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Stoneley-wave attenuation and dispersion in permeable formations 

Andrew N. Norris* 

ABSTRACT 

The tube wave, or low-frequency manifestation of the 
Stoneley wave, has been modeled previously using the 
quasi-static approximation; I extend this method to in- 
clude the effect of the formation matrix compressibility, 
which tends to marginally increase the tube-wave at- 
tenuation. Using the Biot theory of poroelasticity, I de- 
velop a fully dynamic description of the Stoneley wave. 
The dispersion relation derived from Biot’s equations 
reduces in the low-frequency limit to the quasi-static 
dispersion relation. Comparisons of the quasi-static and 
dynamic theories for typical sandstones indicate the 
former to be a good approximation to at least 1 kHz for 
oil and water infiltration. At higher frequencies, usually 
between S and 20 kHz for the formations considered. a 
maximum in the Stoneley Q is predicted by the dynamic 
theory. This phenomenon cannot be explained by the 
quasi-static approximation, which predicts a constantly 
increasing Q with frequency. Instead, the peak in Q may 
be understood as a transition from dispersion domi- 
nated by bore curvature to a higher frequency regime in 
which the Stoneley wave behaves like a wave on a flat 
fluid-porous interface. This hypothesis is supported by 
analytical and numerical results. 

INTRODUCTION 

The attenuation of the Stoneley wave in the presence of 
formation pore-fluid mobility is well known and has been 
proposed as a means of measuring permeability (Alhilali and 
Zemanek. 1984). Quantitative modeling by Rosenbaum (1974), 
Schmitt and Bouchon (1984), and by Schmitt et al. (1988) 
supports the conclusion that attenuation increases with per- 
meability and with pore fluid mobility; i.e., attenuation de- 
creases as pore-fluid viscosity increases, Rosenbaum based his 
findings on synthetic acoustic signals covering a wide range of 
frequencies, Schmitt et al. (1988) examined the effects of indi- 
vidual factors. such as interface permeability, pore fluid, and 
bore radius. and also discussed the first pseudo-Rayleigh wave 

mode. Others, particularly White (1983) and Mathieu and 
Toksijz (1984). considered the low-frequency quasi-static 
regime in which the Stoneley wave is often referred to as the 
tube wave. They obtained explicit analytical results that indi- 
cate attenuation increases with porosity, permeability, and fre- 
quency, but decreases with bore radius. Hsui and Toksoz 
(1986) drew similar conclusions from an approximate dynamic 
model for the Stoneley wave; however, as discussed below, 
some of their numerical calculations appear to be in error. The 
general findings of these various theoretical calculations are in 
agreement with measured data (Williams et al., 1984; Burns 
and Cheng, 1986). Liu (1988) recently considered the influence 
of permeability on the modes of a cylindrical sample sub- 
merged in Huid. 

The present study examines Stoneley-wave attenuation over 
the full frequency range of acoustic logging. The objective is 
not to reproduce the findings of the references mentioned,~but 
to understand the underlying mechanisms. In the quasi-static 
regime. the tube-wave dissipation is well known (White, 1983) 
to result from diffusion of pore pressure into the surrounding 
formation via the connected pore network. This dissipative 
mechanism is still effective at higher frequencies, as suggested 
by Rosenbaum’s (1974) calculations. However, it is compli- 
cated by the coupling between pore pressure diffusion and 
purely geometrical dispersive effects found in elastic forma- 
tions. The latter subject is well treated in the literature of 
full-wave acoustic logging, beginning with Biot (1952). Recent 
references are listed by Schmitt and Bouchon (1985), while 
Stevens and Day (1986) focus on the low-frequency dispersion. 

The first half of this paper considers in detail the quasi- 
static theory of tube-wave dispersion and attenuation. This 
theory, which by definition ignores all inertial effects except 
that of the bore fluid. was developed by White (1983). The 
main result of this part of the paper is an extension of White’s 
analysis to include the compressibility of the matrix grain. 
This is necessary to verify the fully dynamic theory for a com- 
pressible matrix, which is considered later. It is shown that 
frame compressibility decreases the pore-pressure diffusion co- 
efficient but increases the tube-wave attenuation. The results 
of the quasi-static theory are compared with those for a rigid 
frame (White. 1983) and also with the theory of Mathieu and 
Toksoz (I 984). 
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The remainder of the paper considers the dispersion and 
attenuation of the Stoneley wave at higher frequencies. Biot’s 
theory of dynamic poroelasticity is used to derive the 
dispersion equation. It is shown how the previously deter- 
mined quasi-static tube-wave speed in a compressible frame 
drops out of the fully dynamic theory in the appropriate limit. 
Numerical results for Ruid-saturated sandstones indicate the 
range of validity of the quasi-static theory and also a possible 
peak in the Stoneley Q. This phenomenon is explained in 
terms of a Stoneley wave on a flat fluid-porous interface. 

PORE-PRESSURE DIFFUSION IN A 

COMPRESSlBLE FRAME 

Before considering tube-wave attenuation in a permeable 
formation, it is necessary to define precisely the diffusion coef- 
ficient to be used. This is done for two reasons: first, previous 
treatments (White, 1983; Mathieu and Toksoz, 1984) have not 
considered the effects of frame compressibility; second, the 
quasi-static limit of the dynamic dispersion relation derived 
below in equation (24) explicitly contains frame compress- 
ibility. so any quasi-static theory that ignored frame compress- 
ibility would not be in agreement. The quasi-static analysis is 
thus necessary as a cheek on the fully dynamic results dis- 
cussed later. It is also useful in its own right, but its range of 
validity is uncertain at this stage. 

