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Stoneley-wave attenuation and dispersion in permeable formations

Andrew N. Norris*

ABSTRACT

The tube wave, or low-frequency manifestation of the
Stoneley wave, has been modeled previously using the
quasi-static approximation; I extend this method to in-
clude the effect of the formation matrix compressibility,
which tends to marginally increase the tube-wave at-
tenuation. Using the Biot theory of poroelasticity, I de-
velop a fully dynamic description of the Stoneley wave.
The dispersion relation derived from Biot’s equations
reduces in the low-frequency limit to the quasi-static
dispersion relation. Comparisons of the quasi-static and
dynamic theories for typical sandstones indicate the
former to be a good approximation to at least 1 kHz for
oil and water infiltration. At higher frequencies, usually
between 5 and 20 kHz for the formations considered, a
maximum in the Stoneley Q is predicted by the dynamic
theory. This phenomenon cannot be explained by the
quasi-static approximation, which predicts a constantly
increasing Q with frequency. Instead, the peak in @ may
be understood as a transition from dispersion domi-
nated by bore curvature to a higher frequency regime in
which the Stoneley wave behaves like a wave on a flat
fluid-porous interface. This hypothesis is supported by
analytical and numerical results.

INTRODUCTION

The attenuation of the Stoneley wave in the presence of
formation pore-fluid mobility is well known and has been
proposed as a means of measuring permeability (Alhilali and
Zemanek, 1984). Quantitative modeling by Rosenbaum (1974),
Schmitt and Bouchon (1984), and by Schmitt et al. (1988)
supports the conclusion that attenuation increases with per-
meability and with pore fluid mobility; ie., attenuation de-
creases as pore-fluid viscosity increases. Rosenbaum based his
findings on synthetic acoustic signals covering a wide range of
frequencies. Schmitt et al. (1988) examined the effects of indi-
vidual factors, such as interface permeability, pore fluid, and
bore radius, and also discussed the first pseudo-Rayleigh wave

mode. Others, particularly White (1983) and Mathieu and
Toksdz (1984), considered the low-frequency quasi-static
regime in which the Stoneley wave is often referred to as the
tube wave. They obtained explicit analytical results that indi-
cate attenuation increases with porosity, permeability, and fre-
quency, but decreases with bore radius. Hsui and Toksdz
{1986) drew similar conclusions from an approximate dynamic
model for the Stoneley wave; however, as discussed below,
some of their numerical calculations appear to be in error. The
general findings of these various theoretical calculations are in
agreement with measured data (Williams et al., 1984; Burns
and Cheng, 1986). Liu (1988) recently considered the influence
of permeability on the modes of a cylindrical sample sub-
merged in fluid.

The present study examines Stoneley-wave attenuation over
the full frequency range of acoustic logging. The objective is
not to reproduce the findings of the references mentioned, but
to understand the underlying mechanisms. In the quasi-static
regime, the tube-wave dissipation is well known (White, 1983)
to result from diffusion of pore pressure into the surrounding
formation via the connected pore network. This dissipative
mechanism is still eflective at higher frequencies, as suggested
by Rosenbaum’s (1974) calculations. However, it is compli-
cated by the coupling between pore pressure diffusion and
purely geometrical dispersive effects found in elastic forma-
tions. The latter subject is well treated in the literature of
full-wave acoustic logging, beginning with Biot (1952). Recent
references are listed by Schmitt and Bouchon (1985), while
Stevens and Day (1986) focus on the low-frequency dispersion.

The first half of this paper considers in detail the quasi-
static theory of tube-wave dispersion and attenuation. This
theory, which by definition ignores all inertial effects except
that of the bore fluid, was developed by White (1983). The
main result of this part of the paper is an extension of White’s
analysis to include the compressibility of the matrix grain.
This is necessary to verify the fully dynamic theory for a com-
pressible matrix, which is considered later. It is shown that
frame compressibility decreases the pore-pressure diffusion co-
efficient but increases the tube-wave attenuation. The results
of the quasi-static theory are compared with those for a rigid
frame (White, 1983) and also with the theory of Mathieu and
Toksodz (1984).
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The remainder of the paper considers the dispersion and
attenuation of the Stoneley wave at higher frequencies. Biot’s
theory of dynamic poroelasticity is used to derive the
dispersion equation. It is shown how the previously deter-
mined quasi-static tube-wave speed in a compressible frame
drops out of the fully dynamic theory in the appropriate limit.
Numerical results for fluid-saturated sandstones indicate the
range of validity of the quasi-static theory and also a possible
peak in the Stoneley Q. This phenomenon is explained in
terms of a Stoneley wave on a flat fluid-porous interface.

PORE-PRESSURE DIFFUSION IN A
COMPRESSIBLE FRAME

Before considering tube-wave attenuation in a permeable
formation, it is necessary to define precisely the diffusion coef-
ficient to be used. This is done for two reasons: first, previous
treatments (White, 1983; Mathieu and Tokséz, 1984) have not
considered the effects of frame compressibility; second, the
quasi-static limit of the dynamic dispersion relation derived
below in equation (24) explicitly contains frame compress-
ibility, so any quasi-static theory that ignored frame compress-
ibility would not be in agreement. The quasi-static analysis is
thus necessary as a check on the fully dynamic results dis-
cussed later. It is also useful in its own right, but its range of
validity is uncertain at this stage.

