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A theory is described for the propagation of pulses in anisotropic elastic media. The pulse is initially defined by a
harmonically modulated Gaussian envelope. As it propagates the puilse remains Gaussian, its spatial form characterized by
a complex-valued envelope tensor. The center of the pulse follows the ray path defined by the initial velocity direction of
the pulse. Relatively simpie expressions are presented for the evelution of the amplitude and phase of the pulse in terms of
the wave velocity, the phase slowness and unit displacement vectors. The spreading of the pulse is characterized by a spreading
matrix. Explicit equations are given for this matrix in a transversely isotropic material. The rate of spreading can vary
considerably, depending upen the direction of propagation. New reflected and transmitted pulses are created when a pulse
strikes an interface of material discontinuity. Retations are given for the new envelope tensors in terms of the incident pulse
parameters. The theory provides a convenient method to describe the evolution and change of shape of an uitrasonic pulse
as it traverses & piecewise homogeneous solid. Numerical simulations are presented far pulses in a strengly anisotropic fiber
reinforced composite.

1. Introduction

Many fundamental problems have been solved for wave motion in anisotropic elastic media. A thorough
review of plane wave propagation and reflection is given by Musgrave [1]. Solutions for radiation from
point forces in full and half-spaces are also known [2,3]. The more recent monograph of Payton [4]
considers transversely isotropic media in detail and also lists more recent references. However, there is a
growing need to understand and mode! the propagation and scattering of finite-sized pulses through
anisotropic materials. One area of application, for example, is in ultrasonic inspection of fiber-reinforced
composites for purposes of nondestructive evaluation.

The pulses considered here are assumed to be localized in the form of harmonically modulated Gaussian
envelopes. The centers of the Gaussian wave packets prcfagate along the usual rays or characteristic curves.
The present theory is an extension of the analysis of Norris [5] on Gaussian wave packets in inhomogeneous
acoustic media. The initial ansatz used here is similar for that of time harmonic Gaussian beams; see [6]
for a discussion of this in isotropic elastic solids. The Gaussian beam solutions are of infinite extent in
the direction of propagation. The present theory includes an extra degree of freedom in that the pulse is
of finite length. In the limit as this length becomes infinite, it reduces to time harmonic Gaussian beam
theory. It is important to note that the wave packets of this paper and the paper's references [5, 7] are
not simply the Fourier transform of a time harmonic Gaussian beam. The distinction is evident from the
examples in [5] of a wave packet in an acoustic medium of constant velocity gradient. Some of the cases
there cannot be explained by Gaussian beams. Specifically, if the wave packet is initially extended in the
direction of propagation, then as the center of the packet follows the curved ray path the bulk of the
packet rotates relative to the ray direction. Gaussian beam theory based upon a single beam would predict
the solution to be spatially symmetric about the ray path.
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Norris [7] considered Gaussian wave packets in inhomogeneous isotropic elastic media and provided
explicit formulae for the jump conditions at interfaces. Elastic wave propagation in anisotropic media is
complicated by the fact that the wave and phase velocity vectors are distinct for any given wave mode.
This leads to the curious result that wavefronts are not orthogonal to the direction of propagation. The
general equations of rays and wavefront curvatures in inhomogeneous anisotropic media have been
discussed previously, e.g. [8,9)]. The present theory includes these curvature evolution equations as a
special case. However, for simplicity only piecewise homogenous media are considered here. The generaliz-
ation to smoothly varying media is not difficult, but the significance of the results can be obscured by the
required amount of excessive notation. :

The basic equations are described in Section 2. The general Gaussain wave packet solution is derived
and discussed in Section 3. A complete analysis of the reflection/transmission problem for a Gaussian

wave packet incident upon an interface is given in Section 4.

2. Eikonal and transport equations
The equations of motion for the displacement field u(x, 1) in a homogeneous, anisotropic linearly elastic
solid are _
Cijkfuk,j."_pur',rr=0y : (1)

where C = Cuy= Cju is the elastic modulus tensor, p the density, and the summation convention on
repeated subscripts is assumed. Let {5],

u(x, r) = U(x, t) e™*=", 2)
PEYe 3)
then (1} becomes,
(iw) [ Cyupipi— pd:8u Ui
+ (1) Cul pU s+ iU+ & U —200,U,,— pd U]
+H[CyuaUip—pUiul=0. : 4)

Now consider the asymptotic limit of @ » 1. Here w denotes the center frequency of the solution. Assuming
the ansatz

Ux, t)= § (iw)™"U"x, t) | : (3)

n=0

equation {4) reduces to a sequence of asymptotic equations. The first of these is

(Ciupipi—pd i) UL =0. : TS
A necessary,condition for the existence of a nontrivial solution to {(6) is
det(cyklpjpf —ppi8y)=0. . )

In general, there are three independent solutions to (7), of the form {1]

¢r=fm(p)=0, m=1,23. (8)




A.N. Norris [ Fulses in anisotropic solids i

Each function f,,(p) defines a slowness surface. In the case of an isotropic medium, two of the slowness
surfaces coalesce and the explicit formulae are

filp)=calp pl:  fdp)=cdp-p]'? 9

!
where ¢, and ¢y are the longitudinal and transverse wave speeds, The three séparate identities in (8) are

known as the anisotropic eikonal equations.
The next in the sequence of asymptotic equations is

[Cod UL +PUL + b U = 2p0, U ~ p ULV

+{(Cyupipi—pdidu) UL =0. (10}
Multiply this by U{” and sum over i, using (6), to obtain the anisotropic transport equation
C,»jk,(ijEO)Uim)_,wp(qS,Uf-o)UEO)).,=0 (11)

3. The Gaussian wave packet solution and evolution equations
3.1. The ray velocity

Consider the following root of the eikonal equation (8),
¢+ f(p)=0, (12)

where f(p) is any one of f;, f or f3. Equation (12) is a first-order partial differential equation in ¢ of
the form