Quasi-static fluid Row through a permeable solid is gov- 
erned by Darcy’s law 

i7W 
-= 

(11 
- 5 vp, 

rl 
(1) 

where K is the permeability, n the viscosity, w the incremental 
fluid displacement relative to the matrix, and p the incremen- 
tal pore pressure. In a rigid or incompressible matrix, the 
volumetric strain in the pore fluid satisfies Hooke’s law for an 
inviscid fluid 

-v.w =$p. 
“I 

where C$ is the porosity and K,, is the pore-fluid bulk modulus. 
Eliminating w from equations (I) and (2) gives the pressure 
diffusion equation 

with the dilTusion coefficient

(4) 

A simple (e.g., Marsily, 1981) but inexact way to compen- 
sate for the matrix compressibility is to augment the strain 
-V-w in equation (2) with the quantity p/K, where K is the 
bulk modulus of the frame under drained conditions (see 
Appendix A). The diffusion coefficient is then 

A more precise analysis for diffusion in an elastic matrix 
follows by using Biot’s poroelastic stress-strain relations (A-l) 
and (A-2) instead of equation (2). Briefly. equation (A-2) and 

the trace of equation (A-l) imply that V-w = (--Kc/KM)@, 

where p’ = p + (aM/3K,)r,, (See Appendix A for the defini- 
tions of ~~~~ u. M, K, and K,.) Also, the static equilibrium 
equations T;,,, = 0 imply ri,, lj = 0, which, with equations (A-l) 
and (A-2), gives K(K‘ + $t)V’p = K,(K + $t)V’p’. In all cases 
of practical concern, the pressure p goes to zero uniformly at 
inlinity. The condition for the borehole geometry of interest 
here is that p+ 0 as r~ ic. Direct integration then yields 
K( K, -t $)p = K, (K + $)p’. Now we take the divergence of 
Darcy’s law, equation (1) and eliminate V *w to get 

cv2p=;. 

where the modified diffusion coefficient is 

C = CO/(1 + 2 [(1-a)(a-+)+a’(1 +$)-‘I}. (7) 

The diffusion coefficient C has been derived and discussed 
by Jaeger and Cook (1969), Rice and Cleary (1976), and 
Chandler and Johnson (1981) among others, but it appears 
that no quantitative comparison of C, C,, and C, has been 
given. It is shown in Appendix B that a > $. It then follows 
from equations (5) and (7) that 

c, <c<c,. (8) 

The simple coefficient C, therefore overestimates the decrease 
in diffusivity due to the matrix compressibility. However, a 
better lower bound for C exists in the form C, < C, where 
C, = C,/(l + K,/$K,) > C,, and K, is the bulk modulus of 
the grain (see Appendix A). 

The distinction between the Biot diffusion coefficient C and 
the simpler C, is obviously negligible when the pore fluid is 
much more compressible than the matrix, as for example, in 
gas-saturated sandstone. Table 3 lists the values of C/C, for 
the sandstones and pore fluids in Tables 1 and 2. The ratio is 
very nearly unity for gaseous infiltration, but can be apprecia- 
bly less for water saturation. Frame compressibility is very 
significant for loosely consolidated materials such as soil, for 
which the frame modulus satislies K cc K,, K,. For this case, 
it follows from equations (A-3))(A-5) and (7) that l/K, z 
4/K, + (1 ~ I$)/K,~ (Wood’s formula), M z K,, and C/C, z 
t$(K + $u)/K, << 1. Other limiting forms of C are discussed by 
Chandler and Johnson (1981). 

LOW-FREQUENCY TUBE-WAVE 

ATTENUATION AND DISPERSION 

The tube wave is the commonly used term for the low- 
frequency Stoneley wave in a borehole. Its speed in an elastic 
formation is 

V~ = us/(1 + K,/u)l’Z, (9) 

where p is the formation shear modulus, and us and K, are 
the sound speed and bulk modulus in the bore fluid, related by 
t’s = (K&Q,)‘,“, where ps is the density. The presence of for- 
mation permeability provides a dissipative mechanism for the 
tube wave. The low-frequency speed in a permeable formation 
can then be defined as the complex quantity ~1 = (K*/pJ’!‘. 

The complex effective modulus K* is the ratio of the effective 



bore-fluid dilatation to the borehole pressure pB. The effective 
dilatation is the sum of the actual dilatation of the fluid plus 
the dilatation induced by the formation compressibility and 
permeability. Thus, 

1 1 27m U,(U) + M;,(a) -_=_+- 
K* K, nu= pB ’ 

(10) 

where u,(a) is the quasi-static radial displacement of the bore- 
hole of radius a, and w,(a) is the radial displacement of the 
pore fluid relative to the matrix. The static elastic expansion of 
the bore under the applied pressure pB can be solved easily to 
give u,(a) = pBa/2u (White, 1983). In the absence of per- 
meability, w,(a) = 0 and tl = uT [equation (9)]. 

The ratio w,(a)/p’ in equation (10) can be obtained for a 
permeable formation by solving equation (6) for p(r, t) in r > u 
subject to time harmonic pressure at the interface p(a, t) = 
pBe _ jot. The solution can be found in terms of Bessel functions, 
and w,(a) then follows from equation (1) as 

where 

(11) 

(12) 

and Hg’ and H(,” arc Hankel functions of the first kind. The 
tube-wave speed follows from equation (10) and c = (K*/p,)‘l’ 

as 

(13) 

The complex function E(s) is plotted in Figure 1. Note that 
E(s)--+ 2(i;s)“’ as .Y+ x. 

Values of &/C, the argument of E in equation (13) and 
given in Table 3 for the combinations of sandstones and pore 
fluids in Tables 1 and 2, arc all greater than 3 at 1 kHz 
frequency. Assuming that LI*W/C >> 1, the open pore tube-wave 
speed of equation (13) can be approximated as 

FIG. 1. The function E(s) or equation (12). 

Table 1. Dry sandstone data (from Rosenbaum, 1974). The 
speeds are in meters per second and the permeability in milli- 
darcies (1 Darcy = IO-” cm*). 

Sandstone 

Fox Hill 0.074 4450 2515 32 
Berea 0.19 3670 2170 200 
Teapot 0.30 3048 1865 1900 

Table 2. Pore-fluid parameters. Viscosity is in units of grams 
per centimeter-second and sound speed is in meters per second. 