Quasi-static fluid flow through a permeable solid is gov-
erned by Darcy’s law

ow K v 1

ot = n ps ( )
where x is the permeability, nj the viscosity, w the incremental
fluid displacement relative to the matrix, and p the incremen-
tal pore pressure. In a rigid or incompressible matrix, the
volumetric strain in the pore fluid satisfies Hooke’s law for an
inviscid fluid

-V-w=ip. (2)

K,

where ¢ is the porosity and K, is the pore-fluid bulk modulus.
Eliminating w from equations (1) and (2) gives the pressure
diffusion equation

0
covip=-L, 3)
ct
with the diffusion coefficient
K K
Co=--2L. (4
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A simple (e.g.. Marsily, 1981) but inexact way to compen-
sate for the matrix compressibility is to augment the strain
—V-.w in equation (2) with the quantity p/K, where K is the
bulk modulus of the frame under drained conditions (see
Appendix A). The diffusion coefficient is then

e, =c /(145 (5)
1 ‘OJ/ ‘bK -

A more precise analysis for diffusion in an elastic matrix
follows by using Biot’s poroelastic stress-strain relations (A-1)
and (A-2) instead of equation (2). Briefly, equation (A-2) and

the trace of equation (A-1) imply that V-w = (—K_/KM)p,
where p' = p + (aM/3K )1, . (See Appendix A for the defini-
tions of 1, a. M, K, and K_) Also, the static equilibrium
equations t; ; = 0 imply t;; ,; = 0, which, with equations (A-1)
and (A-2), gives K(K, + $1)V?p = K_(K + $)V?p'. In all cases
of practical concern, the pressure p goes to zero uniformly at
infinity. The condition for the borehole geometry of interest
here is that p— 0 as r— co. Direct integration then yields
K(K, +3wp = K. (K + $u)p’. Now we take the divergence of
Darcy’s law, equation (1), and eliminate V-w to get

CVip=—. (6)

where the modified diffusion coefficient is

- / K, _ 2 ﬂ !
C—CO//{I + oK |:(l—a)(a d)+a (1 + 3K> jl} (7)

The diffusion coefficient C has been derived and discussed
by Jaeger and Cook (1969), Rice and Cleary (1976), and
Chandler and Johnson (1981) among others, but it appears
that no quantitative comparison of C, C,, and C, has been
given. It is shown in Appendix B that a > ¢. It then follows
from equations (5) and (7) that

C, < C<C,. (8)

The simple coefficient C, therefore overestimates the decrease
in diffusivity due to the matrix compressibility. However, a
better lower bound for C exists in the form C, < C, where
C, =Co/(1 + K;/$K) > C,, and K| is the bulk modulus of
the grain (see Appendix A).

The distinction between the Biot diffusion coefficient C and
the simpler C, is obviously negligible when the pore fluid is
much more compressible than the matrix, as for example, in
gas-saturated sandstone. Table 3 lists the values of C/C, for
the sandstones and pore fluids in Tables 1 and 2. The ratio is
very nearly unity for gaseous infiltration, but can be apprecia-
bly less for water saturation. Frame compressibility is very
significant for loosely consolidated materials such as soil, for
which the frame modulus satisfies K « K, K. For this case,
it follows from equations (A-3)-(A-5) and (7) that /K, =~
¢/K, + (1 — ¢)/K, (Wood’s formula), M ~ K_, and C/C, =
H(K + %p)/’Kf « 1. Other limiting forms of C are discussed by
Chandler and Johnson (1981).

LOW-FREQUENCY TUBE-WAVE
ATTENUATION AND DISPERSION

The tube wave is the commonly used term for the low-
frequency Stoneley wave in a borehole. Its speed in an elastic
formation is

v = vl + Ky/m)72, ©9)

where p is the formation shear modulus, and v, and K, are
the sound speed and bulk modulus in the bore fluid, related by
vp = (Kg/pp)'/?, where py is the density. The presence of for-
mation permeability provides a dissipative mechanism for the
tube wave. The low-frequency speed in a permeable formation
can then be defined as the complex quantity v = (K*/pp)'/2,
The complex effective modulus K* is the ratio of the effective
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bore-fluid dilatation to the borehole pressure p?. The effective
dilatation is the sum of the actual dilatation of the fluid plus
the dilatation induced by the formation compressibility and
permeability. Thus,
1 s
L1, e @ (10)
K K; na p
where u, (a) is the quasi-static radial displacement of the bore-
hole of radius a, and w,(a) is the radial displacement of the
pore fluid relative to the matrix. The static clastic expansion of
the bore under the applied pressure p® can be solved easily to
give u,(a) = pPa/2p (White, 1983). In the absence of per-
meability, w,(2) = 0 and v = v, [equation (9)].

The ratio w,(a)/p® in equation (10) can be obtained for a
permeable formation by solving equation (6) for p(r, t) in r > a
subject to time harmonic pressure at the interface p(a, ¢) =
pBe~ ™" The solution can be found in terms of Bessel functions,
and w, (a) then follows from equation (1) as

wr(a)_lc a E , @ (11)
P nac ‘)
where
_2 NS
E(x):——'(ﬂ—) (12)
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and H{' and H{" arc Hankel [unctions of the first kind. The
tube-wave speed follows from equation (10) and ¢ = (K*/p,)'?

as
1 1 ¢pC ®
—2=—+7—B—°E<alg), (13)

The complex function E(x) is plotted in Figure 1. Note that
E(x)--» 2(i/x)""* as x — .

Values of a’@/C, the argument of E in equation (13} and
given in Table 3 for the combinations of sandstones and pore
fluids in Tables ! and 2, arc all greater than 3 at 1 kHz
frequency. Assuming that a’w/C > 1, the open pore tube-wave
speed of cquation (13) can be approximated as
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F1G. 1. The function E(x) of equation (12).

Table 1. Dry sandstone data (from Rosenbaum, 1974). The
speeds are in meters per second and the permeability in milli-
darcies (1 Darcy = 1072 em?).

