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An Examination of the
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Approximation for Multlphase
Composites

The Mori-Tanaka method is considered in the context of both scalar thermal con-
ductivity and anisotropic elasticity of multiphase composites, and some general pro-
perties are deduced. Particular attention is given to its refation to known general
bounds, and to the differential scheme. It is shown that the moduli predicted by the
method always satisfy the Hashin-Shtrikman and Hill-Hashin bounds for two-phase
compaosites. This property does not generalize to multiphase composites. A specific

.. example illustrates that the method can predict moduli in vielation of the Hashin-

Shtrikman bounds for a three-phase medium. However, if the particle shapes are all
spheres, then the prediction for the multiphase composite is coincident with the
Hashin-Shtrikman bounds if the matrix material is either the stiffest or the most
compliant phase. It is also shown that the generalized differential effective medium
method yields the same moduli as the Mori-Tanaka approximation if certain condi-
tions are satisfied in the differential scheme. Thus, it is required that at each stage in
the differential process, and for each phase j (=1, 2, . . ., n) of new material, the
average field in the incrementally added phase j material must be the same as the
average field in the bulk phase j, For two phase media, n=1, this condition reduces
to the less stringent requirement that the ratio of the field in the incrementally added
material to the average field in the matrix material is the same as the dilute concen-
tration ratio, The cumulative findings of this paper, particularly those concerning
bounds, suggest that the Mori-Tanaka approximation be used with caution in

multiphase applications, but is on firmer ground for two-phase composites.

1 Introduction

Various approximate methods exist for predicting the ef-
fective thermal, electrical, and mechanical properties of
composites. Among these are the self-consistent scheme, and
the differential scheme (Cleary et al., 1980, McGlaughlin,
1977). These effective medium approximations do not require
detailed statistical information of the microstructure, but can
distinguish between different inclusion shapes. Therefore,
such schemes can be useful for statistically homogeneous com-
posites with known inclusion shapes. However, there is always
some doubt as to their utility, For example, it is not obvious, a
priori, whether the results will automatically satisfy known
bounds on the moduli, such as those of Hashin and Shtrikman
(1963). At the present time, several methods, including the dif-
ferential scheme, are known to correspond to realizable
media, and hence satisfy the bounds (Avellaneda, 1987).
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The Mori-Tanaka approximation is another method that
has received attention recently. It is based upon the original
work of Mori and Tanaka (1973), and has been used to advan-
tage by, for example, Taya and Mura (1981) and Taya and
Chou (1981), Weng (1984) applied the Mori-Tanaka method
to the effective medium problem for a two-phase composite
with spherical inclusions. Further applications have been given
by Benveniste {1986a,b; 1987a,b,c) for the thermal conductivi-
ty and mechanical properties of two-phase and multiphase
media. Unlike most other approximate methods which require
solving implicit equations numerically, the Mori-Tanaka
method yields explicit, closed-form answers for the effective
properties. As with all other effective medium methods, it
hinges upon a mathematical approximation, explained in the
following sections. A significant property was discovered by
Weng (1984), who showed that the Mori-Tanaka method with
spherical inclusions of the softer (harder) phase gives the
Hashin-Shtrikman upper (lower) bounds for the bulk and
shear moduli. Norris (1985) pointed out that randomly-
oriented disk-shaped particles of the softer (harder) phase
yields the lower (upper) bounds. Benveniste (1987c) has
recently proved, using a clever argument, that the buik and
shear modulus predicted by Mori-Tanaka for a two-phase
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composite with randomly-oriented ellipsoidal particles will lie
within the Hashin-Shtrikman bounds. This benign property
had previously been noted from the numerical results of Tan-
don (1986} and Maewal and Dandekar (1987). However, as we
show in this paper, the Mori-Tanaka method can give results
for multiphase media that are in violation of the Haskin-
Shtrikman bounds, It appears, therefore, that two-phase com-
posites are a special case for the method,

The purpose of this paper is t0 examine the connection be-
tween the Mori-Tanaka approximation and known bounds.
We also relate the approximation to the generalized differen-
tial scheme. One commeon consequence from both studies is
that the two-phase medium is a special case. Both thermal and
clastic properties aré considered. The analysis is simpler for
the scalar thermal conductivity problem, and is presented in
Section 2. The theory for the elastic moduli is presented in Sec-
tion 3, where the major results concerning bounds are derived.
The connection with the differential scheme is explored in Sec-
tion 4.