H(x, t,p, ¢, d)= ¢+ f(p)=0. (13)

This admits of solutions along characteristic curves in space-time. Let time be the ray parameter along
these curves, defined by x = %(t), and let an overdot represent the total derivative with respect to 1 along
a ray. Then the Hamilton-Jacobi equations are

i=aH/ag =1, x=08H/op=293f(p)/op, (14a,b)
p=—8H/ox=0, ¢, =—3H/at=0. (14c, d)

Equation (14d) implies ¢, is constant on a ray. Without loss of generality, this constant can be taken as
~1, so that equation (12) for the slowness surface becomes

flp)=1. (15}

Equation (14c) show that the slowness vector is constant on a ray, and hence, from (14b), the rays are
straight lines. These equations are easily generalized to inhomogeneous media (see [8]).
Define the wave velocity vector ¢ as

c=38f(p)/dp. . (16)

Thus, ¢ is perpendicular to the slowness surface at p [1]. A more explicit formulation of equation (16)
is given in Appendix A. In general (see Appendix A},

pre=l (17}
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and
prc#Q. (18)

Define the wave and phase speeds, ¢ and v, respectively, as
v={_p-p)7"" (19)
Therefore, by (17) and (19),

c=(c-c)'?

[0} (20)

with equality in an isotropic medium, in which case the wave velocity and slowness vectors are parallel
{p A ¢=0). Finally, note that the ray equation in a homogeneous medium is

(1) =%(0) + te. 7 (21}

3.2. Second-order derivatives of the phase

So far, we have derived equations for the evolution along a ray of V¢ =p and ¢,, both of which are
constant. Next consider the matrix of second-order spatial derivatives,

M(1)=VV(E(1), ). ' (22)
- Along a ray, both .
' P=Y +ME=Ve +Me=0 (23)

and
bo=pyte- Ve, =0. (24)
It then follows that

Vo, =—Me, e (25}
¢, = ¢ Me, (26)

Thus, all the second-order derivatives of the phase can be written in terms of M(#). Let

3% (1) _dp(1)
e B0 27

At)=

where « is some vector in(élependent of 1, e.g., @ =%(0), the initial ray position, Then,

R(1)=M"'= AB™" (28}
and ‘ )

R(1)= AB™'~ AB7BB™". (29)
The values of A and B follow by taking the variation of equations (14b) and (‘]40) with respect to . Thus,

A=NB, B=0, ‘ (30a,b)
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where

Ny=&f(p)/opdp;, (31)
" Equations (29)-(31) imply "

R=N. (32)
Since NV is constant, equations (28) and (32) give

M (1) = M(0)[I + INM(0)] ™", ,_ (33)

An explicit expression for N of (31} is given in Appendix A (equations (A.12), (A.13} and (A23). It
is shown in (A.15) and {A.19) that the real-valued matrix N projects onto the plane perpendicular to p,
and so one of its eigenvalues is always zero. The other two eigenvalues are related to the principal
curvatures of the slowness surface f(p) = 1. Define normal points on the slowness surface as those points
at which these two eigenvalues are nonzero. Points that are not normal are inflection points and correspond
to cusps on the wave surface. The regions between the cusps define lids on the wave surfaces [2-4]. The
areas on the slowness surface associated with the lids are concave. In these regions, the matrix N possesses
one or two negative eigenvalues. The two eigenvalues are positive in regions where the slowness surface
is convex. The present theory is valid in normal regions of the slowness surface, which thus includes
convex and concave parts of the surface. For example, in transversely isotropic materials, points of
inflection can only occur on the quasi-transverse (qT) slowness surface, and then anly for certain
combinations of moduli [4]. These features are illustrated by example below.

We are now able to approximate the phase &(x, t) locally in space and time about the ray position
£(r) at time 7. Let

Ax=x-x(r), At=1—1 (34)
Then a second-order Taylor series approximation yields, using (3), (22), (25), (26), (34) and ¢, = ~1,

G(x, 1) = o+ (p- Ax—An)+HAx— cAt)"M(7)(Ax — cAr), (35)
where ¢, is a constant. Since p and ¢ are real vectors, it follows that

Im(¢(x, 1)~ ¢ (Z(7), r)]=HAx —c At)" Im M(7)(Ax~ ¢ At), (36)

It is clear from (2) and (36) that the solution is in the form of a localized Gaussian wave packet {GWP)
if and only if Im M is positive definite. It can be shown, using (30) and the methods of [5, Appendix B]
that Im M(r) is positive definite for all + if Im M(0) is positive definite. The other necessary conditions,
which are physically obvious, are that M(0) is symmetric and det A(0) # 0,

Note from (35) that the linear correction to the phases, {p Ax—Ar), propagates with the phase velocity
p/| pF. However, the center of the GWP is defined as the point at which the quantity in equation (36) is
zero. Therefore, the center propagates with the wave velocity ¢. This is also apparent from (21). This
discrepancy between the two velocities is characteristic of anisotropic media.

3.3. The transport equation
Let g be the unit eigenvector of (6}, so that

U{0)= U{O}g' (37)
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Since g is constant, the transport equation (11) reduces to

auor au”

agig
Cijkigigkpj ax - po, a1 .
!

9Prm

+ [C,jk,(g,-gkm, +p; M,,,J) - pM,.j.c,.c,} U9 =g, (38)

Equations (22) and {(26) have been used in deriving (38) from (11). Let T(1) be the value of U™ along
the ray. Then, since ¢, = —1 and from the identities (A.8) and (A.11), equation (38) reduces to

3 . -
(Ew- V) T+ NMO O =0 (39)
or
d o oy
<, 1osl U1+ TH{NM (1] =0. | (40)

Noting from (28) and (30a) that

P :

77108 det A(1) =Tr{NM}, (41)

equation (40) can then be solved to get
RO [det A(O)] 2
OO0 Ldet A{)]

(42)

In this form, det A(t) can be identified as the Jacobian of the mapping £(0) - £(¢). Alternatively, since
M (1) is known explicitly from (33), equation (40) can be integrated to yield

OO0 = UO0)/[det{ I + tINM{0)]"/2 (43)

It can also be shown that det A{r) =0 if (1} det A(0)50, (2) M(0) is symmetric, and (3} Im M(0) is
positive definite. These are the same conditions that ensure Im M(r) as positive definite. The method of
proof follows that procedure outlined in [5, Appendix B].