Fluid 

Oil 
Waler 
GLiS 

q 
(g/cm s) 

‘S 

of (m/s) 

1.8 0.88 1455 
10-2 I.0 1500 

2.2 x 10 4 0.14 630 

where 0 < y < I and 

If the dependence of (C,/C) upon porosity is ignored, the 
imaginary part of c in equation (14) scales as (c$~/a’)‘!*. This 
implies that attenuation, which depends upon the imaginary 
part of r. increases with porosity and permeability and de- 
creases with increasing bore radius (Hsui and Toksoz, 1986). 

Effects of interfacial permeability and 

intrinsic body-wave attenuation 

It has been proposed in the past to modify the pressure 
continuity condition at the interface by introducing a per- 
meability parameter fl such that (Deresiewicz and Skalak, 
1963) 

PB=P+& at r = a. 
(‘1 

(16) 

Little is known about the value of p in general, except that it 
is identically zero when natural boundary conditions for Biot’s 
equations arc deduced from variational principles. [See Berry- 
man and Thigpcn (1985) for a discussion.] Using equation (16) 
and proceeding as before, the tube-wave speed is 

(l-7) 

The open-pore speed of equation (14) corresponds to )3 = 0. In 
the closed pore limit; 0 = 3c~. the speed is simply 1: = u,., and 
there are no pore-fluid effects in the quasi-static theory. This 
concurs with the conclusions of Rosenbaum (1974) who con- 
sidered a higher frequency range. and also with those of 
Schmitt et al. (1988). For this reason the rest of the paper 
concentrates on the open pore condition. 
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Let Q,, u = S, C, and B. be the quality factors (White, 1983) 
for the formation shear waves, formation compressional 
waves. and borehole acoustic waves. Under the generally valid 
assumption l/Q, << I, a = S. C. and B, a tube-wave quality 
factor Q, can be defined by L%--’ = 1).;‘(1 + ii2Q.J. It follows 
by perturbation of equation (14) as 

1 Y -_=-+ l--Y Y 
Qr QH Q,+z 

(18) 

that Q,,, a frequency-dependent quality factor attributable 
to permeability. is 

Values of Q, at I kHz frequency are given in Table 3 for 
saturated sandstones. Note the broad range in Q,. For a given 
formation, the importance of pore-flow attenuation can be 
estimated by comparing the Q,, term in equation (18) with the 
other two Q terms. 

Comparisons with other approximate theories 

White’s theory for a rigid matrix.--The quasi-static tube- 
wave speed in a permeable formation of equation (13) is simi- 
lar to that of White (1983) for a rigid frame. His equation has 
C = C,, the diffusion constant for the rigid frame. As equa- 
tion (8) indicates. the ratio C/C, is less than unity. Replacing 
C with C, in equation (13) has the effect of decreasing both 
the real and imaginary parts of the second term on the right- 
hand side. Consequently. frame compressibility causes an in- 
crease in the tube-wave attenuation in a permeable formation. 
This result is not obvious: since the diKusion coefficient C is 
less than its rigid counterpart C,, a straightforward substitu- 
tion in White’s theory incorrectly predicts a decrease in at- 
tenuation. 

Mathieu’s theory.-Mathieu (19X4) and Mathieu and 
Toksiiz (1984) presented an approximate theory for the tube- 
w-ave attenuation coefficient, defined as a = Im (o/z:). Let a*, 
denote Mathieu’s u, which is 

(20) 

Here k, = t~)(l.;~ - r;z)‘i2 IS the radial wavenumber; I, and 
I, are moditied Bessel functions: and Z,, is an impedance 
(Mathicu. 1984) given by 

(20 

The derivation by Mathieu (1984) is implicitly a quasi-static 
analysis. To be fully consistent, he should have taken the low- 
frequency approximation k,a cc I for the bracketed term in 
equation (20). which becomes 2. This is done in the compari- 
sons below, where it is shown that a,,, is always too large. As 
the bracketed term is actually greater than 2, its inclusion only 
worsens matters. 

Let u = (I, be the attenuation derived from equation (13). 
As mentioned above, the quantity x = a’o,iC generally satis- 
lies Y >> 1, particularly above 1 kHr. Therefore, equation (14) 
can be used for (I,.. and equation (21) also simplifies to give 

2-v 
4/j 7 

aI x J- C,, 

Thus, at higher frequencies for which .Y >> I, Mathieu’s attenu- 
ation is correct except for a factor of 1.8 (C/C,)‘!‘. At low 
frequencies, or x << 1, Mathieu’s attenuation aM tends to the 
constant ps P,.K,/~~u~. In this frequency range, the approxi- 
mation of equation (14) is not valid. Instead, equation (13) 
implies that aT is of the order [.YI’ log (x) I]““. which tends to 
zero as w -~* 0. 

Numerical comparison.PFigure 2 shows the attenuation of 
the present theory compared with those of White’s theory for 
the rigid matrix and of Mathieu’s theory. The curves are for 
drilling mud, pB = 1.4 g/cm3, t:B = 1250 m/s, a bore of radius 
10 cm, in a water-saturated Teapot sandstone formation (see 
Tables 1 and 2). Mathieu theory predicts too large a value, 
particularly at low frequencies where the present theory is 
valid. As surmised previously, the attenuation for the rigid 
matrix is uniformly less than that of the compressible matrix. 
However, even for this formation, which has the greatest dif- 
ference between C and C, (see Table 3), the effect of matrix 
compressibility on tube-wave attenuation is small. 

Table 3. Some parameters of the porous media formed from the sandstone frames saturated with different fluids. The 
Biot critical frequency fi, = @$/2rrrpf T follows from equation (A-14), with T = 3 for all cases considered. Q,, , C, C,, 
and B, are defined in equations (19), (7), (4), and (A-15), respectively. QP and &o/C are both calculated for a frequency 
of I kHz and a = 10 cm. 

