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Time-dependent particle-like pulses are considered as asymptotic sol-
utions of the classical wave equation. The wave packets are localized in .
space with gaussian envelopes. The pulse centres propagate along the rays
of the wave equation, and the envelope parameters satisfy evolution
equations very similar to the ray equations for time-harmonic disturb-
ances. However, the present theory contains an extra degree of freedom
not found in the time-harmonic theory. Explicit results are presented for
media with constant velocity gradients, and interesting new phenomena
are identified. For example, a pulse that is initially long in the direction
of propagation and comparatively narrow in the orthogonal direction,
maintains its initial spatial orientation even as the propagation direction
rotates. The reflection and transmission of a pulse incident upon an
interface are also discussed. The various theoretical results are illustrated
by numerical simulations. This method of solution could be very useful
for fast forward modelling in large-scale structures. It is formulated
explicitly in the time domain and does not suffer from unphysical
singularities at caustics.

1. INTRODUCTION

Time-dependent gaussian wave packets have been found to give a good description
of certain problems relating to the classical wave equation and to the Schrédinger
equation. This paper concentrates on the application of wave packets to the wave
equation for an inhomogeneous acoustic medium. Extensions of the method to
vector wave equations for elasticity and electromagnetism are straightforward.

Hagedorn (1984) showed that a gaussian wave packet is an asymptotic solution
of the time-dependent wave equation. The packet is localized in space with a
gaussian envelope. The centre of the gaussian wave packet, hereafter referred to
as a GWP, propagates along the rays or characteristics of the wave equation. The
parameters describing the packet evolve with time according to equations deduced
by Hagedorn.

Previous asymptotic solutions in the form of beams (Cerveny 1983 ; Popov 1982)
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have usually been formulated in the frequency domain, rather than explicitly in
the time domain. One exception is Berlanger (1984), but his solution has infinite
energy and is more like a plane-wave solution than a localized packet. Some
applications of the gaussian beam method due to Popov (1982), Cerveny (1983)
and others have been given in the time domain. For example, Cerveny (1983)
discussed the propagation of a Gabor wavelet with a gaussian envelope. The
difference between this type of solution and the Gwp rests with the initial
conditions. The initial data for the gaussian pulses of Cerveny (1983) are given on
a surface in space for all time. On the other hand, the cwp as discussed here and
by Hagedorn (1984) is prescribed at a given initial time over all space. In practice,
because the Gwp is localized in space, one only needs to know the initial pulse in
a neighbourhood of the wave packet centre. Obviously, there is a lot of overlap
between the present theory and that of gaussian beams. A full discussion and
comparison of the two theories is left until later. The purpose of the present paper
Is to emphasize the basic theory of wave packets and their use in practical
applications.

The present theory is valid asymptotically in the limit that the central frequency
of the packet is very large. The equations of evolution are derived in §2
after assuming a time-dependent Ansatz. The derivation is more general than
Hagedorn’s (1984), who initially assumes a ¢wp form for the solution. It is shown
here that the Gwp arises naturally as the only possible localized solution to the
evolution equations. The analysis uses Hamilton—Jacobi theory extended to allow
for complex spatial positions. Of course, all physically significant results are
evaluated in real space, but the idea of analytically extended space is found to be
useful. For example, the gaussian beam theory of Cerveny (1983) is usually derived
from the parabolic equation. White et al. (1987) showed that the introduction of the
parabolic equation is unnecessary and that time-harmonic gaussian beam solutions
follow naturally from ray theory extended into complex space. Similarly, Norris
(1986) proved that the use of point sources in complex space provides an exact
basis for the asymptotic beam superposition integral of Cerveny (1983). One can
also obtain useful results by extending time to complex values, but this will not
be necessary in the present paper.

The evolution equations for the Gwp are a system of ordinary differential
equations in time. Some general properties of the solution are presented in §3. In
§4, the equations are formulated in terms of a specific coordinate system that
moves with the ray. It is known (Hubral 1980) that tractable solutions to the ray
equations can be obtained in media with constant velocity gradients. The same
applies to GwWPs in such media, and explicit results are given in §5. The analytical
results suggest new and interesting phenomena associated with wave packets in
heterogeneous media. In general, the ‘particle path’ associated with the packet
centre follows the useful ray path of geometrical optics. However, the packet
envelope can rotate relative to the propagation direction. Thus, a pulse that is
initially long in the direction of propagation and narrow in the orthogonal direction
tends to maintain the initial orientation of the packet envelope, even though the
propagation direction rotates. This effect is demonstrated by numerical example.
Finally, the reflection and transmission of a ¢wp from an interface between two
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different media are discussed in §6. The procedure is illustrated by application to
a two-dimensional problem of scattering from a eircular region of higher velocity.