3.4, The Gaussian wave packet
The Gaussian wave packet solution follows from (2}, (35) and (43) as

det M{1)

1/2
m] expliw[p- (x—f)"*“%(xffl)TM(t)(x—f)]}, (44)

u(x, 1) = U“”(O)g[
where &= %(t) is given in (21), and M(r) in (33).

3.5. Discussion

Given an initial phase slowness vector p and the ray velocity vector ¢ of (16), the center of the GWP
propagates according to (21). The shape of the GWP about its center is determined by the tensor M(t),
which evolves according to (33). It is shown in (A.15) and (A.19) that N projects onto the plane
perpendicular to the phase slowness direction. Therefore, in order to understand the evolution of M, it
is useful to define an orthonormal triad {d,, d,, d,} such that d; = vp, and d,, d. are the principal directions
of N. With respect to this basis,

N =S,d,d] + S,dd], (45)
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where S, and S, have dimensions of (speed)?, and shall be called the “spreading factors.” Obviously, S,
and S, depend upon the direction of propagation. They may be negative for certain directions in anisotropic
media, as illustrated in the example below. By comparison, in an isotropic medium the directions 4, and
"d, are orthogonal to the ray direction, and §, = S, = ¢?, where ¢ is the wave $peed.

Define My, i, j=1, 2,3, as the components of M in the basis {4, d;, d,}, or
M =M, dd;. (46)

In particular, let M{0) have its principal directions coincide with this basis, so that M{(0) is diagonal.
Then M/{t) remains diagonal for ¢> 0, and from (33), (45) and (46)

Mu{f)=M11(0}/[1+‘S|Mu(0)], (47a)
Maa(1) = Ma(0)/{1 + 18,M;5(0)], | (47b)
Myy(t) = MJJ(O)- (47c)

The form of the GWP remains constant in the phase direction, but it broadens in the orthogonal directions
dy and d,. The widths in these directions depends upon Im M, (1) and Im M,,{1), respectively. The rate
of broadening depends upon the values of S, and S,. Since these generally differ, the GWP will broaden
faster in one direction’than in the other.

3.6. Numerical example for a transversely isotropic composite

Consider a transversely isotropic composite of parallel cylindrical glass fibers in epoxy matrix, with the
fibers 60% of the bulk volume. The composite may be approximated for quasistatic deformation as a
homogeneous transversely isotropic solid. The quasistatic approximation should be valid for dynamic
wave propagation in the composite if the wave length is much longer than the fiber thickness. This is
often the case for ultrasonic studies, and will be assumed here. The constituent parameters are (A, o, p)=
(13.3, 29.9, 2.55) for glass, and (0.89, 1.28, 1.25) for epoxy, where A and g are Lamé moduli, p density
and the units are GPa and gm/cm®, respectively. Assuming the fibers are aligned in the x,-direction, this
direction is the symmetry axis of the transversely isotropic medium. The efiective moduli follow from,
for example, the theory of [10] as (Cy,, Cs;, Cis, Cus, p) = (43.4, 10.7, 2.2, 4.4, 2.0), in the same units as
before.

Figures 1 and 2 show the slowness and wave surfaces of this composite for wave motion polarized in
the x,x;-plane, f.e. for gL and qT modes of propagation. These surfaces are defined in Appendix B. Note
that the qT surface possesses points of inflection. The qT wave surface has corresponding cusp points.
The spreading matrix N is defined explicitly in Appendix B for the three wave types. For wave motion
polarized in the plane of x,x;, the eigenvalues S, and S, of N are S,= N,, (see (B.17)), and S, is the
eigenvalue of the 2x2 symmetric matrix of elements N,,, N3 and N;; (see (B.14)-{B.16)). Thus, S, is
the spreading factor in the x,x;-plane. It is zero at the points of inflection on the gT slowness surface,
and becomes negative between these points. Everywhere else it is positive. A plot of S, is shown in Fig.
3. The striking feature of this plot is the large variation in the value of $,. The corresponding plot for an
isotropic solid is two circular arcs, signifying equal spreading in all directions. The present theory is
incomplete at the points of inflection on the qT slowness surface. For these discrete directions, the
spreading is zero, and the theory predicts no change in the GWP, apart from the spreading associated
with §,. The pulse then acts like a collimated beam. However, this is not correct for long times. The
correct behavior requires a more sophisticated analysis than presently considered. Specifically, we need
to look at cubic terms in the phase and higher-order transport terms (see [11] for a relevant discussion).
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Fig. 1. Slowness surfaces of the gL (inner) and qT (outer) waves in a transversely isotropic solid. The material models a fiber-
reinforced, epoxy matrix composite. The fibers are in the x,-direction, and the units of slowness are ps/mm.

C,

Fig. 2. The wave velocity surfaces corresponding to the slowness surfaces of Fig. 1. Units are mm/ us.

The large variation in spreading is best iHustrated by example. Consider a flat ultrasonic transducer
bonded to a.sample of the composite such that the normal to the transducer face is in the x,x;-plane,
and makes ah angle ¢ with the x;-axis. The transducer has a center frequency of 5 MHz, and emits a
Gaussian pulse’ of initial width 5 mm. The initial shape of the pulse is best defined by the matrix M
introduced in (60) below. In this configuration, we have

M(O) = diag(ﬁ;fn(ﬂ), A‘:I“(O), Ms:(o))-
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Fig. 3. The spreading factor S, which determines the spreading of the pulse in the x, x;-plane of the fiber/epoxy compaosite. The
curves represent the value of 8, in the direction 6, the ray direction (see Fig. 2). The dashed curve represents where S, is negative
e for the qT wave. Units are mm?/ps?.