2 The Effective Thermal Conductivity of a Multiphase
Isotropic Composite

2.1 Genersl Equations and Definitions. Consideran n+1
phase composite made of isotropic constituents with thermal
conductivities k;, i=0, |, 2, ..., n, and occupying total

n
volume fractions ¢;, such that on ¢;=1. Phase i=0 cor-

responds to the matrix material, The temperature field ¢ (x)
and the normal component of the heat fiux, q+n, where q is
the flux and n the unit normal, are both continuous across in-
terfaces between the constituents. The heat flux and
temperature field in phase / are related by

q =k H®, (1)
where
HD = gl ¥)

Assuming an isotropic distribution of grains, the effective
conductivity is isotropic and equal to &0, defined by the
macroscopic relation

q=KkeOH, 3

An overbar denotes the spatial average of a quantity, Thus, H
is the average of H over the entire composite, and H is the
average of HY in phase i. The average H could be imposed,

for example, by the boundary condition that ¢= — H+x on the
exterior surface of the composite. Under the assumption of
macroscopic isotropy, the vectors H, H¥, can be replaced by
scalar quantities &, H9 where & W'y is the component of ¢
in the direction of H. The effective conductivity follows from
equations (1) and (3) as

n
KEDE= 3 ke HO, @)
imd

Equation (4) can be rewritten

n
E (kj"“ko)chU)/H(o)
L . )

Cp+ E C,'H(”/}_{(OJ
i=]

This is an exact equation for the effective conductivity £,
but is complicated by the determination of the ratios HU) /H©®
for each of the added phases j=1,2,..., n.

2.2 The
Bounds.

Mori-Tanaka Scheme and Hashin-Shtrikman
The Mori-Tanaka effective conductivity & is ob-
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tained from equation (5) by assuming that the ratio FU /f7®
is equal to the ratio for a single, isolated grain of phase j
embedded in uniform matrix material of infinite extent.
Equivalently, the ratio AV} /H% js taken to be the ratio per-
taining ia the dilute limit of c<< 1, where ¢ is the total volume
fraction of the added phases,

c= E c;=1—cq,
iml1

The ratio AV /HO for randomiy+oriented ellipsoidal par-
ticles of phase j is described by three depolarization coeffi-
cients 8y, 8., and B, for each of the major axes (see Landau
and Lifshitz (1960) for explicit formulac). These coefficients
are between 0 and 1, and satisfy 8, + 8; +8; = 1. They each
equal 1/3 for spherical particles; long circular cylinders
{needles) have 8, =0, 8, =8;=1/2, and thin, circular disks
have 8, =8, =40, 8; = 1. In general,

-1
A0/~ LY (1.
il

Benveniste (1986a) observed that if k, is smaller (larger) than
all of the other ki, j=1,2, ..., n, then the Mori-Tanaka
method with FV /H“’) for sphcncal particles j=1,2,...,n,
gives the Hashin-Shtrikman lower (upper) bound on the effec-
tive conductivity.

On the other hand, if all the particles are in the shape of
thin, circular disks, the Mori-Tanaka scheme gives, from
equations {5) and (6),

3; 'ko ) ©

1+2/Ek5']
= kg | e || 7
°[ 2+kok-1 0

where

k= E ¢k;and k1= E kit

j=0 J=0

For a two-phase composite, n= 1, in which k, <k, (k,>k,),
the prediction of equation (7) corresponds to the Hashin-
Shtrikman upper (lower) bound on the effective conductivity.
This result does not generalize to the multiphase composite,
n>1, In fact, equation (7) can violate the Hashin-Shirikman
bounds for n>1. For example, k& of (7) exceeds the upper
bound if n=2, k; =2k,, k; = 3k, and ¢; = ¢; =0.4. This viola-
tion indicates that the Mori-Tanaka scheme is not always
realizable for multiphase composites.