There is much similarity between the present asymptotic solution of the wave
equation and time-dependent solutions to the Schrédinger equation. Thus, Synge
(1972) proposed an exact Gwp type of solution to the Schrédinger equation for a
free particle. He modified the fundamental solution by changing the origins of
space and time tocomplex values, thereby removing the mathematical singular-
ities from real space and time. Recently, time-dependent gaussian wave packets
have been used extensively for certain problems in quantum chemistry, such as
photoexcitation and photodissociation of small molecules, as well as Raman
scattering processes. Much of the development in these areas is due to E. Heller
(1975), who took the original idea of a gaussian solution and subsequently
developed it for many different applications. Various schemes have been proposed
that involve minimizing functionals of the wave function. It is shown in Appendix
A how these methods relate to the present method, which can be formulated as
the minimization of an action integral.

2. TIME-DEPENDENT WAVE PACKETS
2.1. Equations of motion

The three-dimensional scalar wave equation for an inhomogeneous medium is
Vu -Vu—pu, =0, (2.1)

where the subscript ¢ denotes differentiation with respect to time. For example,
in two dimensions (2.1) is the equation for simple harmonic (sH) motion, where
u is the out-of-plane motion, x the shear modulus and p the density. Equation (2.1)
also models acoustic waves in three dimensions, where u represents the pressure,
1/p the density, and p the bulk compressibility. In either case, 4 and p may be
functions of position x.

We seek solutions in the form of travelling wave packets. At any instant in time
the packet should be localized in space. Of course, as the packet propagates, we
expect it to scatter from interfaces and regions of discontinuity, with the result
that after a while there may exist several localized packets (see §6).

Consider the Ansatz

u= V(x,t) el (2.2)

where  » 1 is an arbitrary parameter. We allow both V and ¢ to be complex.
The form of the present Ansatz is motivated by results for high-frequency solutions
to the inhomogeneous Helmholtz equation corresponding to (2.1). Thus, although
w is a free parameter in the present theory, it can be understood as the centre
frequency of the wave packet. Note that in ordinary ray theory, the phase is of
the form ¢(x, t) = @(x)—t, where @ is real. The gaussian beam-summation method
(Popov 1982; Cerveny 1983; White et al. 1985) uses individual beams or rays for
which the phase is of the same form as in ordinary ray theory, but @ is allowed to
be complex. In the present paper, the position is considered as a complex vector.
Real space is analytically continued and one can generalize ordinary ray theory
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into complex space (Keller & Streifer 1971; Felsen 1976). Rays still propagate in
straight lines in homogeneous media, but can now propagate through complex
space, possibly intersecting real space at isolated points. A ray starting at a real
point, with a real initial direction, remains in real space. Similarly, a ray starting
at a complex point with a real direction initially, also remains in complex space.
However, the Fermet or stationary ray between two real points may not always
be a real ray. For example, a point on the dark side of a caustic can only be reached
by a complex ray. Every real ray has an associated neighbouring fan of complex
rays. These rays can be approximated by using a paraxial approximation about
the central real ray. Thus, explicit ray tracing can be confined to real rays; complex
rays are then considered implicitly through the paraxial approximation. This
procedure is of course an approximation to full complex ray tracing. The latter
can be defined formally, but is computationally difficult, requiring two-point ray
tracing algorithms through complex space.

Inserting » of (2.2) into (2.1) and equating terms of equal power in (iw), yields
to highest order the ‘eiconal’ equation

¢; = 2 [Vgl?, (2.3)
where the wave speed is

¢(x) = (/P (2.4)
For any complex vector v define the complex number |v| = (v-v), where the
branch cut is defined by Re ( )} > 0. If a is a complex number, define the positive
real number |a| as the magnitude of a. The next term in the wave equation
expansion gives the transport equation,

2V2¢+202V V+c ZV“ Vp—dp,— Vt¢,=0. 2.5)

In general, (2.3)—(2.5) are defined for x and ¢t complex ; however, for the rest of the
paper ¢ is assumed as real.