The initial half-width W, is defined by iw Im[I\;I”(O)] Wi=1. With units of length and time in mm and
us, respectively, this means  =31.4 and M,,(0) =i/393. The emitted pulse length is defined by choosing
M;3(0) =1/35. A view of the initial pulse is shown in Fig. 4, ¢ = 90°, 1 =0. The other plots in Fig. 4 show
the radiated qL pulse at =20 for ¢ =0°, 20° and 90°. The corresponding ray directions for these values
of ¢ are 0 =0°, 47.4° and 90°, respectively. It is clear from Fig. 4 that the spreading is different in each
case, but agrees qualitatively with the qL curve of Fig. 3. Specifically, we note the small spreading when
the pulse propagates in the fiber direction (¢ =90°). The case ¢ = 20° is most interesting and corresponds
to a large spreading factor S;, near the tip of the bulbous curve in Fig. 3. The pulse propagates in a
skewed manner, indicating a strong local anisotropy in this direction. Physically, one can understand the
skewed shape as the sides of the pulse propagate faster in the fiber direction, causing the rapid broadening
in the same direction.

4. Reflection and transmission of GWPs

4.1. Definitions

Let § be a smooth interface separating two homogeneous anisotropic materials. A GWP is defined to
be incident on § at time 1, and at the point x; if x,= ¥(,), where £(r) is the ray path of the incident
GWP. In other words, f; is the time when the center of the pulse hits the interface. Define the interface
in the neighborhood of x, by the local approximation,

x=xgt &0+ ELT T GED. ' {48)
=12
Here, 1, and ¢, are orthogonal unit tangent vectors to §, and #, is a unit normal, such that {t,, #,, 1,} is a

right-hand triad. The parameters £, and &, are local uniform coordinates and the 2x 2 matrix D defines
the local curvature of S.
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v = g0° =Q vy=0 t=20

Fig. 4. Plots of a qL pulse propagating in a iransversely isotropic medium, approximating a fibre/epoxy composite. The direction
of propagation is defined by ¢, the angle the phase velocity makes with the xj-axis. The initial pulse is shown for ¥ = 9C°. The initial
center is at {0, 0). The units are mm and us. The plots show the envelope, defined as u(x, £) - gexpf—iwp- (x - F{1))]. The phase
factor exp[~iwp - (x — %{1))] removes the oscillations in the p-direction {see (44)) and is included to improve the visual appearance.

Let the incident GWP, denoted by u'”, be of the form given in (44). It is characterized by its slowness
vector p‘"’, with corresponding displacement vector g, The amplitude and shape of u'" at incidence
are determined by U‘'(z,) and M"(s,). The boundary conditions of continuity of displacement and
normal tractions in the neighborhood of (xy, #,} are satisfied by introducing reflected and transmitted
GWPs. In general, there will be three of each, one corresponding to the quasi-longitudinal (gL) wave and
the other two to the quasi-transverse waves (qT1 and qT2} possible on either side of §. Let the reflected
and transmitted fields be respectively,
u‘Re’ {49)
a=qL.qT1.qT2 .

i
and

ALLS ' (50)

a=gL,qT1.qT2

where each of these six GWPs has its associated p, g, U'(t,) and M{(1,).
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4.2. Determining the slowness vectors

Each of the reflected and transmitted GWPS is of the form of equation (2), or more specifically, equation
(44). Define the phase ¢(x, t) of each of these GWPs to equal the incident phase at (x, t,). Then, the
‘phases must remain continuous in the neighborhood of (x, t;) on S. This neighborhood is given by (48),
therefore there are three first-order conditions:

&, dg/ak, i=1,2
are continuous at (x,, t). (51)

These conditions simplify, using (3) and (49), to give that

B(b ox
Ve -——=p- J=12
o 3¢
are continuous at (x,, {,). : (52)

These two equations determine two components of the slowness vectors. The third component follows
from the facts that ¢, = —1 is continuous and that each p satisfies an equation of the form (12). The sign
of the third component of p, i.e. p- 1;, is obtained by requiring that the associated wave velocity vector
¢ have the appropriate direction. Thus, ¢ t; should be of the same sign as ¢ - ¢, for the transmitted
GWPs, but of opposite sign for the reflected GWPs.

4.3. Determining the displacement vectors and amplitudes

Having found the slowness vector p for each new GWP, the associated wave velocity vector ¢ and unit
displacement vector g follow from (6) and (A.8). The continuity of total displacement at (x,, to) then implies

U(O)i( ) (I)+ Z U(O)Ra(ro)g(Ra) — E U{O}Ta(fo)g(Ta)- (53)

a=ql,qT1,qT2 a=qLqTI,qT2
Similarly, the continuity of normal traction conditions are
{ o SIS (OR Ra) (R
C,}ﬁﬂa,[U (0)g’pP+  F  UOR(1)g8pi “’]
a=4Ll,qT1,qT2

=Cii; % UM (1)gl*pi™,  i=1,2,3, {54)

a=ql,qT1,qT2

where C'" and C® are the elastic moduli tensors on either side of S. The six amplitudes follow from
the six equations in {53} and (54).

