plane wave is incident upon the pipe in the axial direction is also discussed. Some
approximate formulae are presented for the refiection coefficients of flanged and unflanged

pipes.

1. INTRODUCTION

The problem addressed here is a classic one, having been treated at length by Rayleigh
[1, section 307]. We consider the radiation of sound from a flanged circular pipe, where
the dimension of the flange is so much greater than the wavelength that it may be
considered infinite in extent. Nomura ef al [2] analyzed the problem using Weber-
Schafheitlin integrals and Jacobi polynomials. They derived a coupled system of two
infinite sets of linear equations for the unknowns, and solved these equations numerically.
Our method of solution also requires numerical computation, but only for a single system
of equations for the modal amplitudes in the pipe. The present method is related to that
adopted by King [3] for finding the static end correction, and his equations are obtained
from ours in the limit of zero frequency.

A closed-form solution was obtained by Levine and Schwinger [4] for the associated
problem of radiation from an unflanged pipe, using the Wiener-Hopf technique, The
same technique was employed successfully by Ando [$] in solving the intermediate case
of a pipe with a finite wall thickness. His analysis led to an infinite system of equations
which may be solved in truncated form when the ratio of the inner to outer radius is not
too small. However, the required truncation size grows as the ratio tends to zero, and the
method appears to be ill-suited to treating the limiting case of an infinite flange. One
could adapt the Wiener- Hopf technique to the present problem, and so obtain a modified
Wiener-Hopf equation: however, unlike the equation of Levine and Schwinger, the
resulting Wiener-Hopf equation cannot be solved in closed form. An analysis of this type
was performed by Mittra and Lee [6, section 5.6] in considering the radiation from a
flanged parallel-sided waveguide. They derived a modified Wiener-Hopf eguation and
showed how it can be reduced to a Fredholm integral equation of the second kind with
a smooth kernel, which in turn may be solved by standard numerical techniques. We will
not discuss the Wicner-Hopf method further, apart from noting that it does not appear
to have been used in solving this particular problem.
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Our solution is developed in the following section, In section 3 we derive the static
end correction from a general formula for arbitrary frequency and compare our numeri-

‘cally computed value with previous computations [1-3,7]). The radiated power gain

function is discussed and compared with that for an unﬂanged,pipe [4] in section 4. The
solution for the reiated problem of a plane wave incident upon the flanged pipe from
ihe free side is discussed in section 5. Finally, some useful approximate formulae are
given in section 6 for the reflection coefficients of both flanged and unflanged pipes.

2. ANALYTICAL SOLUTION

The configuration is shown in Figure 1: a denotes the interior radius of the pipe, and
all physical quantities are presumed to be symmetrical about the axis of the pipe. Both
the pipe and the upper half-space are occupied by inviscid fluid of sound speed ¢, in
which the velocity potential ¢ satisfies

Vig+kip =0, (1)

where k=w/c and harmonic time dependence exp (—iwt) is everywhere omitted. The
incident wave in the pipe, z<0, is a wave propagating in the +z direction,

qt’im‘ =Cik2. (2)
In addition, the normal derivative of ¢ is everywhere zero on the solid-fujd interface

and ¢ satisfies a radiation condition in z >0,
The total potential in z <0 may be expressed as a modal series,

b=+ A+ T A, (p) e, (3)
n=1}
where
(k* =K', k>k,.} Jolk,p)
" = . ] " 2%) 4’

. {r(k?.—kz)”z, k<k, ¥nled Jo(kua) (4.5)
and k,a=j,,n=01,2, ..., are the sequential positive roots of J,(x) =0, with he=0.
The transmitted potential in z> 0 can be represented by Green’s formula as

b {x)= JJ glx; X', ¥, 0) V(X' y, 0) dx' dy, (6)

0<a

B

Figure 1. Schematic picture of the pipe geometry and the incident wave.
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where V, is the z-component of the velocity V=V, and g is the Green function for the
upper half-space with a rigid boundary condition on z=0. At the mouth of the pipe,
z=0, p<aq, both pressure and velocity must be continuous; therefore, ¢ and V, are
continuous across the mouth. In particular, ¢ and V, iniequation (6) can be represented
by the modal sum by using equation (3), to give, for p < q,