Pore 
fluid 

Sandstone 

Oil Fox Hill 
Berea 
Teapot 

Water Fox Hill 
Berea 
Teapot 

Gas Fox Hill 
Berea 
Teapot 

f;. 
(kHz) 

QP 
(I kHz) 

“;” (I kHL) 
C 

C, 
42 

2.5 x IO“ 900 1.6 x IO4 0.86 -8.5 
1 x lo4 217 6.8 x lo3 0.82 -6.1 

1.7 x 10” 55 1.2 X IO” 0.77 -4.6 

123 72. 77 0.84 -7.2 
50 17.5 33 0.79 -5.2 
8 4.4 5.9 0.74 -4.0 

19 1.8 58 0.99 - 246 
8.0 0.46 24 0.99 -168 
1.3 0.12 4 0.99 - 121 



334 Norris 

DYNAMIC THEORY OF STONELEY-WAVE 
ATTENUATION AND DISPERSION 

T 
1.0 2.0 3.0 40 

LOG10 FREQUENCY (Hz) 

FIG. 2. Plots of attenuation for a Teapot-water permeable 
formation from IO to 10 000 Hz comparing the exact low- 
frequency theory of equation (13), White’s model for a rigid 
matrix. which follows from equation (13) with C = C,, and 
Mathieu’s theory of equation (20). 

LOG10 PERMEABILITY (mDarcy) 

FIG. 3. The dimensionless attenuation o = Im (+./v) from 
equations (13) and (22) for r, = 1600 m/s, a = IO cm, ,f= 5 
kHr, and Kr/n = 2 x 10” Hz: The solid line is from cqua- 
tion (13) wtth pH = p/ and I’~ = r/ = c,.; the dotted line is 
from equation (72). 

The complex tube-wave speed u of equation (13) is based 
upon a quasi-static theory for which t’= is the appropriate 
speed in a nonporous formation. No inertial effects were in- 
cluded in the derivation. In order to examine the effect of 
permeability on the Stoneley wave at higher frequencies, a 
dynamic theory must be considered that incorporates pore- 
fluid flow. 

The theory of Hsui and ToksSz 

Hsui and Toksiiz (1986) proposed modeling the Stoneley 
wave as the fundamental mode in a rigid acoustic waveguide. 
The coupling to the permeable medium occurs through the 
pressure and velocity conditions at r = a. Their equation for 
the complex Stoneley wave speed t’ is 

; (] - “$Z)l!Z 
J,[h(l - u;/uy] 
I, [h( 1 - u;./U’)“‘] 

+ @E $ = 0, (22) 
( > 0 

where h = wu/a, Note that as h + 0, this equation reduces to 
the quasi-static equation (13) with ps = pI and us = tlf = uT. 
The dimensionless attenuation o = Im (v,/r) calculated by 
solving equation (22) is shown in Figure 3, compared with the 
quasi-static o. The agreement at low permeability but finite h 
is explained as follows: In the limit of small attenuation, the 
second term in equation (22) is small. Hence the argument of 
J, must also be small and independent of h, so equation (22) 
also reduces to the quasi-static theory when the permeability- 
induced attenuation is small. This equivalence is to be ex- 
pected, since the fundamental mode of equation (22) with 
(b = 0 is the nondispersive solution L: = L+. 

The parameters of Figure 3 are the same as those for Figure 
1 of Hsui and Toksiiz (1986). However. their curves show 
uniformly higher values of o than those in Figure 3. That their 
results are in error can be confirmed by considering a low 
value of permeability and solving equation (22) by per- 
turbative methods. 

Dynamic poroelasticity and Stoneley waves 

A better procedure than that of Hsui and Toksiiz is to take 
Biot’s (1952) theory for a fluid-filled bore in an elastic forma- 
tion and augment the equations with Darcy’s flow equation (1) 
with the pore-fluid constitutive equation (2). However, to be 
fully consistent with the compressible matrix diffusion equa- 
tions (6) and (7). the formation should be modeled using Biot’s 
(1956, 1962) dynamic theory of poroelasticity (see Appendix 
A). Biot’s theory consistently couples pore-fluid flow with the 
dynamics of an elastic matrix, and has been derived by many 
authors using different approaches (e.g., Burridge and Keller, 
1981). Biot’s theory will be used here to obtain the dispersive 
behavior of the Stoneley wave. 

The dispersion equation is derived in Appendix A for axi- 
ally symmetric borehole guided modes in a poroelastic forma- 
tion as 

D(o, h) = det (iV) 

0, 

where &I is the 4 x 4 complex-valued matrix 

(23) 
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(1 + B,)k 
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a 

2k2 -k; 

0 

where NUMERICAL RESULTS AND DISCUSSION 

and (25) 

The same combinations of sandstones (Table 1) and satu- 
rants (Table 2) as considered by Rosenbaum (1974) are used 
here. The elastic moduli K and u of Appendix A are p = 

( 1 - oh?, ~~,~. dry . and K + 4~13 = (1 - $)p, ~1:. drt, where p, = 
2.65 g/cm”. The grain bulk modulus is K, = 3.79 x 10” 
g/cm s2. In all examples the bore is of radius a = 10 cm and 
tilled with drilling mud, pa = 1.4 g/cm”, L%~ = 1250 m/s. Intrin- 
sic attenuation in the elastic frame has been ignored in these 
computations, although nominal Q values of 1000 were as- 
sumed. Only open pore interface conditions are considered. 

Sioneley-wave Attenuation 

(1 + Bc& 

[k:-24’+~~)k~]./lii,-a)+Zi~ [ 

2kSc 

(a + B,) ; k:. f&c a) 

(1-t B&5, 

-aM 
- (B,>-BB,)k;-2kZ 

P 1 ,f,(i&n)+2i 2 

‘W, 
(a + % F ki .f&, 4 

-J 

(24) 

- iJ ,(x) 
,f; (x) = ~ 

J,(x) 

The various parameters in equation (24) are defined in Appen- 
dix A. 