2.2. The eiconal equation and ray parameters
We now introduce ray parameters. In general, the rays are defined in complex
space. Real rays, i.e. rays in real space, will be specifically considered later. Let
t be the ray parameter along a particular ray. The arc length parameter s is usually
used instead of time to define position along a ray. However, time is chosen here
to emphasize the time dependent aspect of our solution. Let s = s, at t = {;, then
at subsequent times, the relation between ¢ and s is

§= 80+Jt c(y(t)) dt. (2.6)
Lo

Here, y(t) is the ray position at time ¢. It follows by choosing one of the two
characteristics of (2.3). The root

¢y +clpl =0 (2.7)
is chosen, where the (complex) vector p is defined

p=Vé. (2.8)
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Now consider the hamiltonian H = ¢, + c|p| with y and p as conjugate variable, for
which Hamilton’s equations are:

y(t) = c(y(®)) p(t), (2.9a)
pty=—P,(#) Ve, (2.9b)
with initial conditions at ¢ = ¢,
Ylto) = Yo, (2.9¢)
P(ty) = p,. (2.9d)

The dot over a quantity denotes the total derivative with respect to time d/d¢,
as distinet from the partial derivative 0/0¢. The initial ray position y, and direction
P, can be complex. Real rays are obtained only if both are real. Also,

P =p/lpl (2.10)

is the unit vector in the ray direction, and
Py(t) = I-pp” (2.11)

projects vectors on to the surface orthogonal to the ray direction. This surface
corresponds to the ‘wavefront’ in normal time-harmonic ray theory. It is usually
defined as a surface of constant phase. It has no particular significance in the
present theory, because there is no surface of constant phase, only a single point.
This follows from the fact that the total derivative of ¢ along a ray follows from

(2.9a) as X .
¢=¢,+y Vo

=0. (2.12)
Hence, the phase ¢ is constant along a ray.
Note also that | p|, which is in general a complex number, is not necessarily equal

to 1 /¢, as is the case in the time-harmonic problem. However, it follows from (2.12)
that d(c|p|)/dt = 0, and so

()
c(y(®)
This freedom in defining |p| is due to the arbitrary definition of w, the frequency.

Without any loss of generality we now specify the normalization |p| = 1/c¢ for
subsequent use.

|p@)] = [p(t,)] (2.13)

2.3. The transport equation
Consider the transport equation (2.5). From (2.9a), it follows that
os_ Ldu
Vu-V¢ = TR (2.14)
The quantity ¢,, in (2.5) follows by differentiating (2.7) with respect to ¢ and by
using the result d(c|p|)/dt = O to obtain
¢, =c*pVVg-p+p-Ve. (2.15)

4 Vol. g12. A
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Note that, in ordinary ray theory, the phase is of the form ¢(x,t) = &(x)—¢, and
therefore ¢,, = 0. Defining the symmetric complex matrix M(t) as

M = VVg(y(t), 1) (2.16)
the transport equation becomes
2
%lg(%)-&—tr(czPlM) =0. (2.17)

Next, introduce the 3 x 3 complex matrix 4(f), which satisfies
A =pVcTA+c2P MA (2.18)

with initial conditions A(f,) = 4,. The genesis of (2.18) will be explained shortly.
The matrix A is the analog of the 2 x 2 wavefront-area matrix in the time-harmonic
problem. However, unlike normal ray theory, 4 may be complex. In this sense,
A is more akin to the complex 2 x 2 matrix exployed in the gaussian beam method
(Cerveny 1983); however, 4 is now a 3 X 3 matrix. It follows from (2.18) that

4 lg[det (A)]—g lg (¢c) = tr (c2P, M). (2.19)
d¢ dt
Equations (2.17) and (2.19), combined, give

P (ty)) det (A(y))
py(t)) det (A(t))

Comparison of (2.19) with (25) of Karal & Keller (1959) shows that 4/c is actually
the analog of the wavefront-area matrix. The origin of the latter comes from the
idea of a ray-tube area associated with a bundle of rays.