U, gey Us. dr K
Sandstone o) (m/si (m/sg (mD)
Fox Hill 0.074 4450 2515 32
Berea 0.19 3670 2170 200
Teapot 0.30 3048 1865 1900

Table 2. Pore-fluid parameters. Viscosity is in units of grams
per centimeter-second and sound speed is in meters per second.

' M v,
Fluid (g/cm s) Py (m/s)
il 1.8 0.88 1455
Water 1072 1.0 1500
Gas 22 x 10 ¢ 0.14 630

Ky [CN\'Y2[iC,\?
B @)

where 0 <y < | and

n

= . (15
H+ Ky :

v

If the dependence of (C,/C) upon porosity is ignored, the
imaginary part of v in equation (14) scales as (px/a?)/2. This
implies that attenuation, which depends upon the imaginary
part of v, increases with porosity and permeability and de-
creases with increasing bore radius (Hsui and Toksoz, 1986).

Effects of interfacial permeability and
intrinsic body-wave attenuation

It has been proposed in the past to modify the pressure
continuity condition at the interface by introducing a per-
meability parameter § such that (Deresiewicz and Skalak,
1963)

aw

PP =p+p t at r=a. (16)
&

Little is known about the valuc of f in general, except that it
is identically zcro when natural boundary conditions for Biot’s
cquations are deduced from variational principles. [See Berry-
man and Thigpen (1985) for a discussion.] Using equation (16)
and procceding as before, the tube-wave speed is

L:L_,_EE&E (129/1—E%&E a29 X
e vl rr_f- p, C CcJl 2 K, C C

(17).

The open-pore speed of equation {14) corresponds to § = 0. In
the closed pore limit; B = <o, the speed is simply v = v,, and
there are no pore-fluid effects in the quasi-static theory. This
concurs with the conclusions of Rosenbaum (1974), who con-
sidered a higher frequency range, and also with those of
Schmitt et al. (1988). For this reason the rest of the paper
concentrates on the open pore condition.



Stoneley-wave Attenuation

Let @,.a =S, C, and B, be the quality factors (White, 1983)
for the formation shear waves, formation compressional
waves, and borehole acoustic waves. Under the generally valid
assumption 1/Q, « 1, a =S, C. and B, a tube-wave quality

factor Q. can be defined by v™' = vy (1 + i/2Q,). It follows
by perturbation of cquation (14) as
1 1 — 1
—- 1 LA (18)
Or Q@ Qs O

that Q., a frequency-dependent quality factor attributable
to permeability. is

_ (K, S)”Z <‘L‘°>"'2
QP B d) (KB CO 2C0 ‘

Values of @, at 1 kHz frequency are given in Table 3 for
saturated sandstones. Note the broad range in Q,. For a given
formation, the importance of pore-flow attenuation can be
estimated by comparing the Q, term in equation (18) with the
other two Q terms.

(19)

Comparisons with other approximate theories

White’s theory for a rigid matrix.—The quasi-static tube-
wave speed in a permeable formation of equation (13) is simi-
lar to that of White (1983) for a rigid frame. His equation has
C = C,, the diffusion constant for the rigid frame. As equa-
tion (8) indicates, the ratio C/C, is less than unity. Replacing
C with C; in equation (13) has the effect of decreasing both
the real and imaginary parts of the second term on the right-
hand side. Consequently, frame compressibility causes an in-
crease in the tube-wave attenuation in a permeable formation.
This result is not obvious: since the diffusion coefficient C is
less than its rigid counterpart C,, a straightforward substitu-
tion in White’s theory incorrectly predicts a decrease in at-
tenuation.

Mathiew’s theory.—Mathieu (1984) and Mathieu and
Tokséz (1984) presented an approximate theory for the tube-
wave attenuation coefficient, defined as « = Im (w/v). Let a,,
denote Mathieu’s o, which is

_ Pty 2

M u Zp Lkra (20)
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Here k, = m(c;* — v5%)'"? is the radial wavenumber; I, and
I, are modified Bessel functions; and Z, is an impedance
1 : p

(Mathicu, [984) given by
a’o\'"?
EHN
(()

The derivation by Mathieu (1984} is implicitly a quasi-static
analysis. To be fully consistent, he should have taken the low-
frequency approximation k a <« 1 for the bracketed term in
equation (20). which becomes 2. This is done in the compari-
sons below, where it is shown that a, is always too large. As
the bracketed term is actually greater than 2, its inclusion only
worsens matters,

Let ¢ = a; be the attenuation derived from equation (13).
As mentioned above, the quantity x = a’w/C generally satis-
fics x > 1, particularly above | kHez. Therefore, equation (14)
can be used for a,, and equation (21) also simplifies to give
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Thus, at higher frequencies for which x > 1, Mathieu’s attenu-
ation is correct except for a factor of 1.8 (C/Cy)''2. At low
frequencies, or x « 1, Mathieu’s attenuation a,, tends to the
constant pyv,k/2na®. In this frequency range, the approxi-
mation of equation (14) is not valid. Instead, equation (13)
imptlies that a; is of the order [x/| log (x) |1, which tends to
zero as @ — 0.

Numerical comparison.—Figure 2 shows the attenuation of
the present theory compared with those of White’s theory for
the rigid matrix and of Mathieu’s theory. The curves are for
drilling mud, p, = 1.4 g/em?, v, = 1250 m/s, a bore of radius
10 cm, in a water-saturated Teapot sandstone formation (see
Tables 1 and 2). Mathieu theory predicts too large a value,
particularly at low frequencies where the present theory is
valid. As surmised previously, the attenuation for the rigid
matrix is uniformly less than that of the compressible matrix.
However, even for this formation, which has the greatest dif-
ference between C and C, (see Table 3), the effect of matrix
compressibility on tube-wave attenuation is small.