Low-frequency limit: Comparison with the quasi-static theory 

The limit of most relevance to the results of the previous 
sections, particularly equation (13), is the low-frequency limit 
0 CC 0, , where o, is defined in equation (A-14). The critical 
frequency,/; = o,/2n is given in Table 3 for difTerent saturated 
sandstones. In the low-frequency regime, the quantities ku, 

k,u, k,a. and k,a are ail much less than 1, while 1 k,u 1 is of 
order unity. Also, as discussed in Appendix A, B,, B, - 0, but 

B, - B,. a negative constant given in Table 3. The wavenum- 
ber to - k, - (io~/C)‘~~, where C is the diffusion coefficient of 
equation (7); and &I - &l,. where 

M,,= 

1 2; k 
0 

0 2k2 - k,; 

1 0 

:, II 
,L +- B,)k, 

2i 5 2j 5 
(1 u 

2k<, 2kk, 

0 (a + B,) il;’ kit, .f,(k, a) 

1 

Explicit calculation gives, using various relations among the 
Biot constants (see Appendix A) and defining the phase veloci- 
ty ~3 = qlk. 

det (i&J = 

where the function E(x) is defined in equation (12). The low- 
frequency limit of the dispersion equation (23) thus reduces 
exactly to the quasi-static equation (13). 
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As discussed in Appendix A, the inertial factor 
Characterizing the pore-fluid drag is T = 3. The critical fre- 
quency jj = $q/2napf T is given in Table 3. This frequency 
marks the transition of the diffusive Biot third wave to a 
propagating wave; at ,j’=,/; , the Biot theory predicts peaks in 
the body-wave attenuations. The extent of this effect can be 
gauged from the Q for the shear wave. It follows from equa- 
tions (A-IO) and (A-l I) that Q, - 2pT,/$p, and ranges from a 
low of Q, z 43 for Teapot-water to a high of Qs z lo6 for Fox 
Hill-gas. 

Stoneley-wave phase speed 

The effect of formation porosity on the Stoneley phase and 
group speeds has been amply discussed by Schmitt et al. 
(1988). Figure 4 is representative and shows the exact and 

400 I 
10 100 1000 10000 

f (Hz) 

FIG. 4. The Stoneley phase speeds for water saturation of 
Teapot according to the poroelastic, elastic, and quasi-static 
theories. 
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quasi-static phase speed, equal to the real part of L’ = w/k 

computed from equations (23) and (13), respectively, for 
Teapot-water. This figure also shows the Stoneley phase speed 
for an equivalent elastic formation. The dispersion equation 
for a nonpermeable elastic formation (Biot, 1952) is given by 
the determinant of the 3 x 3 submatrix formed from M,. 
i. j=l. 2, 3 of equation (24) with Bc = B, = 0. The 
compressional-wave and shear-wave numbers k,. and k, are 
for an elastic solid of density p. shear modulus p, and bulk 
modulus KC ; see Appendix A for precise definitions of these 
quantities. 

Note the expected agreement between the quasi-static and 
dynamic theories as ,j--+ 0. The transition from quasi-static to 
dynamic occurs at about 1 kHz. At higher frequencies, the 
phase speed exceeds the purely elastic speed. This is to be 
expected. since the pore fluid introduces attenuation and thus 
more dispersion. In typical. e.g., viscoelastic, wave processes 
exhibiting frequency-dependent attenuation, the effect upon 
the wave speed is to give a higher phase speed at higher 
frequencies. The same phenomenon is evident in Figure 4. 
Similar graphs for other combinations of formation and satu- 
rant show the same features as Figure 4. In particular the 
quasi-static theory faithfully reproduces the exact speeds for 
frequencies up to I kHr. 

Stoneley-wave attenuation 

Figure 5 compares the exact and quasi-static attenuations 
lm (k), calculated from equations (23) and (13), for oil satu- 
ration. Again, there is excellent agreement below 1 kHz. The 
exact attenuations ultimately exceed the quasi-static predic- 
tions, but can actually drop below the quasi-static values 
within a finite frequency range, particularly for Teapot which 
cshibits the grcatcst attenuation. Figure 6 illustrates the com- 
parison for water saturation. Note the order-of-magnitude in- 
crcasc in attenuation as compared with values in Figure 5 for 
oil. 

Consideration of the corresponding Stoneley-wave Q values, 
defined by I‘~ ’ = r; ‘(I + i/ZQ), where ~1,~ is real, turns out to 
be more instructive. Figures 7 and 8 exhibit Q calculated by 

Oil Saturation 

the exact and quasi-static theories for oil and water saturation, 
respectively. With the exception of Teapot-water, which is dis- 
cussed below. the curves of the exact dispersion relation sug- 
gest a peak in Q at high frequencies. This phenomenon, also 
apparent in Figure 5 of Schmitt et al. (19X8), cannot be ex- 
plained by the quasi-static approximation, but is apparently 
due to a high-frequency transition of the Stoneley wave in a 
curved bore to a Stoneley wave at a flat interface. This con- 
clusion can be understood after a short analytical digression. 

The Stoneleg wave on a flat fluid-porous interface 

The dispersion equation (23) contains in the limit a+ x the 
dispersion equation for interracial waves at a flat fluid-porous 
interface. In this limit the terms in $j involving I/n go to zero, 

and./;(5ca),f;(Ss a),,f;(&,n), and f, &a) all tend to unity. The 
matrix iVJ further simplifies in the low-frequency regime w CC 
w, (see Appendix A). Thus, B,., B, - 0, B, - B,, and tD _ 
k i) - (iw~‘C)“~, where C is the diffusion coefficient of equation 
(7). and 

M- 

-:“ll 
ky; K, 

k 4c (1 + B,)k, 

I 

0 

24 k~; - 2k2 -2k2 

2k* - k; 2k& 2kk, 

M 
1 0 a - kf 

P 
(a + B,) E k; 

(28) 