It remains to get an equation for the evolution of M(t). Consider the variational
equations corresponding to the ray equations (2.9a) and (2.95). Let a be some
vector parameter, e.g. the initial ray position y(t,). Define the 3 x3 complex
matrices A(t) and B(t) as

men=ww[ f (2.20)

A(t) = dy(t)/0a, (2.21a)
B(t) = op(t)/Ca. (2.215)
The variational equations are
A=pVcTA+(c/|p))P,B (2.22q)
B =—|p|(VVc)A—VcpTB. (2.22b)

The equation for A is identical to (2.18) because by previous definition |p| = 1/¢
and

_ 0 |y [
M‘%?[w]

= BA! (2.23)

independent of the particular choice of a, as long as the inverse of A exists. It is
clear from (2.21a) that A represents the mapping a— y(t). If a is specified as y(t,),
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then det (A4) is the jacobian of the mapping from the initial to the current position.
Also, (2.20) then has the familiar form of ray theory, i.e. the ray amplitude goes
as the inverse square root of the jacobian of the mapping.

An equation similar to (2.19) can be obtained from (2.22b). Direct integration
of this equation gives

B — c(t)) todt . A1
det B(t) = det B(t,) t) epr:—Jt0 o trVVe- M (t)]. (2.24)
Because det (4) = det (B)/det (M), (2.24) implies that the amplitude V of (2.20)
depends only upon the matrix M, a fact also apparent from (2.17). This means
that in calculating the solution w(x,t), one does not need 4 and B individually,
but only in the combination M = BA™L. In fact, it will be shown in §3 that the
magnitude | V| of the amplitude V depends only upon the imaginary part of M(t),
and in §4 that V depends only upon a well defined subset of M.

2.4. The paraxial approximation: gaussian wave packets

To summarize the results of this section, the phase ¢(x, ) remains constant along
the ray x = y(t). The ray equations for y and tangent vector p are given in (2.9).
The matrix M defined in (2.16) is related to 4 and B, which satisfy

A=TA+c2P B, (2.25a)
B=—(1/c)VVcA—T7TB, (2.25b)

with initial conditions
Alt,)) = A4, (2.25¢)
B(t,) = B, (2.25d)

In (2.25a) and (2.250),
T = pVc. (2.26)

The equation for M is therefore
M = —(1/c)VVe—ctMP, M— MT—T"M, (2.27a)

with initial condition
Mt,) = B, A"
=M, (2.27b)
The matrix M satisfies a nonlinear Ricatti equation that can be linearized through
the introduction of the intermediate matrices A and B. Equation (2.274a) is a
generalization of the so-called ‘aktinal’ equation (Thomson & Chapman 1985).

The term aktinal is derived from the Greek aktis, meaning a beam of light.
We are now in the position to expand ¢(x, f) about the ray position y(t),

P(x,t) = ¢y, 1) +VP(y, 1) (x—p) +3(x—») VV(y.0)- (x—y)+.... (2.28)

From the previous results, it follows that ¢(y(¢),t) = ¢,, a constant. The paraxial
approximation follows from (2.28) by retaining terms up to and including quadratic.

4-2



100 A. N. Norris, B. S. White and J. R. Schrieffer
In this approximation,

P(x, 1) = o+ p(t) (x—y(1)) +3(x—y(t))- M(t)* (x—y(t)). (2.29)

We now specify the ray y(t) to be in real space, i.e. a real ray. Then y, and p,
must be real vectors. The ray equations (2.9) then guarantee that the ray remains
in real space for ¢ > ¢,. However, the matrix M, is not real, and we assume that
Im (M,) is positive definite. It is shown in Appendix B that this condition ensures
that Im (M) remains positive definite. Finally, the asymptotic solutions (2.2),
(2.20) and (2.29) with these specifications forms what we call a gaussian wave
packet.

3. SOME GENERAL RESULTS
3.1. Hnergy conservation and properties of A and M

The complex matrix M is the matrix of second derivatives of ¢. In particular,
M must be symmetric. It is established in Appendix B that (2.27) generates a
symmetric M(¢) if the initial M, is symmetric. There it is also shown that the
imaginary part of M(t) is positive definite, as it should be for a cwp. These results
follow from the evolution equations (2.9) and (2.25). The proofs rely upon the fact
that the matrices P, and VVc in (2.25) are real and symmetrie, and that T is real.
It is also shown in Appendix B that A4 is nonsingular. Therefore 47! exists, and
(2.20) shows that the amplitude V remains bounded everywhere in real space. In
particular, there are no unphysical singularities at the geometrical caustics and
foci of real rays. The only restrictions on the initial conditions are that (1) A;?
exists, (2) that M, is symmetric and, (3) that Im (M) is positive definite, all of
which are essential from physical requirements on the initial wave packet.