It is possible to show for two-phase composites that the
Mori-Tanaka & of equations (5) and (6) satisfies the Hashin-
Shtrikman bounds. To see this, consider equation (5) with

n=1and a=HAN/H®, Then,

ak CoCy
3o (cp+cia)?

Thus, k is maximum (rmmmum) for ¢ maximum {minimum).
Now consider « of equation (6) as a function of §,, 8, and 8,
constrained to the interior and surface of the tetrahedron
8, +32 +8;=1. It is easily shown that a(8,, ,82, £;) attains
stationary values at the four vertices, corre-
sponding to plate-like particles, at (1/3, 1/3, 1/3), which is a
sphere, and at the points (1/2, 1/2, 0), (1/2, 0, 1/2), and (0,
1/2, 1/2) which are needies. If k> k,, then a(sphere) <
a(needles) < ofplate). But the sphere and plate values of «
correspond to the Hashin-Shtrikman bounds on &, therefore,
all other « give intermediate results.

&

3 The Effective Elastic Moduli of a Multiphase
Composite

3.1 The Mori-Tanaka Approximation. Let L be the effec-
tive elastic modulus tensor for a multiphase composite, each
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phase, i=0, 1, 2, ., n characterized by a fourth-order
modulus tensor L;. The anisotropic Hooke’s law for each

phase is
o= L,‘E,’, (9)

where ¢; = 1/2{vu;+ (Vu;)7] is the strain. Let the average
strain in phases { and 0 be related by

i=1,2, (10

then an exact expression for the effective moduli L%'? follows
in a2 manner analogous to the derivation of equation (6), as

L€ = L+ (2 & (L, ~Lo)T,) [erl + ): eto]”

J=i

£ ﬁTfOEO’ .,

=1

(in

Here I is the fourth-order isotropic mdentuy tensor, I=(1, 1)
in the concise notation of Hill (1965). In the same notation, an
isotropic stiffness tensor is L= (3«, 2u), where «x and p are bulk
and shear moduli, the compliance tensor is M=L"1=(1/3«,
1/2y), and tensor products are L, L, = (9« «s, 4 45).

in the Mori-Tanaka method T, is approximated by the
analogous quantity for an isolated particle of phase i in an in-
finite matrix of phase 0. Equivalently, the dilute limit value of
T, is taken. Then equation (1) provides an explicit equation
for the Mori-Tanaka effective moduli L, In particular, if the
particles of phase { are ellipsoidally shaped and aligned.
Eshelby's results provide T in the simple form

T,n=[l+S,0L(,"(L,--L0)]“_“, (2

where 8, depends only upon L, and the aspect ratios of the
particle of phase i (see, for example, Mura (1982)). The Mori-
Tanaka method as defined by equation (11} and the approx-
imation (12} has been called the “‘direct approach” by
Benveniste (1987¢). He showed it is identical for two-phase
composites to the usual ‘“‘equivalent inclusion-average stress’
formulation of, for example, Weng (1984}, The equivalence of
the two formulations for multiphase composites is
demonstrated in the Appendix,

3.2 Bounds on the Elastic Moduli. If all particle shapes
are identical, and the particles are aligned, then the Eshelby
tensor S, is the same for each phase i=1, 2, ..., n. Define

L] by
LI=L,S5' —L,. (13
Then the Mori-Tanaka effective moduli become
n -1
L=(): cj(Lj+Lg)"*) —13. a4)

FEY]

Walpole (1966) obtained lower (upper) bounds on L*™ in
the form of equation (14) under the assumption that (L; ~ L)
is positive (negative} definite for all i=1, 2, ., n. The
bounding modulus tensor is L*, defined by (14}, with L§ =L,
where L7 depends upon the particular type of anisctropy of
the composite.