Note that the low-frequency regime considered here is that in 
which the third wave in Biot’s poroelastic theory is diffusive. It 
includes the quasi-static regime, but can go far beyond that 
regime. The latter is confined to t&l kHz, approximately. In 
the dilrusive regime, the quantities k,ik,, y = 8, C, and S are 
small. Therefore. in evaluating det (M), certain terms in equa- 
tion (28) can be set to zero. Specifically, M,, + 0 by subtract- 
ing [tr/(tr + B,)](k~/k~) times column 4 from column 3, and 
M1, * 0 by adding 2k2 times column I to column 4. The 

Waler Saturation 

FIG. 5. Stoneley-wave attenuation for oil saturation. The solid 
line represents exact poroelastic theory. The other curves are 
lhc quasi-static theory. FIG. 6. The same as Figure 5 but for water infiltration. 
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dispersion relation then follows from equations (23) and (28) 
as 

R+&&t 1 K, k:, 
P SR 

i_)---(a,R+I-2k’k,“)=O, (29) 
u+B, M :sk, 

where 

R = 4k;4k2&.& + (1 - 2kzk,2)2 (30) 

is the Rayleigh function for an elastic solid. Note that R + 

pB&./p& = 0 is the nondispersive equation for a fluid-elastic 
interface. In the latter case, the classic Stoneley wave is the 
only real root. The pore-flow effects are all contained in the 
final term in equation (29). 

The pore-flow term in equation (29) can be simplified fur- 
ther by considering a very stiff frame, in which case it follows 
from Appendix A that ) B, ) 9 1, M - Ks/c$. Using these ap- 
proximations, the dispersion relation becomes 

(31) 

The influence of the pore-flow term may be assessed by the 
low-frequency approximation valid in the diffusive regime, 

where I’ = o/k is the complex Stoneley phase speed. Thus, the 
effect of pore flow increases with frequency for the Bat inter- 
fact. 

Explanation of Q maxima. -The peaks in the data in Fig- 
ures 7 and 8 can now be interpreted as a transition from 
curvature-dominated dispersion to that at an effectively Rat 
interface. Beyond the peak, Q decreases according to equa- 
tions (29) and (30). This hypothesis is vindicated by the data of 
Figures 9 and IO showing Q for gas infiltration of Fox Hill 
and Berea. Note the extremely small Q values in these figures, 
illustrating the critically damped nature of the Stoneley wave 
for gas-saturated formations. This strongly evanescent 
character has been noted previously by Rosenbaum (I 974) and 
Schmitt et al. (1988). 

The presence of the Q maximum is to be expected for 
sandstone-saturant formations in which the flat interface ap- 
proximation is justified. Thus. for water in Fox Hill and Berea 
and gas in Fox Hill, there exists a frequency range beyond the 
quasi-static regime for which the Biot third wave is diffusive 
and within which the above-mentioned transition is possible. 
This is only marginally true for Teapot-water and Berea-gas. 
A transition actually occurs in the latter case (Figure lo), but 
not in the former (Figure 8). 

Discussion 

The results indicate that the nature of Stoneley-wave dissi- 
pation in permeable formations is quite complex in the acous- 
tic logging frequency range. The appearance of the Q maxi- 
mum is essentially a transition from curvature-dominated 
dispersion to an effectively flat interface. The only pore-flow 
parameter contained in the approximate equation (32) is the 
diffusion coefficient C of equation (7). There are no inertial 
erects associated with the pore flow. This is just a reflection of 

Oil Saturation 

t‘lc;. 7. The Q value of the Stoneley wave for oil saturation. 
The solid line represents exact poroelastic theory. The other 
curves are the quasi-static theory. 
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FK;. 9. The Stoneley Q value for gas-infiltrated Fox Hill. The 
2-D cutve is found by solving for the Stoneley wave at a flat 
interface from equations (29) and (30). 
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the fact that the approximation in equation (32) implicitly 
assumes the frequency is much less than the critical frequency 
,[ of the Biot theory [see equation (A-14)]. This is the fre- 
quency at which the inertial drag of the pore fluid becomes 
important and the pore-pressure propagation changes from 
diffusive to wave-like. Thus, the Q maximum is simply a result 
of Darcy viscous pore flow. 

The results presented for the Stoneley-wave attenuation are 
in general agreement with the findings of Rosenbaum (1974). 
The transition from low-frequency to high-frequency behavior 
of the Stoneley Q is also noted by Schmitt et al. (l988), al- 
though they do not discuss its physical origin in detail. Many 
illustrative synthetic microseismograms are given by Schmitt 
and Bouchon (1984) and Schmitt et al. (1988) for Berea sand- 
stone. Figures 11 and I2 display synthetic waveforms in Berea 
for dilTerent pulse center frequencies. The increasing Stoneley- 
wave attenuation for oil, water, and gas saturation is evident 
in these figures. (Tangentially, it is interesting to note the pro- 
nounced effect of gas saturation on the shear waves. The 
shear-wave attenuation in the formation is too small to ac- 
count for this. It must bc due to decreased reflection and 
transmission at the interface.) The disappearance of the Stone- 
ley wave is also graphically represented by the spectral density 
functions of Schmitt et al. (1988). However, in all these simula- 
tions, it is difficult to discern a Q maximum. In general, it is a 
difficult practical problem to measure the full frequency de- 
pendence of the Stoneley wave attenuation from synthetic 
data, let alone real data. For example, Stevens and Day (1986) 
estimate the error in the Stoneley Q to be about 10 percent for 
high quality, low noise waveform data in the range 1 to 4 kHz. 
Data of similar, or better, quality over a broader band are 
required if a peak in Q is to be observed. 