It follows from (B 7) of Appendix B that

det Im (M) ]%
ot Im (M) ]

ldet A(t)] = |det A, [ 2ot T (M) (3.1)

The phase of det (A4) follows from the imaginary part of (2.19)
—(% arg [det (4)] = tr[(c*P, Im (M)]
>0, (3.2)

where the inequality follows from the positive definiteness of Im (M). Equations
(2.20), (3.1) and (3.2) show tinat the amplitude V depends only upon Im M. Hence,
the cwp is completely described by the complex matrix M.

Equation (3.1) in combination with (2.2), (2.20) and (2.29) implies an energy-
conservation result for awps in » dimensions, » = 2 or 3:

2 p(y) |Vt
[ sooptuxopas = 2] OATCIE 53)

3.2. Fundamental solutions

The general solution to the system of ordinary differential equations (2.25) can
be simply represented in terms of twe linearly independent fundamental solutions.
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Define (A,, B,) as the solution of (2.25) with particular initial conditions
Aty =1, (3.4a)
B(t,) =0, (3.4b)

where I is the identity matrix. Similarly, let (A4,, B,) be the solution for the initial
conditions

A4,(t,) = 0, (3.5a)
B,(ty) = I. (3.5b)
Then the general solution of (2.25) is
A(t) = A,(t) Ay + A,(t) By, (3.6a)
B(t) = B,(t) 4, + B,(t) B, (3.60)

and the general solution of (2.27) is
M(t) = [By(t)+ By(t) M,] [A, () + A,(t) M,] " (3.7)
Two simple but very important special cases for which all the wp parameters can

be found are considered in the next two subsections.

3.3. A constant-velocity medium

This case is particularly simple. The fundamental solutions are 4, = I, B, = 0,
A, = {c*P, and B, = I. The matrix M becomes

M(t) = M,[I+tc>P, M,]™", (3.8)

where the projection matrix P, is constant. The phase ¢ is given by (2.29) where
D is a constant vector pointing in the direction of propagation. The amplitude V
of (2.20) follows from (2.24), (3.8) and det (4) = det (B)/det (M) as

_ p(y(to))]é . 4
V(t) V(to)[p(y(t)) [det (I+tc®P, M,)] . (3.9)

3.4. A one-dimensional smoothly varying medium
Let ¢ = ¢(x) and g = pu(x), where x is the single spatial coordinate. Without loss
of generality, let the cwp start at x = 0 with initial direction in the positive
x-direction. The pulse centre is subsequently at s(t), which follows from (2.6). The

variables M, A and B are now scalar quantities. The equation for M(¢) follows from
(2.27a),

where ¢, = dc/dz, and ¢, = d%c/dx?. This can be solved to give

2(0)/c?(s)) My+[c,(0 (8)]/¢%(s) (3.11)
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Similarly, A = ¢(s) 4,, and B follows simply. Thus, (2.2), (2.20) and (2.29) give the
solution

o Tp@eO (T i 0] [e0), T
“‘V(O’[p@)c(s)} exP(“”[c(s)(x s(‘))+2[M°+ 3(0) Hc(s) (e 8“”] D
(3.12)

Note that the pulse width, (v Im M)7%, goes as ¢(s)/c(0), and so it takes the same
amount of time to pass a given point.

4. DYNAMIC RAY-TRACING COORDINATES

It turns out to be very helpful to define a moving coordinate frame relative to
the packet centre y(¢). This system of coordinates has been described by Popov
& Psencik (1978) and Hubral (1980). A brief review follows. Let n(t) and b(t) be
the usual normal and binormal unit vectors that satisfy the Frenet equations

%ﬁ=/<n, (4.1a)
1, _

En=—/<p+'rb, (41b)
Ly S—— 4.1
G b=—m. (4.1¢)

Here « is the ray curvature, and 7 the ray torsion. The radius of curvature of the
ray is p = 1/k. Define the angle

¢
e(t) = 60+J () c(y(t)) dt, (4.2)
to
where ¢, is arbitrary, and also define the wunit vectors e;,j=1,23as
e, (ty = cose(t)n(t)—sine(t) b(t), (4.3a)
e,(t) = sine(t) n(t) + cos e(t) b(t), (4.36)
e,(t) = P). (4.3¢)

Let P(t) be the matrix with vector e; in column j,j = 1,3. The following equation
then summarizes (4.1)—(4.3)