Table 3. Some parameters of the porous media formed from the sandstone frames saturated with different fluids. The

Biot critical frequency f

¢

and B, are defined in equations (19), (7), (4), and (A-15), respectively.

of 1 kHz and ¢ = 10 cm.

. = ¢n/2nkp , T follows from equation (A-14), with T = 3 for all cases considered. Op, C, C,,

Q, and 2*0/C are both calculated for a frequency

Pore ) 1 Qp o ] <

fluid Sandstone (kHz) (1 kHz) ¢ (LkH2) Cy Bo

Oil Fox Hill 2.5 x 10* 900 1.6 x 10* 0.86 —8.5
Berea 1 x 10* 217 6.8 x 10° 0.82 —6.1
Teapot 1.7 x 10? 55 1.2 x 10° 0.77 —4.6

Water Fox Hill 123 72. 77 0.84 —7.2
Berea 50 17.5 33 0.79 —5.2
Teapot 8 4.4 59 0.74 —4.0

Gas Fox Hill 19 1.8 58 0.99 —246
Berea 8.0 0.46 24 0.99 — 168
Teapot 1.3 0.12 4 0.99 —121
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FiG. 2. Plots of attenuation for a Teapot-water permeable
formation from 10 to 10 000 Hz comparing the exact low-
frequency theory of equation (13), White's model for a rigid
matrix, which follows from equation (13) with C = C,, and
Mathieu’s theory of equation (20).
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FiG. 3. The dimensionless attenvation ¢ = Im (v,/v) from
equations (13) and (22) for v, = 1600 m/s, a = 10 cm, f=5
kHz and K,/m =2 x 10'* Hz: The solid line is from cqua-
tion (13} with p,=p, and vz = v, = v,; the dotted line is
from equation (22).

Norris

DYNAMIC THEORY OF STONELEY-WAVE
ATTENUATION AND DISPERSION

The complex tube-wave speed v of equation (13) is based
upon a quasi-static theory for which v, is the appropriate
speed in a nonporous formation. No inertial effects were in-
cluded in the derivation. In order to examine the effect of
permeability on the Stoneley wave at higher frequencies, a
dynamic theory must be considered that incorporates pore-
fluid flow.

The theory of Hsui and Toksoz

Hsui and Toksdz (1986) proposed modeling the Stoneley
wave as the fundamental mode in a rigid acoustic waveguide.
The coupling to the permeable medium occurs through the
pressure and velocity conditions at r = a. Their equation for
the complex Stoneley wave speed v is

Jy M1 — 07 /0%)! 2]
Jo M1 — vi/ph)!?]

a*o

G

2
_ (1 ‘ U%//L’Z)l/z

: + o

) =0, (22
where L = @wa/v;. Note that as A — 0, this equation reduces to
the quasi-static equation (13) with pp = p, and vz = v, = vr.
The dimensionless attenuation ¢ = Im (v;/v) calculated by
solving equation (22) is shown in Figure 3, compared with the
quasi-static o. The agreement at low permeability but finite A
is explained as follows: In the limit of small attenuation, the
second term in equation (22) is small. Hence the argument of
J, must also be small and independent of A, so equation (22)
also reduces to the quasi-static theory when the permeability-
induced attenuation is small. This equivalence is to be ex-
pected, since the fundamental mode of equation (22) with
¢ = 0 is the nondispersive solution v = v;.

The parameters of Figure 3 are the same as those for Figure
1 of Hsui and Tokséz (1986). However, their curves show
uniformly higher values of ¢ than those in Figure 3. That their
results are in error can be confirmed by considering a low
value of permeability and solving equation (22) by per-
turbative methods.

Dynamic poroelasticity and Stoneley waves

A better procedure than that of Hsui and Tokséz is to take
Biot’s (1952) theory for a fluid-filled bore in an elastic forma-
tion and augment the equations with Darcy’s flow equation (1)
with the pore-fluid constitutive equation (2). However, to be
fully consistent with the compressible matrix diffusion equa-
tions (6) and (7), the formation should be modeled using Biot’s
(1956, 1962) dynamic theory of poroelasticity (see Appendix
A). Biot’s theory consistently couples pore-fluid flow with the
dynamics of an elastic matrix, and has been derived by many
authors using different approaches (e.g., Burridge and Keller,
1981). Biot’s theory will be used here to obtain the dispersive
behavior of the Stoneley wave. '

The dispersion equation is derived in Appendix A for axi-
ally symmetric borehole guided modes in a poroelastic forma-
tion as

Diw, h) = det (M)
=0, (23)

where M is the 4 x 4 complex-valued matrix
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where NUMERICAL RESULTS AND DISCUSSION
, —iH{(x) The same combinations of sandstones (Table 1) and satu-
filx) = H‘l”(x) rants (Table 2) as considered by Rosenbaum (1974) are used
here. The elastic moduli K and p of Appendix A are p=
and (25) (1 — &), 5 gry» and K + 4p/3 = (1 — $)p, 0¢ 4, where p, =
—iJ (%) 2.65 gicm®. The grain bulk modulus is K = 3.79 x 10!!
fi(x) = 7 (1)() . g/cm s%. In all examples the bore is of radius a = 10 ¢cm and
ol

The various parameters in equation (24) are defined in Appen-
dix A.