CONCLUSIONS 

Stoneley-wave attenuation and dispersion in permeable for- 
mations have been discussed for the full frequency range of 
acoustic logging. Separate analyses for the quasi-static and the 
fully dynamic behavior show that the former is adequate for 
sandstone formations up to at least I kHz. The quasi-static 
theory correctly accounts for frame compressibility. Compari- 
son with White’s (1983) quasi-static theory for a rigid frame 
shows that the effect of compressibility is to increase the tube- 
wave attenuation. but only marginally for sandstone. Com- 
parisons with other previous studies show that the tube-wave 
attenuation of Mathieu and Toksiir (1984) is erroneous at all 
frequencies, while the theory of Hsui and ToksGz (1986) is 
asymptotically correct in the quasi-static regime, but some of 
their numerical results are in error. 

The fully dynamic dispersion relation for the Stoneley wave 
has been derived using Biot’s (1962) theory of poroelasticity. 
Numerical computations of attenuation corroborate previous 
authors’ findings on the effects of permeability, particularly 
those of Rosenbaum (1974) and Schmitt et al. (1988). The 
results show that the attenuation increases with permeability 
but depends critically on the pore saturant. The effects of oil 
saturation are minimal, while water can induce significant at- 
tenuation. However, the Stoneley wave can be critically 
damped for gas infiltration, suggesting that the presence of gas 
at or near the borehole interface could cause the Stoneley 
wave to disappear. 
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b!c-. ! 1. The acoustic pressure on the ax-isof the borehole at a 
distance of I.5 m from a point source of center frequency 2.5 
kHz (see Appendix C). The bore fluid is drilling mud, the 
formation is saturated Berea with oil (solid curve), water 
(dashed curve). or gas (dotted curve). 
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FIG. 12. The same as Figure I I, but for a pulse center 
frequency of 5 kHz. 
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The attenuation curves indicate that the Q value of the 
Stoneley wave can display a peak in the acoustic logging 
band. This novel phenomenon has been explained on the basis 
of a transition from curvature-dominated dispersion to disper- 
sion on a flat fluid-porous interface, an explanation which is 
supported by analytical approximation of the dispersion rela- 
tion. The Q peak is not a quasi-static tube-wave effect, since 
the Q value increases as (f) I” in this regime. It is a combi- 
nation of geometrical dispersion effects and the dissipation 
caused by viscous flow in the pores. It is not a product of 
pore-fluid inertial effects contained in the Biot theory, but is 
simply a direct consequence of Darcy’s law. High-quality real 
data are necessary to determine whether the Q peak is of 
practical significance. Variations in bed properties and intrin- 
sic attenuation may dominate, making a peak difficult to iden- 
tify. However, observation of a peak would considerably 
enhance confidence in models such as Biot theory. 
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APPENDIX A 

Biot’s equations of dynamic poroelasticity 

Following the notation of Biot (1962), the bulk stress tensor 
is ~~~ and the pore-fluid pressure is p, The relative fluid dis- 
placement is w = +(U - u), where u and U are the solid 
matrix and pore-fluid displacements, respectively. The iso- 
tropic stress-strain relations are 

‘ij = K, elik 6ij + 2p(eij - iek, 6,,) + aMw,, k 6,,, (A-l) 

where P,~ = 1/2(u,. j + uj, i), ui, J = au,/c?xj, and the summation 
convention is assumed. The bulk modulus K, is that of the 
undrained medium (wk k = 0). The corresponding drained 
(p = 0) bulk modulus 1s K, related to K, by the Biot- 
Gassmann relation: 

K, = K + a2M. (A-3) 

The quantity a is 

and 
u=l-K 

9 ’ (A-4) 

p = - Mw,, Ir - aMe,, , (A-2) where K, may be identified as the bulk modulus of the solid 
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grain (Brown and Korringa, 1975; Rice and Cleary, 1976). The 
modulus M is 

(A-5) 

where K, is the fluid bulk modulus, and 4 the porosity. The 
shear modulus u in equation (A-l) is the same under drained 
and undrained conditions. The above equations simplify to 
equation (2) for a rigid matrix, which follows from equations 
(A-2) and (A-5) with a+ 0 and KS+ a. 

The bulk equations of motion are 

c’Zu_ i;zw. 
'ij.j = P (712 + PJ 2 

i;t2. 
(‘4-6) 

where p, is the fluid density, p = $p/- + (1 - $)P,~, and p, is 
the solid or grain density. The pore-fluid equations of motion 
arc 

i’u, 
-Pi, = P,r (7t’+ iw,, (A-7) 

where / is a linear viscodynamic operator (Norris, 1986; 
Johnson, Koplik, and Dashen, 1987). In its simplest form 
(Biot. 1956). 

(A-8) 

and 

(A-16) 

The critical frequency w, marks the transition of the vis- 
codynamic operator from the low-frequency, Darcy regime 
dominated by viscous flow (o < w,) to the high-frequency 
regime (w > to,) in which the inertial drag of the pore fluid is 
dominant. Note that for w < cclc, rc. - LICK, us - vs,), and Bc, 
8, - 0. Also in the low-frequency regime, B, - B, < 0, and 

I\,, - (io/C)“‘, where C is the ditfusion coefficient of equation 
(7). Note that 6 = 1, or I?, + p/p, = 0. is the dynamic com- 
patibility condition of Biot (1956). The negative constant B,. 
which determines the relative magnitude of the fluid and 
matrix motions for the diffusion process, depends upon the 
elastic moduli but not on the inertial terms. It is always less 
than - I for fluids that arc more compressible than the matrix 
grain, and B,, 2 - I for nearly unconsolidated media like soil. 
For fluids that are much more compressible than the matrix, 
as in most sandstones, B, z -(&‘a)(K‘ + 4p/3)/Ks, so R, is 
large and negative

The viscodynamic operator 

where m = Tp//4, and T is an inertial factor satisfying T > 1. 
This factor is discussed by Brown (1980), Norris (1986), and 
Johnson, Koplik. and Dashcn, (1987), among others. Equation 
(A-S) is discussed below. 