P(t) = P(t) N(t), (4.4)
0 0 cose
where N(t) = cx [ 0 0 sine} . (4.5)
—cose —sine 0

Note that P! = PT and NT = —N.
So far no particular coordinate system has been specified for 4, B and M. They
are now defined relative to the dynamic ray-tracing system as 4, B and M, where

A(t) = PT(t) A(t), (4.60)
B(t) = PT(t) B(t), (4.6b)

M(t) = B4 (4.6¢)
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The inverse of M(t) is defined as

R(t) = M(t)™
— 4B 4.7)
The evolution equations for 4, B, M and R follow from (2.25), (2.27), (4.4) and
(4.10) as
_(t) QA+C2PJ_F, (4.8a)
B(t) = (—1/c)CA—Q"B, (4.8)
R(t) = ( l/c )RCR+c*P,+ QR+ RQ7”, (4.8¢)
M(t) = (—1/c) C—c*MP,M—MQ—QTM, (4.8d)
where Q)= PTTP—N
0 0 —ckcose
=10 0 —cksine | (4.90)
0 0 é/c
P(t) = P"(t) P,(t) P(t)
1 0 0
=lo 1 of, (4.9b)
0 0 0
C(t) = PTVVCPT. (4.9¢)

Note that QP, = P, Q = 0. Equations (4.8) simplify considerably when C = 0.
This specific case is considered in the next section. However, we note some general
decoupling in the equation for M. Define the 2 x 2 submatrices

M, = P,_MP, (4.10a)
C,=P,CP, (4.10b)

then (4.8d) implies an equation for M, that does not depend upon the outer
elements Mw,z =1,2,3.

M, =(—1/c)C,— M. (4.11)

This equation is identical to the ‘aktinal’ equation (Thomson & Chapman 1985s)
that is usually encountered in standard gaussian beam theory. The two coupled
linear ordinary differential equations for M, and M, M,, then depend on M |, but not
on M,,. The equation for M, depends upon M,,, M,,, and M,,, but not upon M
directly. The latter equation can be solved formally to yield

ﬂss(t) i )M330+ : 5 Les(t )~Vc(t0)_e3~Vc]+%ft F(t)de, (4.12)

c? to

where ¢(t) = ¢(y(t)), and
F(t) = 2¢3(M 4 cos €+ M, sin €)— c* (M2, + M3,). (4.13)
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The final term on the right-hand side of (4.12) depends upon the 13 and 23 elements
of M, and these in turn depend upon the transverse submatrix M . If this coupling
is small, one can approximate

T c*(ty) 77 1

Mq(t) = "CTMaao'*'g[ea(to) "Ve(ty) —ey Ve, (4.14)
which is identical with the one-dimensional result (3.11). This means that the
length of the pulse in the direction of propagation increases (decreases) as the Gwp
moves into regions of higher (lower) wave speed.

The 2 x 2 submatrix M, corresponds to the usual wavefront curvature matrix

of ordinary ray theory. It can be shown that the amplitude V of the ¢wp depends

only on this matrix, and not on the elements ]Ww, 1=1,2,3. Thus, from (4.8a) and
(4.10a)

%lg (det A) = tr A4
= (¢/c)+c2tr M|, (4.15)
where tr M, = M, + M,,. Integrating (4.15) gives

det 4 e
m—;—cexpf c2tr M de. (4.16)

The result for V then follows from (2.20).

p
to

5. MEDIA WITH CONSTANT VELOCITY GRADIENTS
5.1. Ray parameters

Media in which the gradient of the velocity is constant, i.e. VV¢ =0, are
particularly interesting. It is known (Michaels 1977; Hubral 1980) that the rays
in these media are circular arcs with zero torsion. In general, one can obtain
closed-form solutions for the ray tube area and associated ray parameters. In this
section, the cwP equations are considered for the case of V¢ = const., and solved
for arbitrary initial data.