If all the constituents are isotropic, then the well-known
Hashin-Shtrikman (1963) bounds for a macroscopically
isotropic composite are defined by

L¢ = (3« 2u5), (15
where
. 4
Kj =3 (16a}
o W [9!( +8y._,]
§' = e (16}
76 K+ 2

The corresponding Eshelby tensor S is for a spherical parti-
cle. Thus, we have that the Mori-Tanaka approximation for
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spherical particles coincides with the lower (upper) Hashin-
Shtrikman bounds on « and g if «;> &g, and p; >pg, j=1, 2,

oo (K <ngy p<po, J=1,2, ..., n). This equivalence
has been previously noted by Weng (1984) for a two-phase
composite.

While still on the topic of isotropic constituents, we note
that if all the pamcles are randomly-oriented disks, then T,
can still be expressed in the form of equation (12), but §; now
depends upon L;,

Sp=U+L Lg% aan

The Mori-Tanaka effective moduli!x and g reduce in the
special case of a two-phase composite to the Hashin-
Shtrikman lower (upper) bounds if x, <y and ) <pg (k) >xy,
ity > ig). As for the thermal conductivity, this result does not
generalize to muitiphase composites.

If all the constituents are aligned, transversely isotropic
phases, the moduli tensors can be represented succinctly in the
notation of Walpole (1969) as L=(2k, /, n, 2m, 2p),
M=L"'=\{/2(n/y, —I/v, 2k/y, 1/m, 1/p), where
y=kn~—P=kE, and E is the axial Young’s modulus. For ex-
ample, if x; is the symmetry axis, then k=, — C, I=C3,
n=Cy, m=Cq, and p=C,. Positive definiteness requires
that &, m, p, and n— #/k are each positive. The bounds of Hill
{1964) and Hashin (1965} apply to composites made of aligned
cylindrical fibers of arbitrary transverse geometry. These
bounds have been phrased succinctly by Walpole (1969) for
multiphase composites. In this case the tensor Lg is not well-
defined, so it is necessary to work with the compliance tensor
M. The dual equation to (14) is

M= (1 ¢ M, + M- ) omg,

iwo

where M = l, when the latter is defined. If (M, —M,) is
positive (negauve) definite for afl i=1, 2, ..., n, then the
lower (upper) bound, M*, on M“™ i5 given by equation (18),
with M =M, where Mg is

M = ( 2 i )

Mi== lco '
Note that Walpole’s (1969) Mo contains a typographical er-
ror: The correct expression follows from Laws (1974).

The Eshelby tensor Sy corresponding to equation (19) is
that of a circular, cylindrical particle. Therefore, the Hill-
Hashin bounds for a multiphase tranversely isotropic fibrous
composite of arbitrary transverse geometry cotrresponds to the
Mori-Tanaka approximation with circularly cylindrical par-
ticles. This equivalence has been noted by Tandon (1986) for a
two-phase composite.

We next develop general resuits relating the Mori-Tanaka
method to the bounds discussed above. The procedure
adopted is a generalization of Benveniste’s (1987¢). Returning
to the general assumption that the particles are all identically
shaped and aligned, then equation (14) is correct to first-order
in ¢ in the dilute limit of ¢<< 1. Thus,

(18)

(19)

LEO ~L=1,+ EC(L —Lo)L; + L)~ (L + L) + 0(c?).

(20)

For a variation §L§ of L in this equation, the corresponding
variation in L is

L= EC(L —Lo)(L, + L) ~H8LY(L, + LY !

% (L; = Lg) + 0(c2). D

Thus, a positive (negative) definite change in LY yields a cor-
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responding positive (negative) definite change in L. By
assumption, the dilute limit effective moduli satisfy the
bounds for the particular type of microstructure considered.
Therefore, if L* represents the lower (upper) bounds, then
both L~1L* and LY~ Lg are positive (negative} definite ten-
sors of the same anisotropy class.