Low-frequency limit: Comparison with the quasi-static theory

The limit of most relevance to the results of the previous
sections, particularly equation (13), is the low-frequency limit
® < @,, wherc o, is defined in equation (A-14). The critical
[requency f. = ®,/2n is given in Table 3 for different saturated
sandstones. In the low-frequency regime, the quantities ka,
kca, kga, and kga are all much less than 1, while | kpa | is of
order unity. Also, as discussed in Appendix A, B, Bg ~ 0, but
B, ~ By, a negative constant given in Table 3. The wavenum-
ber &, ~ ky ~ (i0/C)"'?, where C is the diffusion coefficient of
equation (7); and M ~ M,,. where

Mo:
— .., -
i€ ap
2UEK, ¢ = o Bolko '
k £,
1 2= 2% 2 ko
a a a
0 2 k2 2kE, 2kk,,
M 2
1 0 0 (a+ By N k2 f(kpa)

(26)

Explicit calculation gives, using various relations among the
Biot constants (see Appendix A) and defining the phase veloci-
ty v = a/k,

det (M) =
B 1 1\v2p, C 1

—2ikie k= 1+ =—= |1 LHEL———0 | (27

1 SSCc™*p a I: 2 vz ¢ pB Co E(azu)/C) ( )

where the function E(x) is defined in equation (12). The low-
frequency limit of the dispersion equation (23) thus reduces
exactly to the quasi-static equation (13).

filled with drilling mud, p; = 1.4 g/cm?, v, = 1250 m/s. Intrin-
sic attenuation in the elastic frame has been ignored in these
computations, although nominal Q values of 1000 were as-
sumed. Only open pore interface conditions are considered.

As discussed in  Appendix A, the inertial factor
characterizing the pore-fluid drag is T = 3. The critical fre-
quency f. = ¢n/2nkp, T is given in Table 3. This frequency
marks the transition of the diffusive Biot third wave to a
propagating wave; at f = f, , the Biot theory predicts peaks in
the body-wave attenuations. The extent of this effect can be
gauged from the Q for the shear wave. It follows from equa-
tions (A-10) and (A-11) that @  ~ 2pT/$p, and ranges from a
low of Qg = 43 for Teapot-water to a high of Q; ~ 10° for Fox
Hill-gas.

Stoneley-wave phase speed
The effect of formation porosity on the Stoneley phase and

group speeds has been amply discussed by Schmitt et al
(1988). Figure 4 is representative and shows the exact and

1400 ,
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Fi1G. 4. The Stoneley phase speeds for water saturation of
Teapot according to the poroelastic, elastic, and quasi-static
theories.
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quasi-static phase speed, equal to the real part of v = w/k
computed [rom equations (23) and (13), respectively, for
Teapot-water. This figure also shows the Stoneley phase speed
for an equivalent elastic formation. The dispersion equation
for a nonpermeable elastic formation (Biot, 1952) is given by
the determinant of the 3 x 3 submatrix formed from M,
i j=1 2, 3 of equation (24) with B.= Bg=0. The
compressional-wave and shear-wave numbers k. and kg are
for an elastic solid of density p, shear modulus y, and bulk
modulus K_; see Appendix A for precise definitions of these
quantities.

Note the expected agreement between the quasi-static and
dynamic theories as f-» 0. The transition from quasi-static to
dynamic occurs at about 1 kHz. At higher frequencies, the
phase speed exceeds the purely elastic speed. This is to be
expected. since the pore fluid introduces attenuation and thus
more dispersion. In typical. e.g., viscoelastic, wave processes
exhibiting frequency-dependent attenuation, the effect upon
the wave speed is to give a higher phase speed at higher
irequencies. The same phenomenon is evident in Figure 4.
Similar graphs for other combinations of formation and satu-
rant show the same features as Figure 4. In particular the
quasi-static theory faithfully reproduces the exact speeds for
frequencics up to | kHz.

Stoneley-wave attenuation

Figure 5 compares the exact and quasi-static attenuations
Im (k), calculated from equations (23) and (13), for oil satu-
ration. Again, there is excellent agreement below 1 kHz. The
cxact attcnuations ultimately exceed the quasi-static predic-
tions, but can actually drop below the quasi-static values
within a finite frequency range, particularly for Teapot which
cxhibits the greatest attenuation. Figure 6 illustrates the com-
parison for water saturation. Note the order-of-magnitude in-
crease in attenuation as compared with values in Figure S for
oil.

Consideration of the corresponding Stoneley-wave Q values,
defined by ¢™' = ¢7 '(1 + i/2Q), where v, is real, turns out to
be more instructive. Figures 7 and 8 exhibit @ calculated by
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FiG. 5. Stoneley-wave attenuation for oil saturation. The solid
line represents exact poroelastic theory. The other curves are
the quasi-static theory.

the exact and quasi-static theories for oil and water saturation,
respectively. With the exception of Teapot-water, which is dis-
cussed below, the curves of the exact dispersion relation sug-
gest a peak in Q at high frequencies. This phenomenon, also
apparent in Figure 5 of Schmitt et al. (1988), cannot be ex-
plained by the quasi-static approximation, but is apparently
due to a high-frequency transition of the Stoneley wave in a
curved bore to a Stoneley wave at a flat interface. This con-
clusion can be understood after a short analytical digression.