1+ Ag+ 5 A p)
I

=

““i 2 , a ) ) exp {ik(pz_l_prz__zpprcos 9:)[,’2]
=5 de pdp 7, 2 ; ni/2
27 o - (pT+p"—2pp’ cos §")

0

X (k(l "'AO) - E] An‘fn!pn(pr))- (7)

One can now take the inner product of equation (7) with Youlp),m=0,1,2,..., where

Yo=1, and use the orthogonality of the ys, to obtain a linear system of equations for the
modal amplitudes,

Z Mnm(ka)'fmaAm(ka) = kaan{)(ka) "ian(); n =Oa 1: 2: 3; vy (8)

m=q0

where 8, = 1 if n = m, and 0 otherwise, and

. ikp,
Mﬂ!ﬂ(ka):aﬂﬂ?(ka)-i-lém! a‘n”?(ka):_——_l-?__] JJ‘ e ‘llll(f)}d;nf(pl) dA dA',1 (91 10)
H ZW-a‘ .O()
A =d
where pq is defined by comparison with equation (7). Equation (8) can also be derived
from a similar system of modal amplitude equations for a rigid half-space with periodically
positioned, infinitely deep holes [8]. Note that for ka « 1, My, = O(1/ka), while M,,, =
O(1) for (n, m)# (0, 0). This leads to an unstable matrix as ka — 0. Also, it is useful to
distinguish the coefficient A, from the others since it represents the reflected amplitude
of the fundamental mode. Therefore eliminate A, from equation {8), to give the new

system,

= au{}am{)) Ko
Mnm_ Bm= . s H:1,2,3,..., (11)
m}—:—w ( My {1 ~ikacy)
where
B, (ka)=(£./2k)A,, (ka). (12)
The complex-valued quantities a,,, = @,,, can be simplified to [8]
(X) = B3 (x}+ /3,8 (x) for n=0, (13a)
2 il _ 2ot
a,,,,,(x} x.fln.ﬁu ():_f) .]l;mﬁm (x) for n, m = 0, H m, (IBb)
Jin 7w
where
[ 21Hs)s ds * 25(s)s ds
S:I’{x):lj 3 7I EPE) 3 +J. B wl 3 2 . (£3C)
o F=) T ) T L)

In particular, Im ap{x) =x""~J,(2x)/x" and a(0) =8/37 [1, section 302]. Quantities
similar to the a,,, are occasionally encountered in the theory of acoustics: for instance,
they are related to the acoustic resistance and reactance factors of Morse and Ingard [9,
equation (102° ]4)] b.y X.'!nn{x) + igrlnn(x} = 2j!m[jl njO(jl rn)JO(jl n)}—l[amn(x) ™ anﬂ(x)]'
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The fundamental reflection coefficient R(ka)= A,(ka) is

R(ka)=—1+2(ap— Z’ anoB,)/ Myo. ' (14)
"= i

As mentioned before, the problem under consideration is equival"ent to radiation from a
deep, circular hole in a smooth, rigid surface, which is the limiting case of a periodically
perforated half-space when the volume fraction occupied by the holes approaches zero.
The reflection of acoustic waves from a rigid half-space with periodically spaced deep
holes was considered in reference [8] by using a method of analysis similar to that
employed here. The present result for the reflection coefficient carn be seen to follow from
the results of reference [8] in the appropriate limit.

3. THE ENP CORRECTION
The end correction L(ka) is defined through
R(ka)=~[{R{ka)}e"”**, (15)

Nomura et al. [2] have plotted L(ka)/a and the magnitude of R for ka < J1=3-8317.
We have also calculated these quantities by truncating the complex system (11) at
successively larger sizes until convergence was observed. Truncation sizes of less than
100 sufficed, and we saw no difference between our results and the curves of reference
(2]. Approximate formulae for both |R} and L/a are discussed below in section 6.