Now consider the finite concentration case, Variation of L}
in equation (14) yields

SL=(L+L$) 3, ¢;[(L; +LY~"

w0
~ @+ L) BLYIL,; + L)~ — L+ L) "L +1Y), (22)

which is positive (negative) definite if L3 is positive (negative)
definite. It then follows from the dilute limit result for L —Lg
that L of equation (14) satisfies the bounds for finite concen-
trations. We have thus derived the result that the Mori-Tanaka
approximation for multiphase composites, with all particles of
the same shape and aligned, satisfies the appropriate Hashin-
Shtrikman or Hill-Hashin bounds. This result is not as general
as it may seem at first, since the only particle shapes that
satisfy these criteria for the Mori-Tanaka approximation are
spheres for isotropy, and circular cylinders for fiber-rein-
forced transverse isotropy. Also, these particular materials
correspond to the Hashin-Shtrikman and Hill-Hashin bounds.
Although there is no additional information here concerning
multiphase composites, these results do have significant ap-
plication to the particular case of two-phase composites.

The Mori-Tanaka approximation for a two-phase com-
posite (n =1} can be written in the form of equation (14) with

=L, ~Lo)(TRp! =1 - Ly, (23)

where T, is the strain concentration ratio for dilute par-
ticulate concentration. Note that L] of equation (23) is in-
dependent of ¢;, and holds for any T,,. Therefore, by the
same arguments as before, since the dilute limit moduli must
satisfy the lower (upper) bounds on L&%, it follows that
L] — L is positive (negative) definite. This in turn implies that
L-L* is positive (negative) definite at all concentrations,
0<c¢;<1. Hence, the Mori-Tanaka moduli for two-phase
composites satisfy the Hashin-Shtrikman or Hill-Hashin
bounds, as appropriate. This general result is unique to two-
phase composites, since it is not generaily possible to write the
Mori-Tanaka approximation for multiphase composites in the
form of equation (14).

4 The Mori-Tanaka Approximation in Terms of the
Differential Scheme

4.1 The Differential Scheme. The generalized differential
scheme as understood here is a generalization of Bruggeman’'s
(1935) method to multiphase composites. The present develop-
ment is similar to that of Norris et al, (1985), where it was ap-
plied to a special type of three-phase medium in which one of
the added phases was identical to the original matrix material.
In order to undersiand the scheme, consider the scalar condue-
tivity problem for a composite at some finite concentrations of
the added phases j=1, 2, . . ., n. Let Vbe the total volume of
the composite, and as before, A is the average of the field
H{x) in V. Infinitesimal, discrete volumes of the homo-
geneous composite material are then removed and replaced by
homogenecous amounts of phases j=1, 2, ., n. Thus,
volume dv; is replaced by phase j, such that the replaced
volume is perfectly bonded to the composite and dv, contains
a representative quanuty of the emstmg composite of condue-
tivity k. If FIY is the average of A in dv;, the incremental
change in the effective conductivity is

du;

W
dk = E(k k)—-m . (24)

=1
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It is preferable to work with the incremental volume frac-
tions dc;, rather than with the incremental volumes dv;. Since
the tota.i’ volume ¥ remains fixed, it is possible to show (Noms

et al., 1985) that
dvj
T“dcj+cj ""'-'-—'l_c s (25)
and hence,
wn [ . de ]
di= JX“:I -k 240 o e 1/ (26)

This becomes an ordinary differential equation by introducing
a parameter ¢ to describe the evolution of the composite from
homogeneous phase 0 with initial conditions k(0)=4,,
¢;(©0)=0,j=1,2,...,n The volume fraction ¢ could be used
as the parameter f, for example.