The Stoneley wave on a flat fluid-porous interface

The dispersion equation (23) contains in the limit a— oc the
dispersion equation for interfacial waves at a flat fluid-porous
interface. In this limit the terms in M involving 1/a go to zero,
and f1(Eca). fi(Esa), f1(Epa), and £, (£, a) all tend to unity. The
matrix M further simplifies in the low-frequency regime ® «
o, (see Appendix A). Thus, B., By ~0, B, ~ By, and &, ~
ky.~ (io/C)! "2, where. C is. the. diffusion. coefficient. of equation.
(7}, and

—&uH
k - 1 4+ Bk
2K, - ( o)kp
| 2kE k2 —2k? —2k*
M ~ Ss s (28)
0 2k* — k2 2kE 2kk,,
M, M,
1 0 a— ki (a+ By) — kj,
L H

Note that the low-frequency regime considered here is that in
which the third wave in Biot’s poroelastic theory is diffusive. It
includes the quasi-static regime, but can go far beyond that
regime. The latter is confined to 0-1 kHz, approximately. In
the diffusive regime, the quantities k,/k,, v = B, C, and § are
small. Therefore, in evaluating det (M), certain terms in equa-
tion (28) can be set to zero. Specifically, M,,— 0 by subtract-
ing [a/(a + By)](kZ/k3) times column 4 from column 3, and
M,, >0 by adding 2k? times column | to column 4. The
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FiG. 6. The same as Figure 5 but for water infiltration.
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dispersion relation then follows from equations (23) and (28)
as
Ps 5

R +
[V

+ : Ky ki (Bo R+1—2k%;3)=0, (29)
a+B,/ M Ezk, 0 ST

where
R = 4kg*K2E By + (1 — 2k2kg 2)? (30

is the Rayleigh function for an elastic solid. Note that R +
PeSe/PEp = 0 is the nondispersive equation for a fluid-elastic
interface. In the latter case, the classic Stoneley wave is the
only real root. The pore-flow effects are all contained in the
final term in equation (29).

The pore-flow term in equation (29) can be simplified fur-
ther by considering a very stiff frame, in which case it follows
from Appendix A that | B, | > |, M ~ K /. Using these ap-
proximations, the dispersion relation becomes

kZ
- rPe X 31)

R+&?i+¢ — =
P S Pr&rkp

The influence of the pore-flow term may be assessed by the
fow-frequency approximation valid in the diffusive regime,
k2 \//;E o ini4
Eokp  tall —(0p/0°]7
where v = w/k is the complex Stoneley phase speed. Thus, the

cflect of pore flow increases with frequency for the flat inter-
face.

(32)

Explanation of @ maxima. —The peaks in the data in Fig-
ures 7 and 8 can now be interpreted as a transition from
curvature-dominated dispersion to that at an effectively flat
interface. Beyond the peak, @ decreases according to equa-
tions (29) and (30). This hypothesis is vindicated by the data of
Figures 9 and 10 showing Q for gas infiltration of Fox Hill
and Berea. Note the extremely small Q values in these figures,
illustrating the critically damped nature of the Stoneley wave
for gas-saturated formations. This strongly evanescent
character has been noted previously by Rosenbaum (1974) and
Schmitt et al. (1988).

The presence of the Q@ maximum is to be expected for
sandstone-saturant formations in which the flat interface ap-
proximation is justified. Thus, for water in Fox Hill and Berea
and gas in Fox Hill, there exists a frequency range beyond the
quasi-static regime for which the Biot third wave is diffusive
and within which the above-mentioned transition is possible.
This is only marginally truc for Teapot-water and Berea-gas.
A transition actually occurs in the latter case (Figure 10), but
not in the former (Figure 8).

Discussion

The results indicate that the nature of Stoneley-wave dissi-
pation in permeable formations is quite complex in the acous-
tic logging frequency range. The appearance of the Q maxi-
mum is essentially a transition from curvature-dominated
dispersion to an effectively flat interface. The only pore-flow
parameter contained in the approximate equation (32) is the
diffusion coefficient C of equation (7). There are no inertial
elfects associated with the pore flow. This is just a reflection of
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FiG. 7. The Q value of the Stoneley wave for oil saturation.
The solid line represents exact poroelastic theory. The other
curves are the quasi-static theory.
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2-D curve is found by solving for the Stoneley wave at a flat
interface from equations (29) and (30).
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the fact that the approximation in equation (32) implicitly
assumes the frequency is much less than the critical frequency
[, of the Biot theory [see equation (A-14)]. This is the fre-
quency at which the inertial drag of the pore fluid becomes
important and the pore-pressure propagation changes from
diffusive to wave-like. Thus, the Q maximum is simply a result
of Darcy viscous pore flow.

The results presented for the Stoneley-wave attenuation are
in general agreement with the findings of Rosenbaum (1974).
The transition from low-frequency to high-frequency behavior
of the Stoneley Q is also noted by Schmitt et al. (1988), al-
though they do not discuss its physical origin in detail. Many
illustrative synthetic microseismograms are given by Schmitt
and Bouchon (1984) and Schmitt et al. (1988) for Berea sand-
stone. Figures 11 and 12 display synthetic waveforms in Berea
for different pulse center frequencies. The increasing Stoneley-
wave attenuation for oil, water, and gas saturation is evident
in these figures. (Tangentially, it is interesting to note the pro-
nounced effect of gas saturation on the shear waves. The
shear-wave attenuation in the formation is too small to ac-
count for this. It must be due to decreased reflection and
transmission at the interface.) The disappearance of the Stone-
ley wave is also graphically represented by the spectral density
functions of Schmitt et al. (1988). However, in all these simula-
tions, it is difficult to discern a ¢ maximum. In general, it is a
difficult practical problem to measure the full frequency de-
pendence of the Stoneley wave attenuation from synthetic
data, let alone real data. For example, Stevens and Day (1986)
estimate the error in the Stoneley Q to be about 10 percent for
high guality, low noise waveform data in the range 1 to 4 kHz.
Data of similar, or better, quality over a broader band are
required if a peak in Q is to be observed.

CONCLUSIONS

Stoneley-wave attenuation and dispersion in permeable for-
mations have been discussed for the full frequency range of
acoustic logging. Separate analyses for the quasi-static and the
fully dynamic behavior show that the former is adequate for
sandstone formations up to at least 1 kHz The quasi-static
theory correctly accounts for frame compressibility. Compari-
son with White’s (1983) quasi-static theory for a rigid frame
shows that the effect of compressibility is to increase the tube-
wave attenuation, but only marginally for sandstone. Com-
parisons with other previous studies show that the tube-wave
attenuation of Mathieu and Toksdz (1984) is erroneous at all
frequencies, while the theory of Hsui and Tokséz (1986) is
asymptotically correct in the quasi-static regime, but some of
their numerical results are in error.