In the long-wavelength limit ka0, R = ~exp [i2kL(0)], where the quasi-static end
correction is

L(0)/a = ag(0) - §! 0(0) B, (0), (16)

e

and the real numbers B, (0} satisfy the real symmetric system,

g

> M,.{0)B,,(0) = a,,(0), n=1,2,3.... (17}

me=1
The static end correction was considered by Rayleigh [1, section 307} who showed that
the first term on the right side of equation (16) provides an upper bound, L(0)/ a < ag,(0) =
8/3m =0-8488. He also gave 7/4 =0-7854 as a lower bound, valid for a very short pipe.
Using trial functions {1, Appendix A}, Rayleigh obtained a better upper bound as 0-8242,
on the basis of which he conjectured the real value to be about 0-82, Daniell [7] used
an educated approximation to the axial velocity at the mouth, involving three and four
parameters, and concluded that the end correction is less than 0-82168, and “is probably
extremely close to this value”, Two alternative, formally exact, procedures were derived
by King [3] for the end correction. Both required solving infinite systems of equations,
and gave monotonically increasing and decreasing values, respectively, as the truncation
size grew. It can be shown fairly readily that expressions (16} and (17) correspond to
equations (46.2) and (46.1) in King's paper [3], respectively.

We find L{0)/a =0-82159 ..., with convergence, as illustrated in Figure 2.

4. ACOUSTIC RADIATION
The far field amplitude in the fluid is defined by

¢ (X)~f(0)e™/r,  reco, 230, (18)
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Figure 2. Convergence of the approximant 0’00"2,?;, B,(Ma,s(0) 1o the infinite sum in equation (16),
versus N

where
. J(ka sin 8) ( ©  2(kasin 8)? )
8)=-ig———--={1-R+ ¥ 5 — . 19
f(8)=~ia sin ! ,,.).i_;j?,,, —(kasing)? " (19)

The forward amplitude is f(0) = {(—i/2)ka’(1 ~ R), and at low frequency f{8) is indepen-
dent of angle and equal to —ika?, to first order. Following Levine and Schwinger [4] we
define the power gain function G{8) as the average power radiated into a unit solid angle
about the direction ¢ divided by the total power radiated,

G{8)= P(8)/(Puu/2m),  POY=|f(0),  Pey=ma’(1—|RP), (20-22)

where expression (22} is valid only for ka <j,,. In particular, the forward gain in this
frequency range is

G(0) = 3(ka)’|1 - R|*/{1-|RP}. (23)

Figures 3 and 4 show G(0) for the Aanged and unflanged pipes, respectively. In
camparing these functions one should note that, according to equation (20), I G d=2q,
where {2 is solid angle and the integral is over the upper hemisphere. In Levine and
Schwinger's paper on the unflanged pipe [4] the radiation is in all directions, and so
} G df2 = 47 for their power gain function. Hence, at low frequencies both gain functions
are approximately unity, and at higher {requencies our G(8) is approximately one half
that of Levine and Schwinger, as expected. Nomura ef al. [2], in considering the flanged
pipe, defined their gain function g(#8) in the same manner as Levine and Schwinger; thus,
g =2 at low frequencies, and g =2G, where G is defined in equation (20). We found
excellent agreement when our results were compared with the curves of g(8) in
reference [2]. :

Define § as the angle for which [, G(8) sin (8) d6 = 1/2 for the flanged pipe at a given
frequency. Thus, half of the energy radiated into the fluid half-space is contained in the
cone of semi-angle 8. Obviously, §=60° at low frequencies, and & will decrease at high
frequencies. The analogous cone angle for half the radiated energy from an unflanged
pipe is defined by j{; G(8)sin (63 df =1, where (G(8) is Levine and Schwinger’s [4] gain
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Figure 3. The power gain function G(0) for the flanged pipe in the frequency range 0< ka =<j;,, with a

contour plot of discrete values of G.
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Figure 4. The power gain function for the unflanged pipe from Levine and Schwinger [4] in the same

frequency range as Figure 3.
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Figure 5. Plots of the angle § that defines the cone containinig half of the radiated energy; for the flanged
pipe ( ) and the unflanged pipe (- - -).

function. In this case,  ~90° for small ka. The angles § for both the flanged and unflanged
pipes should be very close at higher frequencies, when the presence or absence of a flange
is not expected to effect the radiation. These expectations are borne out by Figure 3,
showing the two angles as functions of frequency. It is interesting to note that @ for the
unflanged pipe initially increases above 90° as ka increases from 0.