A rigorous justification for the differential equation (26)
has been given by Avallaneda (1987). An explicit equation can
be obtained, if, for example, the particies are assumed to be in
the shape of randomly-oriented ellipsoids. Then HU/H is
given by the right-hand side of equation (6) with k; replaced
by k(t). Bruggeman’s (1935) scheme is contained in (26) as the
special case of a two phase composite, n=1. The effective
medium approximation for multicomponent cornposites is the
limit of (26} as ¢~ 1. Discussions of these and other limiting
cases are contained in Norris et al. (1985) and Norris (1985).

4.1 The Connection With the Mori-Tanaka Approxima-

tion, The field ratio in equation (26} can be written
g JaloWg a0
7 = - . 27

L—ct Y, c.H0/EO

i=1

Note that the averages HV) and AV are generally quite

distinct and unrelated, The former is the average field in the

incrementally added particles of phase /, while the latter is the

average field in the entire volume of phase f in the composite.
Define 4 and A by

Ay =—— Ve B0 /O, (28)
l-e =
A(r)—l— EcHw/le (29)

i=1

An alternative form of the differential scheme follows from
equations (27)-(29),

(t+A)dk+kdA = d[

d[I?U'/HT‘”]. (30)
i=l
This equation is integrable if it is gssumed that
HO (1 /HO (1) = BYOVH™O), j=1,2,...,n, (31
and
HO =Y, j=1,2,...,n (32)

Then A = A4, and integration of equation (30) subject to the in-
itial conditions &(0) = kg, ¢,{0) =0, j= 1, gives precisely equa-
tion (5) with AU /£ cqual to its d:lute concentration value.
Thus, the differential scheme vields the Mori-Tanaka effective
conductivity if equations (31) and {32) hold.

Equations (31) and (32) combined imply that the ratio
HY () /H® (¢} remains constant and equal to the dilute value
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throughout the process. Thus, at each stage of the process, the
effective & is given by the Mori-Tanaka method for that con-
centration. Equation (32) requires, in addition, that the
average field in the incrementally added volumes be the same
as the bulk average for that phase. It is interesting to note that
(32) is not required a priori for two-phase composites, n=1,
but follows as a consequence of assuming (31). To see this,
consider the differential equation (26) for the two-phase com-
posite, which becomes using (27),

EH /O dc,
(A—c, +c HNV/HMY (1-¢)

However, it_follows_from eguation (4) with &M=k, and
H= (1=¢)H® 4 ¢, HD, that

dk= (k= k) (33

2.0} - -
HO _(-c) ( k=ko Y. (34)
H'(O) Cl kl "'k
Substituting from equation (34) into equation (33) gives
(k,=k)* HY  de
= - ] 35

This equation can be integrated directly if (31) holds for j=1.
The equality AW =H" then follows by substituting the

resulting & into (34).

4.3 Differential Effective Medinm Theory for Muitiphase
Elastic Media. The differential equation for the effective
moduli L(#) can be derived in a2 manner similar to the deriva-
tion of equation (26). Thus,

dL= E (L;—L)T, [(1 -l
f=1

e dc
+‘~ELCI'TK’] (dCJ+CJ l-—c),
where the initial conditions are L) =Ly, ¢;(0=0, j=1, 2,

- » . The strain concentration tensors Ty, j=1,2,...,n
in equation {36) compare the strain in the currently added
phase j to the strain in phase 0 throughout the composite. The
tensors 'i‘ﬂ, compare the bulk strain in phase j to the bulk
strain in phase 0.