The fully dynamic dispersion relation for the Stoneley wave
has been derived using Biot’s {1962) theory of poroelasticity.
Numerical computations of attenuation corroborate previous
authors’ findings on the effects of permeability, particularly
those of Rosenbaum (1974) and Schmitt et al. (1988). The
results show that the attenuation increases with permeability
but depends critically on the pore saturant. The effects of oil
saturation are minimal, while water can induce significant at-
tenuation. However, the Stoneley wave can be critically
damped for gas infiltration, suggesting that the presence of gas
at or near the borehole interface could cause the Stoneley
wave to disappear.

Norris
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The attenuation curves indicate that the Q value of the
Stoneley wave can display a peak in the acoustic logging
band. This novel phenomenon has been explained on the basis
of a transition from curvature-dominated dispersion to disper-
sion on a flat fluid-porous interface, an explanation which is
supported by analytical approximation of the dispersion rela-
tion. The @ peak is not a quasi-static tube-wave effect, since
the Q value increases as (f)'/? in this regime. It is a combi-
nation of geometrical dispersion effects and the dissipation
caused by viscous flow in the pores. It is not a product of
pore-fluid inertial effects contained in the Biot theory, but is
simply a direct consequence of Darcy’s law. High-quality real
data are necessary to determine whether the Q peak is of
practical significance. Variations in bed properties and intrin-
sic attenuation may dominate, making a peak difficult to iden-
tify. However, observation of a peak would considerably
enhance confidence in models such as Biot theory.
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APPENDIX A

Biot’s equations of dynamic poroelasticity

Following the notation of Biot (1962), the bulk stress tensor
is t;; and the pore-fluid pressure is p. The relative fluid dis-
placement is w = ¢(U — u), where u and U are the solid
matrix and pore-fluid displacements, respectively. The iso-
tropic stress-strain relations are

1= Koe, 8, + 2ule; — Yo, 8,) + aMw, 8 (A-1)

ij
and

p=—Mw,_, —aMe,, (A-2)

where e;; = 1/2(u; ; + u; ), u; ; = 0u;/0x;, and the summation
convention is assumed. The bulk modulus K, is that of the
undrained medium (w, , = 0). The corresponding drained
(p =0) bulk modulus is K, related to K, by the Biot-
Gassmann relation:

K. =K+ a*M. (A-3)
The quantity a is

a=1-—, (A-4)

By

where K, may be identified as the bulk modulus of the solid
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grain (Brown and Korringa, 1975; Rice and Cleary, 1976). The
modulus M is

Fo (@—¢)"
M| 2 o d .

Kf Ks J
where K, is the fluid bulk modulus, and ¢ the porosity. The
shear modulus p in equation (A-1) is the same under drained
and undrained conditions. The above equations simplify to
equation (2) for a rigid matrix, which follows from equations
(A-2) and (A-5) with a— 0 and K ,— oc.

The bulk equations of motion are

(A-5)

O, Pw,

Y= P Ry + Py o, (A-6)
where p, is the fluid density, p = ¢p, + (1 — d)p,, and p, is
the solid or grain density. The pore-fluid equations of motion
arc

A2
c u

—Pi =Py ‘5‘[‘7_1 + Lw, (A-7)

where / is a linear viscodynamic operator (Norris, 1986;
Johnson, Koplik, and Dashen, 1987). In its simplest form
(Biot, 1956),

2 A
CTw M ewy

Lw,=m (A-8)

T N
where m = Tp, /b, and T is an inertial factor satisfying T > 1.
This factor is discussed by Brown (1980), Norris (1986), and
Johnson, Koplik, and Dashen, (1987), among others. Equation
(A-8) is discusscd below.

Plane-wave solutions.—There are three plane-wave solutions
to equations (A-6) and (A-7),

(u, w) = (a, B, a) exp [i(k,b-x — oi]], (A-9)

where b is any real unit vector, and y=C, S, and D, for
compressional wave, shear wave, and diffusive wave, respec-
tively. The polarization vector a is parallel to b for C and D,
and perpendicular for S. The complex wavenumbers k., phase
speeds v, = o/r,. and fluid-motion amplitudes B, are all
frequency-dependent. Thus,

p ‘ 172
Uy = l’so(l + L Bs> ) (A-10)
P
—p, i\ !
B = 1+—1 , (A-11)
m @
and for y = C and D,
1—B,/B,\'?
v, = veo| —2—=] . (A-12)
L+ B,p,/p
B )
;}z%&ga$m2—4m1—&mJ“ﬂ. (A-13)
2l

Here, vgy = (1/p)''? and vy = [(K, + 4u/3)/p]*/? are the zero-
frequency limits of v, and vy. Also,

o, =, (A-14)

(A-15)

Norris

and

pBy
B

§ = —PL20 (A-16)
a + Bg

The critical frequency ®, marks the transition of the vis-
codynamic operator from the low-frequency, Darcy regime
dominated by viscous flow (® < ®,) to the high-frequency
regime (® > ®,) in which the inertial drag of the pore fluid is
dominant. Note that for @ € ©,, 0o ~ U¢g, Ug ~ Ugy, and B,
B, ~ 0. Also in the low-frequency regime, B, ~ B, < 0, and
ky, ~ (i0/C)'?, where C is the diffusion coefficient of equation
(7). Note that 6 =1, or B, + p/pf = 0, is the dynamic com-
patibility condition of Biot (1956). The negative constant B,
which dctermines the relative magnitude of the fluid and
matrix motions for the diffusion process, depends upon the
elastic moduli but not on the inertial terms. It is always less
than — { for fluids that arc more compressible than the matrix
grain, and B, ~ — | for nearly unconsolidated media like soil.
For fluids that are much more compressible than the matrix,
as in most sandstones, By & —(d/a)(K, + 4u/3)/K, so B, is
large and ncgative.