4.4. The M-tensors of the reflected and transmitted GWPs

The six elements of the complex, symmetric M-tensors follow from the six second-order conditions
that ¢, 8°¢ /81 3¢ and °@/8& a¢;, i, j=1, 2 are all continuous. The first of these, &, continuous, implies
using (26) that

¢’ Mec is continuous, (55)

The second two conditions simplify using (25), (48) and

k3 _vg,. 2
a1 8¢ Cag {56)
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to give

M,

, j=1,2
are continuous. (57)
The final three conditions become, using
a* ax\ 7 dx & x
% jf_f:(a—é) Wd’(ﬁ) HAAAFTYTE (58)
(3), (22) and (48), the three conditions

fIMG+2Dp-ty, j, k=12

are continuous. (59)

Further simplification of these conditions requires that M be referrred to a specific basis. Previously it
was shown that the basis {d,, d,, d,} is the natural one for considering the evolution of M. In addition,
a ray coordinate system may be defined by the orthonormal triad {e,, &2, &5}, where e; is the unit vector
in the direction of ¢. Obviously, these triads coincide for isotropy, There is also the basis {r,, 1., t,} defined
by the surface § at x,. It is not obvious which basis is most advantageous for simplifying the jump
conditions. The answer in fact is that none of these is the best, but rather that M be referred to a
non-orthogonal basis defined by the triad {&,, &,, &}, where & =¢,, &= ¢, and & = d, = vp. Thus, define
the 3 x3 symmetric complex matrix M,j, Lj=1,2,3 by

M = Mg (60)

The reason for choosing the non-orthogonal basis {&,, &, &} will become apparent presently.

The conditions in (55), (57} and (59) indicate that the M-matrix transforms discontinuously from the
incident M to the transmitted and reflected matrices. Thus, the individual elements suffer jumps, the
values of which are determined by (55), (57) and (59). The first jump condition, (55), implies, using (17),
(19) and (60), that

v? M, is continuous. (61}
The two jump conditions of (57} imply that

vﬂj3ej -, j=1,2

are continuous. (62)

These conditions simplify, using (51}, (52) and (61), to
v X M:‘Jé}‘ L, j=1,2

i=1,2
are continuous. _ (63)
For each of §he bases {é,, &, é}}:, define the 2 x 2 transformation matrix Q by
Qit g=trg, ij=1,2 (64)
Thus, \
detQ=1t;-e; {65}
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The jump conditions {63) now become

: v E .Ql}l\zjls I=1’2

j=1,2
are continuous. : § (66)
The remaining three jump conditions of (59), are, using (64), that

> Q:kQJlMAI+(r &) X Qﬂf\;fm"'(*}- " €3) . Zl , QuMis+ (1, - &){(t;- &) M
K=, r=1,2 =1,

+2(‘3 P)Dl_n lsJ=132

are continuous, (67)
These relations simplify further upon noting

Lré=uvt-p (68}
and using the previous conditions of {51), (52), (61) and (66), to give

2 .,
UZ QJkO)!MH += DuIJ e3 » LJ= 13 2
are continuous, {69)

Let @ denote any one of the six reflected and transmitted GWPs. Then the six jump conditions can be
solved explicitly, from (61), (66) and (69), to give the matrices M = M (“)(1,) as

(1}2
M “W My, (70a)
() v (@) (D %ty
M$=— © Q¥ QWNy, :=1,2, (70b)
v jk=12
MP= T o (7 QW QAT
kimn=12
'*'2(‘3'?“)_’3‘1){“)) z (a)- QfJa) Dy, ij=1,2. (70¢)
ki=12

It should now be apparent why we originally chose to represent M in the non-orthogonal basis{&,, &,, &)}.
By so doing, relatively simple equations have been obtained for the new M-matrices. These equations
are decoupled as much as possible. Any other choice of basis would result in greater coupling between
the coefficient M,. Note that the form of (70} is very similar to those derived previously for an isotropic
medium {7]. .

. 4.5. Simplification and localization properties
The six jump conditions of (70) can be written succinctly in matrix form as
v M(a):(Sfa)"s(l))M(IJ(S(a)"S(l))T+2!. (p(i) (ai)Q(rx)” DQ(G)"’T (71)

where S'*/ is the 3% 3 matrix associated with the 2 X2 matrix Q'

Q{a) 0 :l
0 ol (72)
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Also, the last term in (71), which represents a 2X2 matrix must be understood to apply only to the

i, j=1,2 elements of M**?, This term is identically zero if the interface is locally flat at the point of incidence.
- Note that it is preferable to express M in the basis {d,, d,, d;} for the purposes of caiculaung the

evolution of the M-tensors before and after incidence. The required transformations M <> M is

M= VMV, (73)
where the 3x3 matrix V is

Viy=d, - &. (14)
Using the facts that ¢ =ce; and p =v"'d,, it is easy to deduce from (17) and (74) that det V = v/ ¢, and

dyre; —dy-e; 0
—di-e,  dire, 0 | {75)
d-e; dy-e; vfc

Vol=

e |l

Now combine (71) and (74) to obtain an expression for the six jump conditions MW+ M. In
particular, for a locally flat interface (D =0),

M [ platglar o) V(I)"‘]M(l)[ ylelgle) g V(IJ“]T. (76)

Several useful results are apparent from this relation. First, it is clear that M will be symmetric if MY
is symmetric. Secondly, since (76) represents a linear transformation, and the matrices in square brackets
in (76) are all real, it is clear that the real matrices Im M‘® satisfy similar transformations. In fact, the
imaginary part of (76) represents the correct transformation Im MV - Im M'*? even for curved interfaces,
since the extra terms necessary in this equation are real. Thus, Im M is positive definite if Im M is
positive definite. But the latter is a necessary condition, expressing the fact that the incident GWP is
localized. Hence, the reflected and transmitted GWPs are also localized.

Finally, define the angle ') that the ray direction of the GWP of type o makes with the interface normal,

cos 8 =1, - ol . ()
Equation (77), along with (64}, (72} and det V'™ = ')/ ‘) implies that for incidence upon an arbitrarily
curved interface,

detIm M@ T ¢ cos o ]2
det Im MDD} ¢l oo )

{78)

The ratio of complex numbers, det M*?/det MV is equal to the real ratio in (78} if the interface is locally
flat. .