5. INCIDENCE OF A PLANE WAVE ON A FLANGED PIPE

The complementary scattering problem is that of a plane wave incident in the axial
direction upon the flanged pipe, such that the incident field in z> 0 is ¢™ = ¢ ™™, Denote
the solutions to the original problem and this problem as solutions I and I1, respectively.
Let solution 111 be ¢ =e™"**+¢™* throughout the fluid in z>0, and in the pipe, z <0;
see Figure 1. This solution satisfies all the boundary conditions, and equals the sum of
solutions I and II. Therefore, the total potential for sotution II follows from equation
(3) as

P=(1-A)e ™= % Auy,(p)e z <0, (24)
n=1
d=e R peiti_gT z>0, (25)

where ¢, defined in equation (6), is the transmitted field for the original radiation
problem.

6. DISCUSSION

At low frequencies, the first correction to the reflection coefficient R = ~1 comes from
the end correction to the phase of R. The magnitude, on the other hand, follows from
equation (23) with G(0)=1 as

IR| =1~ (ka) + olka)>. {26)
It is often useful for engineering applications to have a simple but accurate formula for
R{ka) over a reasonable range of {requency. An ad hoc way to extend expression (26)

to higher values of ka is to attempt to approximate the numerically calculated values of
|R|. One approach in this regard is to take a rational function approximation of the form

[R| = {1+ aka+ B{ka)’}/{1+ aka+(1+B)ka)?}, (27)
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which automatically satisfies equation (26), and where @ and B are chosen to best fit the
calculated values. We find that («, 8) =(0-323, —0-077) provide the closest fit over the
range 0<ka<3-8, as shown in Figure 6. The same curve-fitting procedure for the
magnitude of the reflection coefficient for an unflanged pipe mus_tgsatisfy, for small ka [4],

[R|=1-3(ka)*+ o(ka)*. {28)

This can again be achieved with a rational function approximation of the form (27}, but
this time with (3+ 8) instead of (1+ 8) in the denominator. Lising the exact expression
of Levine and Schwinger [4], we found the optimal choice over the same range of ka to
be (a, B)=(0-200, —0-084), with resulting accuracy as indicated in Figure 6. As for the
phase, L{ka)/a defined in equation (15), it was determined that

L(ka)/a=[0-82159—0-49(ka)*}/[1~0-46{ka)’] (29)
10 T T T T T T T
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Figure 6. Magnitudes of the reflection coeflicient R{ka) for the flanged and unflanged pipe. The solid tines
are the resuit of numerical calculations and the dashed curves are rational function approximations. The results
for the unflanged pipe are from Levine and Schwinger [4].
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Figure 7. The phase, L(ka)/a as defined in equation (15), of the reflection coefficients for the flanged and
unflanged pipe. The solid and dashed lines are as in Figure 6, and the results Tor the unflanged pipe are from
Levine and Schwinger {4].
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gives a reasonable approximation for the flanged pipe over most of the range (0-0, 3-8).
Comparison with the exact formula of Levine and Schwinger [4] shows that

L{ka)/a =[0-6133+0-027(ka)*1/[1 +?-19(ka)2], (30)

is adequate to the same degree of approximation for the'unflanged pipe. These results
are summarized in Figure 7. It should be noted that expressions (27) and (30) are {2, 2)
Padé approximants, whereas expression (29) is a (2,3) approximant. This choice was
deliberate, based upon trial and error fitting with different Padé approximations of low
order.
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