Plane-wave solutions.pTherc are three plane-wave solutions 
to equations (A-6) and (A-7), 

(u, w) = (a, By a) exp [i(!i, b-x - ot)], (A-9) 

where b is any real unit vector, and y = C, S, and D, for 
compressional wave, shear wave, and diffusive wave, respec- 
tively. The polarization vector a is parallel to b for C and D. 

and perpendicular for S. The complex wavenumbers k,, phase 
speeds 11, = tol13~. and fluid-motion amplitudes B, are all 
frequency-dependent. Thus, 

and for y = C and L), 

(A-12) 

4 
B,, 

= fB,, [S f [S2 - 4a(l - 8)/B,]“‘). (A-13) 

Here, rsa = (t.~‘p)“~ and tic0 = [(K,. + 4).1/3),/p]“~ are the zero- 
frequency limits of t’c and t>s. Also, 

(A-15) 

The viscodynamic operator L in equation (A-S) includes 
the static Darcy’s law term plus an inertial correction. It can 
be shown (Norris, 1986) that both 1c and M depend upon the 
solution of a single Stokes Row problem through the porous 
network. The permeability K comes from the average flow rate 
in the direction of applied pressure gradient, which is the usual 
definition of permeability. The inertia m, or alternatively the 
factor T > f, depends upon them mean square vdoeity in the 
pores under the same pressure gradient. Thus, both K and T 
can be viewed as independent measurable quantities. 
Measurement of K is straightforward. Despite the discussion of 
experimental data in Pascal (1986) it appears that there are 
no relevant measurements of 7‘ available. However, it can be 
estimated from electrical formation factor data as follows. One 
can extend the definition of T to higher frequencies, and prove 
that T(0) 2 T(o) (Brown, 1980), where T(0) is the value in 
equation (A-8). The electrical formation factor is equal to 
T(c)/+ (Brown, 1980; Johnson et al., 1982). Measured values 
of T(;c) ranging from 1.8 to 3.8 have been reported for 
sandstone-like materials (Johnson et al., 1982: Johnson, 
Plona, and Kojima, 1987). Brown’s inequality makes these 
values lower bounds for the T in equation (A-S). Based upon 
these considerations, the value T = 3 has been used in all the 
numerical calculations reported here. 

Alternatively, the operator L can be defined by an effective 
permeability through the factor F(w), 

(A-17) 

Thus, F(o) = 1 - iw/o, for equation (A-8). Biot (1956) pro- 
posed extending F(w) to higher frequencies by modeling the 
pore network as circular tubes. His prescription is not consis- 
tent with a rigorous definition of the viscodynamic operator 
(Norris, 1986 and references therein), but when corrected 
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becomes 

i?m J, (,,~6iw/o,) 
F(w) = - 

4% J, (,/m)’ 
(A-18) 

For w < w,, F(w) - I - io/o, Other authors have used F(w) 
in a form similar to equation (A-18). This strategy is not 
adopted here. Rather, K and m in equation (A-8) are con- 
sidered empirical constants to be determined, and no explicit 
pore geometry is considered. 

Borehole dispersion equation 

Let uB and pR be the displacement and pressure fields in the 
borehole fluid, r < a in cylindrical coordinates. The four 
boundary conditions at the interface are continuity of average 
normal displacement, continuity of normal stress, continuity 
of shear stress, and continuity of fluid pressure (open pores): 

z&l) = 11, (a) + M’, (a), (A-19) 

- P%Z) = rr (a). (A-20) 

0 = rrz (a), (A-21) 

and 

P44 = P(U). (A-22) 

The inequality a > C$ 

The solution method assumes a potential function for each of 
the four bulk waves. For r < ‘I, 

uB z A, vJ<,(& r)ei+o”, (A-23) 

and for I’ > u, 

1 ‘,i(!elw, (A-24) 

r 
W zzz .4,. B,.VH:“(&.r) + A,>B,>VH::‘(<,r) 

I 

+ A, B,~ 

where 

Ey = (“< ~ kl)‘,‘, Im (5,) 2 0, y = B, C, S, D, (A-26) 

and k, = w!r,. The frequency-dependent complex numbers 
B,., B,, and B, are defined above. Substituting equations 
(A-24) and (A-25) into the boundary conditions (A-19))(A-22) 
gives the set of equations lW[A,, A,, A,.. ADIT = 0. where iVJ 
is defined in equation (24). The necessary condition for a solu- 
tion is equation (23). 

APPENDIX B 

The maximum possible value of K gives the minimum pos- 
sible value of a in equation (A-4). The Hashin-Shtrikman 
bounds (Hashin, 1962) for a two-phase composite give an 
upper bound on K. In this case, one phase is the solid grain, 
with elastic moduli K,? and u,, and the other phase is vacuum. 
Then K 5 K,, where 

as 
The lower bound on a follows from equations (B-l) and (A-4) 

(B-2) 

K 
G 

= (1 - +)K, 
1 + +3K,/4u,’ 

(B-1) Thus, a > 4. 

APPENDIX C 

Solution for a point source in the borehole 

Let p B’o’ be the time harmonic point-source pressure in an 
infinite bore fluid. 

where A, follows from satisfaction of equations (A-19))(A-22) 
as 

&(KeR -WI) 

P 
B(Ol = ~ 

4irR 

H; ‘(5, u) &co, k) 
A,@, k) = -A, ~ ~ 

J,, (5, ~1 No, 4’ 
(C-3) 

s T  

= A, H:,“& r)ei(kr “‘) dk, (C-l) 
and D(o, k) is the same as D(o, k) of equation (23), but with 

-I f’(csa) in M, 1 of equation (24) replaced by - l/f(t,a). 

where R = ,,/r’ + 2’. A,, = i/87t, and 5, follows from equation 
Synthetic waveforms were computed using an adaptive inte- 

(A-26). In the presence of the formation, the pressure becomes 
gration scheme for equation (C-2), combined with an FFT. 
The source spectrum used was the second derivative of a 
Blackman-Harris window. from Kurkjian (1985). There is a 

ps= z 
s 

dk ei’k’-wf’ A, H~l’(~s r) + A, Jo&r) 
i 

typographical error in Kurkjian’s constant hi; it should read 

_I h, = -0.48829. 