The viscodynamic operator

The viscodynamic operator £ in equation (A-8) includes
the static Darcy’s law term plus an inertial correction. It can
be shown (Norris, 1986) that both x and m depend upon the
solution of a single Stokes flow problem through the porous
network. The permeability k comes from the average {low rate
in the direction of applied pressure gradient, which is the usual
definition of permeability. The inertia m, or alternatively the
factor T > I, depends upon- the- mean square veloeity in- the
pores under the same pressure gradient. Thus, both x and T
can be viewed as independent measurable quantities.
Measurement of k is straightforward. Despite the discussion of
experimental data in Pascal (1986), it appears that there are
no relevant measurements of 1" available. However, it can be
estimated from electrical formation factor data as follows. One
can extend the definition of T to higher frequencies, and prove
that T(0) > T(®) (Brown, 1980), where T(0) is the value in
equation (A-8). The electrical formation factor is equal to
T(oc)/d (Brown, 1980; Johnson et al., 1982). Measured values
of T(oc) ranging from 1.8 to 3.8 have been reported for
sandstone-like materials (Johnson et al., 1982; Johnson,
Plona, and Kojima, 1987). Brown’s inequality makes these
values lower bounds for the T in equation (A-8). Based upon
these considerations, the value T = 3 has been used in all the
numerical calculations reported here.

Alternatively, the operator £ can be defined by an effective
permeability through the factor F(w),

—ion
Lw; = —K Flo)w;. (A-17)

Thus, F(o) =1 — io/w, for equation (A-8). Biot (1956) pro-
posed extending F(®) to higher frequencies by modeling the
pore network as circular tubes. His prescription is not consis-
tent with a rigorous definition of the viscodynamic operator
(Norris, 1986 and references therein), but when corrected
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becomes
_ Bo Jy(/biojw,)

() = —
40, J,({/bio/w,)

(A-18)

For o € o, Flw) ~ | — iw/w,. Other authors have used F(w)
in a form similar to equation (A-18). This strategy is not
adopted here. Rather, x and m in equation (A-8) are con-
sidered empirical constants to be determined, and no explicit
pore geometry is considered.

Borehole dispersion equation

Let #® and p® be the displacement and pressure fields in the
borehole fluid, r < a in cylindrical coordinates. The four
boundary conditions at the interface are continuity of average
normal displacement, continuity of normal stress, continuity
of shear stress, and continuity of fluid pressure (open pores):

The solution method assumes a potential {unction for each of
the four bulk waves. Forr < a,

¥ = A,V (G e, (A-23)

and forr > a,
u= |:A(~VH‘0‘ Heer) + A, VHIE 1)
¢ ¢ H ke —
+ Agle, ——r—e, — |H ) Egr) e, (A-24)
Troor Oz

"o [4 BeVHYEer) + Ay By VHY(E,n)

1 ¢ ¢ .
+ Ag By <0: Sroe T) H{"(Es r)] efEmen (A-25)
ror oz

where

ul(a) = u,(a) + w,(a), (A-19) E, = -k Im(E)20, y=BC S, D, (A-26)
—p¥a) = 1,(a), (A-20) and kg = w/vy. The frequency-dependent complex numbers
B, By, and B, are defined above. Substituting equations
0=r,.(a), (A-21) (A-24) and (A-25) into the boundary conditions (A-19)—(A-22)
and gives the set of equations M[ Ay, Ay, A, Ap]T = 0, where M
1s defined in equation (24). The necessary condition for a solu-

r2a) = pla). (A-22) tion is equation (23).

APPENDIX B

The inequality o > ¢

The maximum possible value of K gives the minimum pos-
sible value of a in equation (A-4). The Hashin-Shtrikman
bounds (Hashin, 1962) for a two-phase composite give an
upper bound on K. In this case, one phase is the solid grain,
with elastic moduli K, and p_, and the other phase is vacuum.
Then K < K, where

(1 - K,

-5 B-1
1+ 03K, /4p, B

The lower bound on a follows from equations (B-1) and (A-4)
as

(1 — ¢)

_— B-2
& + 4u, /3K, (B-2)

a>d+

Thus, a > ¢.

APPENDIX C

Solution for a point source in the borehole

Let pP© be the time harmonic point-source pressure in an
infinite bore fluid,

i(KpR —awr)
prO = e
4nR

= .[ Ay HY(E gr)e o0 gk, (C-1)

—

where R = /r® + 22, 4, = i/8n, and &, follows from equation
(A-26). In the presence of the formation, the pressure becomes

pB :J dk gi(k:_m”{AoH(o”(E—vB r + ABJO(‘:BF)}’ (C'2)

where Ay follows from satisfaction of equations (A-19)—(A-22)
as

H(Ol )@B a) D(w, k)
Jo(€ga) Dlo, I\’)g

Aglw, k) = — A4, (C-3)
and D(w, k) is the same as D(w, k) of equation (23), but with
f1(Ega) in M, of equation (24) replaced by — 1/f,(Eq).

Synthetic waveforms were computed using an adaptive inte-
gration scheme for equation (C-2), combined with an FFT.
The source spectrum used was the second derivative of a
Blackman-Harris window, from Kurkjian (1985). There is a
typographical error in Kurkjian’s constant b,; it should read
b, = —0.48829.