In the same way that the differential equation (26) was
shown to be integrable if equations (31) and (32) hold, so it
can be shown that equation (36) is exactly integrable if both

T (1) =Tp(0), @7

(36)

J=L2,...,n,
and
To=Ty, (38)

The case of a two-phase composite is again the exception.
The strain concentration tensor T, can then be expressed in
terms of the effective moduli as

J=01L2,....,n

- 1-¢
Ti= (52) (L= L)L, - 1), (39
1
which when eliminated from equation (36) gives,
. dc
dLn(L—L,)Tw(Ll—-L(,)"(L—L,)(—I-—C'T. (40)
— &

This differential equation depends only upon T,,, and can be
directly integrated if it is constant. The resultant moduli when
substituted into equation (39) give T\, =T),,, and the moduli
themselves are identical to those of the Mori-Tanaka method.
It has come to my attention that [aws (1980) also derived the
Mori-Tanaka effective medium equation for a two phase com-
posite as a hybrid of the differential scheme and the self-
consistent method.
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5 Discussion and Conclusions

Our major findings concern the relationship of the Mori-
Tanaka approximation to the Hashin-Shtrikman and Hill-
Hashin bounds. These bounds will always be satisfied when
the approximation is used for two-phase composites.
However, this result does not generalize to multiphase media,
as demonstrated by a counter example in Section 2.

We have shown that the Mori-Tanaka method can be for-
mulated in terms of the generalized differential scheme pro-
vided certain conditions are satisfied by the average fields in
the latter. The condition for two-phase media is that the ratio
of the field in the incrementally added particles to that in the
bulk matrix phase remains constant as the concentration of
the added phase goes from zero to its final, fiite value, The
Mori-Tanaka method, in its “‘direct approach’ formulation,
requires that the ratio of the field in the bu/k added phase to
that in the matrix equals its dilute concentration value. It is
perhaps surprising that the condition on the incrementai field
ratio produces the same results as the Mori-Tanaka condition
for two-phase media. This is particularly so since the same
condition does not suffice to yield the Mori-Tanaka results for
multiphase media.

The relationship of the Mori-Tanaka method with the dif-
ferential scheme offers an alternative way of looking at the
former. However, it is not clear whether the relevant condi-
tions, (31)-(32) or (37)-(38), can be realized by specific
microgeometries. The answer is, in general, no, since we have
shown that the Mori-Tanaka method for multipbase media
can give moduli outside the limits of the Hashin-Sherikman -
bounds. That it may be possible in two-phase composites is
suggested by the fact that the Mori-Tanaka approximation
satisfies the bounds, and also because the differential scheme
condition (31) or (37) is simpler than that for multiphase
media. It remains as an interesting and worthwhile challenge
to provide a realization of the method for two phases.
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APPENDIX

Alternative Formulation of the Mori-Tanaka Method

For an average stress in the composite of #, define the cor-
responding strain é, in pure matrix material,

&=LD€0‘ (Al)

The perturbed stress and strain in phase 0 in the composite are
& and €, where
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(A42)

The additional perturbed stress and strain in phase i, i>0, are
e and e, where

&+6+U€’=LE(£0+E+QPI),

&+5’=L0(€0+e‘).

=Lg(éy + E+ 8" ~¢), (43)

and ¢ is the transformation strain in phase i. Taking the
average strain throughout the composite, and using (41),

gives :

n
€= Y ci(ef — e, (44
fu]
Equation (A4) then implies that the average strain is
n
E=€n+ Ecifi" (AS)

im1

The effective moduli are defined by &= L¢, or from {41) and

n
L(€o+ Ecif,‘.)zLoéo. (Aﬁ)
i=1
Some relations between ¢* and ¢, are necessary to solve (A46)
for L.

Foreachi=1,2,..., nlet

e =8,¢". (AT
The average strain in the matrix phase 0 is, from (42)
€ =€ + £ {A8)
Equations (43), (47), (A48), and (12) imply, for each i=1, 2,
R N
f‘-.= —LJ!(L" - Lo)Tméo. (Ag)
Then, equations (44), (47)~(49), and (12) give
@0-_- (CDK+ EC,’LE]L,'TK))E(}. (AIO)

fa]

Equations (49) and (410} can then be substituted into (46) to
given an explicit expression for L that is identical to equation
(11). The Mori-Tanaka assumption is that S, is equal to the
corresponding Eshelby tensor for a single inclusion of phase i
in phase 0.
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