4.6. Two-dimensional simplification

The general results simplify considerably if the transmission/reflection process possesses a plane of
symmetry. This occurs if the incident pulse, material anisotropies and interface are such that 45’ = ¢{*) =1,
for each a. 'Ig'hé local interface geometry is depicted in Fig. 5, which shows the ray and phase vectors for
the incident and a single transmitted GWP. The local radii of curvature of the interface are a, in the plane
of Fig. 5,-and a, in the plane of t; and t;. The matrix D of (48) is D =diag(1/2a,, 1/2a,). It will be
assumed, for further simplicity, that M{ = M =0, and hence, M{) = MY =0. The results presented
here will be used in the example of Section 4.8.
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Fig. 5. A two-dimensional illustration of the reflection/transmission of & Gaussian wave packet from an interface. The incident
puise and one of the transmitted pulses are considered.

The relations in (70) reduce to M{2 = M D=0, and

ay
. v .
T 1
M;s) = U(T)E Mg )u (79a)
m )
- v'icos @ -~
M(TJ _ (1 (79b
13T 5 oos g0 M3, )
e cos® 0 . 1 (cos " cos wm) (79¢)
- b - ¢
" eos? 6 T T g eas? g\ TALEI
- . 1 cos 'V cos ™
My =ME+ 7 A0 {ﬁ - (f) . (79d)
a,cos” 8 v v

Following the notation of Musgrave [1], let A be the angle between the ray and phase directions:
A=0=d (80)
The matrix '&i of {74) is now -

cosd 0 ¢
V= 0 1 0, (81}
—sind4 0 1
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The relation between the matrices M’ and M™ defined in the phase vector system (d, , d, ds}, follows
from egs. (74), (79) and (81). Define

cos 4'7 cos 81" v
“oos AU cos g BT (82,0)
_ cos gt sin 4% sin vV sin 47 sin ¢ ™
cos AV sin @™ cos 6 cos g% ’ (82¢)
a s
cas cos
8 =sec’ e“"’( T ) (82d)
then
- 8
M7 =a’MV+ a—cosz AT, : (83a)
1
S
M = oMY+ ayM D —~sin AT cos 4T, (83b)
a4
- - - ]
M =g MY +28yM Y+ sz“’—f“;— sin? AT, (83¢)
. 1
8
M = “’+;m cos? 6T, (83d)
2

Note that 4 is zero in an isotropic medium. Hence, y=0 of both materials are isotropic, in which case
the coupling between M-clements disappears {3, 7].

4.7. Discussion

The general results in (79} and (83) for the two-dimensional configuration are for an arbitrary incident
Gaussian wave packet. The latter result, (83), is defined in the phase slowness vector system {d,, d,, d,}
which, as discussed in Subsection 3.4 above, is the natural basis for considering the evolution of the
M -tensors on either side of the interface. However, the jump conditions are best understood by considering
(79) for M referred to the non-orthogonal basis {e,, ¢,, d,}.

To see this, consider two extreme limits for the incident pulse. The first is that of a very short pulse for
which Im M(” »Im MY, Im M. This is equivalent to a delta-function wavefront, oriented perpendicular
to the phase slowness direction 4§". The transmitted pulse, from (79), also satisfies Im M » Im M7,
Im MY Hence, it is also a propagating singularity oriented perpendicular to its phase direction. This
timit is analogous to considering wavefronts of infinitely wide plane waves [1].

The other extreme is an incident pulse that is very long in the wave velocity direction e, i.e.,
Im M) » Im M4Y, Im MY, and thus the transmitted pulse is a long, pencil-shaped object oriented in the
new wave direction e{",

For these two limiting cases,-the principal directions of both the incident and scattered pulses are
defined by the basis {dy, dy, d;} of the slowness vector in the first instance, and by the basis {e,, e,, e;}
of the wave velocity vector in the second. This relative simplicitly disappears for an incident pulse that
is neither very short nor very long. For example, if the incident pulse is oriented in the directions d,, d,
and d, (M3 =0 in (83)) and the interface is flat (a7’ = a3’ =0), then (83) shows that the transmitted M
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is

M0 el
T o} ! (34)
MY 0 BN+ R

The principal directions of the envelope of the transmitted pulse are defined by the eigenvectors of
Im M™, which from (84), are obviously dependent upon « and v. Note that for isotropic media (5, 7],
y=0, and so the matrix M7= M7 is diagonal. : '

4.8. Example: Transmission from a fluid into a transversely isotropic solid

As an illustration of transmission consider a wave packet originating in water, incident upon the
transversely isotropic glass/epoxy composite material discussed in Section 3.6. Using the same coordinate
axes as there, let the solid occupy x,> 0, the fluid x; < 0, with the flat interface on x; = 0. The initial packet
is the same, with the initial packet center at a distance of 15 mm from the origin. Since the sound speed
is 1.5 mm/ps, the packet center is incident upoh the interface at = 10us, and the point of incidence is
the origin. The initial direction of propagation is in the x,x;-plane, and makes an angle 0 with the interface
normal, see Fig, S, :

The results of Section 4.6 apply here. Two transmitted packets are generated, a qL and a gT, each with
its propagation direction in the x,x;-plane. These directions can be estimated for a given 8 from Fig. 1.
To do this use p,=%sin 6, the ray directions then correspond to the directions of the normals to the
slowness surfaces, Figures 6-8 show the transmitted packets at 1 =20 us, for =5°10° and 15°. The gL
and gqT packets are shown separately for clarity. It is clear from the positions of the packet centers in
these figures that the wave speeds vary with propagation direction, as expected. Note the orientation of
the packets, in agreement with the discussion above for a short pulse. Probably the most interesting feature
in these figures is the large variation in the spreading. This may be understood on the basis of the spreading
factor of Fig. 3. For the material considered, the spreading factor is a very sensitive function of the
propagation direction, and this sensitivity is reflected in the results of Figs. 6-8.

qT f=5°

ql. #=5°

Fig. 6. The gL and qT transmitted pulses for § = 5°, 10 us after incidence at X, = x3 =90 into the transversely isotropic material. The
plotted surfaces show the envelopes, defined as u(x, () - g exp[—iwp - (x —£(1))] for the separate wave packets,
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qL f=10° qT g=10

~1o

qL f=15° qT f=15°

Fig. 8. The same as Figs. 6 and 7, but for § =15°

5. Conclusions

A general theory has been given for the propagation and scattering of compact, Gaussian shaped pulses
in piecewise homogeneous anisotropic solids. The general solution is described by (44), where the evolution
of the envelope tensor M is given in (33). The form of this pulse solution is relatively simple, considering
that it is explicitly time-dependent and localized. This simplicity makes the theory ideal for modeling the
propagation of ultrasonic pulses. The evolution of the propagating pulse is characterized by a spreading
matrix N. The eigenvalues of N define the rate of broadening, and these rates can vary significantly with
direction, as shown by example. Therefore, it is necessary to characterize N for a given material in order
to understand the propagation of pulses through it. Explicit equations have been given for the elements
of this matrix. The reflection/transmission problem of a pulse incident upon a smooth interface has also
been discussed and the necessary jump conditions for M derived. The properties of the transmitted and
reflected pulses are fundamentally different than for isotropic media.
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Appendix A. The wave velocity vector and related quantities

Define the tensor

Iy ipulckaPkPJ- (A1)
The secular equation (7) can then be written, using (8), as

DT —f8) =0, (A2}
where

D;= E";eiklejmn(rkm =28k ~f*8) (A.3)
and ey is the third-order alternating tensor, €,5; = 1, el32=—1, €2, =0, etc. Differentiating (A.2) gives,

af D8l
o oo

The wave velocity vector ¢ then follows from (15), (16) and (A.4) as
6= Phlcijki’pf-Djk/D—mms . (A-S)

where Dy= D, (f=1).
It then follows from (15}, (A.1), (A.2) and (A.5) that

‘rer—ij/'D_mm =1. ‘ (A.ﬁ)

A more transparent expression exists for ¢. Let g be the unit eigenvector of (6). It then follows from
{A.2) that

gg; = D;/ Dy {A.7)
The wave speed may now be written from (A.5) as
¢ = p 7 Cyugiupr (A.8)
An expression for N of (31) follows by rewriting (A.4) using (A.7) as
of 1 ol '

Py o AS

ap, 27 E€5p, (A9)
Then,

&P =w1mg 3 Fk, 19f af 1 a6, dg.g (A.10)

apop 2 *'apap 1 op; op 2f ap: ap; '

Putting f =1 in (A.10}, and using {16) and (A.1),
_ i}
Ny =p"' Cuygigi— i +£mkﬁpk'a";(gmg.')- (A.11)

=
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Let us rewrite this as

N=NU4 N (A.12)
where
Ng,-”=p—'Csk,-rgkg:—C,-cj, (A.13)
185 dagug
N =] S d8is |
Yooz ap:  ap (A.14)

It is clear that N is symmetric. Also, from (A.6), (A.8) and (A.13),

N p =0. (A.15)
The symmetry of N is not immmediately apparent, but will be demonstrated shortly. Noting
al
Pi"a’T= 200, (A.16)
it fotlows that
0.8
NSZ) ;= r T———
i P K o, (A7)

Differentiating (A.2), using (A.7), gives

ag.g ( 2 ) '
+ ——2¢ ) = 0. .
op, 8826 (A.18)

J

(T = f*841)

Equations (A.18), (A.17), {A.1) and (A.8), along with g,g, =1, imply
NP p =0, (A.19)

Thus, both N’ and N'?, and hence N, are projection tensors onto the plane perpendicular to the phase
slowness vector p.

The equation for N in (A.13) can be made explicit through.the use of {A.7) and (A.8), once the
slowness surface is determined from (A.2). The matrix N'* still needs to be simplified. From its definition
in (A.14), and (A.7), (A.8),

1 [aDm,, ET o aD,,,,,,]
—26‘,- .
2D, 3y op ap; f=1
From (A.3) and the definition Dy =D (f=1),
8D,
op;

N@ = {A.20)

Jn
= yir oyr e (A21)

f=1 0p;

3D, 31 ab,.. ar.,,, 5 3D,
_— = = -2¢; .
a0 8P ap;  ap ! ap: -

Equations (A.20)-(A.22) give an explicit formula for N

1 - _ _

; 13D, 85, 8D, Al _

st) = [E ap ap - (CI' ap +‘:cf ap ) +§Ci(’:f(rmm —3)]/qu-‘ (A-23)
5 {

§ i

(A.22)

The symmetry of N is apparent from (A.23).
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A matrix related to N occurs in the paper by Cerveny [9]. An examination of that paper shows that
the matrix F{'/2D in [9, eq. (34)] should be identical to Nj;. However, using his [9, eq. (35)], it can be
shown that .

{2) — 3D, 5 A
F,J, /2D = MJ+ C£Cj+ CJ ap “"'jC,‘Cj(me _3) qu, \ (A.24)

where the right-hand side of this equation uses the present notation. The discrepancy between the two
results is due to Cerveny's failure to properly include the implicit derivatives, as in (A.21) and (A.22).

Appendix B. Transverse isotropy

Let the x;-axis be the zonal axis or axis of symmetry. The five independent elastic moduli are Cy,, Cy;,
C3, €3 and Cg. See Musgrave [1] and Payton [4] for a complete discussion of the slowness and wave
surfaces, Without loss of generality, we take p, =0,

The purely transverse TH wave is polarized in the x,-direction, i.e., g =(0, 1,0). Then

f(p)=(Api+B*p})', (B.1)
where

A=(Ces/p)'", (B.2)

B=(Cu/p)"?, (B.3)

Cas=3{(Cs3— Cs), (B.4}

and f(p) =1 defines the slowness surface, in this case a spheroid. Explicit differentiation of (B.1) gives
the wave velocity form (16) as

= (A%, 0, B’py) | (B.S)
and the spreading matrix, from (31), as

PR 0 -pps
N=AB} 0 A7 0 | (B.6)
~pps O pi
The quasi-longitudinal (qL) and quasi-transverse (qT) waves have their displacement eigenvectors in the
x,x;-plane and are defined by f. =1 and f. =1, respectively, where

D /2 1/2
Je(p)= [1+—2-:i: 5 (D+2—2Epf~2Fp§—4Gplp3)”2] (B.7)
and
D =[(Cy+ Ces) pi+(Css+ Cee) p3)/ p —2, (B.8)
E ={[2CCes pi+(Cy,Cyy+ Cle) 31/ 0> = (C1y + Ces)/ p}/ D, (B.9)
F={{2CCeep3+(Cr1Caz+ CE) pil/ p* = (Caa+ Cos)/ 0}/ D, (B.10}

G=(Ci3+ Cg)’pips/ p* D. (B.11)
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The wave velocity vector is ¢ =(¢,, 0, ¢3}, where

o =pE+p:G, (B.12)
cy=p G+ p;F. {B.13)
The elements of the matrix N follow from Appendix A:

Ni=E —ei+{[4C),Cos pi — (Cris+ Ces)*p31/ p* = 4e1 pi{Ciy + Cos)/ p+ 4¢3}/ D, (B.14)
Niy=F =3+ {[4Cs3Cesp3— (Ci3+ Ces)’p1l/ p* — des pa{ Cos+ Cos)/ p +4c3}/ D, (B.15)
Ni3=2G =163+ 2{p, p3(C1 Cra+ Cie)/ p?

— [y pa(Cazt Cye}+ 3 pr(Chy+ Cod]/ p + 2105}/ D, (B.16)
Nay= ¢sf ps, (B.17)
Npy= Ny =0. ' (B.18)

Several simplifying cases should be noted for (B.14)-(B.18). First, let p3—0 for the ql. wave. Then
6;=0, ¢, =1/p,=(Ci/p)"? and N = diag(0, Ny, N,3), where

N22={C66+(C13+C66)2/(CH_CGG)]/p .. (B.19)

This represents the spreading of 1he pure L-wave propagating in the direction of the zonal axis. Second,
et py=0 for the gT wave. Then this is a pure transverse wave with ¢;=0, ¢,=1/p, = (Cge/p)"’* and
N =diag(0, Ny;, N3»), where

Ny ={Cs3—{C3+ Ces)/(Cri = Ces)l/ p (B.20)

Note that for both the qL and T waves in the x,-direction, the matrix N has degenerate eigenvectors in
the x,x;-plane. This is to be expected from the symmetry. However, the N matrix for the qT wave is not
the same as N for the TH mode of (B.6), which is N = diag(0, B*, B). Thus, while the transverse wave
slowness surfaces coalesce at p,= p; =0, the local curvatures of the surfaces are different,

The gL and qT modes also become pure modes if p,=0. For the gL mode, we then have ¢ =0,
e3=1/py=(Cy/p)"* and N =diag(Ni;, N, 0} with

1= [Cos+{Ci3+ Co)*/ (C33— Ces)/ 1, (B.21)
Ny = Cyy/p. (B.22)
For the qT mode, ¢, =0, ¢;=1/p;=(Css/ p)*/?, N =diag(N,,, Ny, 0) and
Ny =[C1—(Ciy+ Cee)*/(Cs3— Ceedl/ py (B.23)
Nz = Ceel p. (B.24)

Appendix C. Transverse isotropy transmission coefficients
1 .
1
Reflection and transmission coefficients for a wave incident from an inviscid fluid upon a transversely
isotropic solid are presented. The situation is as depicted in Fig. 5, with medium 1 the fluid, and medium
2 the transverse solid with the axis of symmetry in the x,-direction. One reflected wave is generated in
the fluid. A quasi-transverse (qT) and quasi-longitudinal (qL) pair of waves are transmitted into the solid. |
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Referring to Section 4.3, the incident and reflected waves are defined by

- 2" =(sin 6,0, cos 6), ’ | (C.1)

: ‘ pV = cr'(sin 67,0, cos 67), ' !i (C.2)
‘ 8= (sin 0,0, —c05 %), | )

- p® = cr(sin 87,0, —cos '), (C.4)

where ¢ is the fluid sound speed. The transmitted slownesses are

v

P =(p{",0,p"), a=4qL,qT, ‘ (C.5)
where Snell's law dictates that

Tt =TT = = (c6)
The slowness components p$'®’, & =qL, qT, then follow from Appendix B. The transmitted unit displace-
ment vectors are

g™ =(G{™,0, G/ [GT + GT*']?, a=qL,qT, @
where '
G(tTa)ﬁp_l(.Cu'*‘Ccs)PlP(JTa), a=qL, qT, (C.8)
G =1=p"'Cyipi—p7'Cespt"™”, a=qL,qT. (C.9)
The reflected and transmitted amplitudes are then (see Section 4.3},
U(O)R cos 6“) g:(’TqL) g(STqT) -1 COs 6(”
o | oy _, .0 plab pan ' orce |, (C.10)
U{O)TqT 0 Q{qL) Q(qT) 0
where _
P = CspigiT™+ CospiT™gs™, a=4qL,qT, (C.11)
Q= pTg T+ pgf™™, a=qL,qT, (€12)

and p¢is the fluid density. Equation {C.10) follows from the continuity of &;, 035 and u; at the interface.
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