Let the velocity in the medium be

c(x) = ¢, +Ve-x, (56.1)

where V¢ = const. Of course, the medium cannot be infinite in extent, because
negative values of ¢(x) are not allowed. Consider a ray that starts at x = y,att = ¢,
with initial ray direction e4(t,). We will use both ¢ and the arc length parameter
s(t) of (2.6) as ray parameters. For example, we will write

c(s) = ¢(y(?)). (5.2)

The initial value of s at t = ¢, is s = s,. For ¢ > ¢, the ray describes a circular arc
in the plane of ey(t)) and V¢, see figure 1. Let the vector e, be orthogonal to this
plane initially. This is the same as taking ¢, of (4.2) equal to zero. Because the ray
has no torsion it follows that e,(f) remains constant along the ray. The vector e,(f,)
is in the plane of e,(t,) and V¢ with positive component in the direction of — V.
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c=0

Ficurg 1. The ray parameters for a constant velocity gradient medium. O is the ray position
at ty, P the ray position at ¢. The length |SQ| = [SO| cosh [|V¢| (t—¢,)] determines P.

The centre of the circular ray path is the point y, where the line through y, in the
direction e, (,) intersects the plane ¢(x) = 0. The distance from y, to y, is the radius
of curvature p, which is constant. We will also use the curvature x = 1/p. It is
useful to introduce the angle i between e,(t,) and Ve. Thus, 0 < ¥y < 7, and

cos iy = e,(t,) (Ve/|Vel). (56.3)

The above results can be written succinctly as

1 |V .
K= ; = o) sin r, (5.4a)
e,(t,) = cotyre,(t,) —cosec (Ve /|Vel}), (5.4b)
Yo = Yot pe(ty). (5.4¢)

The subsequent ray vectors are

y(t)y = y.—pet), (5.50)
e,(t) = coskse (t,) —sinkse,(t,), (5.5b)
e,(t) = sin«Se,(,) + cos k5 e,(t,), (5.5¢)
where 3= s8—s,. (5.6)

The wave speed along the ray is

c(s) = c¢(s,) cosec iy sin (¥ + «3). 6.7
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This equation is readily apparent from figure 1 by noting that (1/¢) sin (¥ + «3),
the slowness component perpendicular to Ve, is conserved along a ray. The previous
equations are simpler than the analogous ones in Hubral (1980). Note that {m—y
is the same as Hubral’s angle ». The variable d in Hubral (1980) is actually equal
to zero. The relation between t and s follows from (2.6) and (5.7) as

t—t, = ]VLCI lg [cot 3(¥) tan k(¥ +«5)], (5.8a)

s—8, = p[2 arctan (tan (i) e/VC—td) —yr]. (5.8b)

Also define for later use,

cW(s) = js c(s)ds

= pc(s,) cosecy[cos i — cos (Y +«3)], (6.9)
cM(s)
c(s)
= cosec (Y + «8) [cos Y —cos (Y +«3)]
= sin ¢ sinh [|Ve| (t—¢,)]. (5.10)

and g(s) =«

The latter result is a consequence of (5.8a) and (5.9).

5.2. Solution of the awp parameters

First consider the matrix R. Equation (4.8¢) is linear in R. Therefore, by
comparison with the solution for a constant velocity medium, we consider a
solution of the form

R(t) = X7T(t) R, X(t) +cV(s) P, (5.11)

with initial condition X(¢,) = I, the identity matrix. Substituting (5.11) into (4.8¢),
gives the following equation for X{(t)

X =XQrT. (5.12)
The matrix Q is given by (4.9a) with ¢ = 0. Solving (5.12) gives

1 0 0
0 1 0

X(t) = e e | (5.13)
¢(8o) ¢(8,)

Note that X is a real matrix that reduces to the identity matrix for a homogeneous
medium. Also, from (5.11) and (5.13),

R=XT[R,+cW(s)P]X, (5.14)
so that, by (4.7)
M(t) = X71(t) My[I+cV(s) P, ML X 17 (1), (5.15)
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1 0 0
0 1 0

(8y)
g(s) 0 o(s) ®)
Thus, M resembles closely the solution for the homogeneous medium, see (3.8).
The amplitude V(f) in (2.20) depends upon det[A(¢)]. However, det(A4) =
det (R) det (B), and det (B) follows from (2.24). Therefore, the amplitude is
1
0)

o plse) elsy) T Doy P vk
V(t) = V(to)[ p (8)6(8)] [det (I+ ¢V (s) P, M,)]}. (5.17)

This should be compared with the homogeneous result in (3.9). Finally, note that
the matrices A(¢) and B(t) defined in (4.6) can be obtained explicitly from (4.8) as
A=XT4,+cVP B, (5.18a)
B=X"B, (5.18b)

where XYty = (5.16)

5.3. Plane waves and point sources

Consider, for example, an initial Gwp that has a plane wavefront, i.e. M, = 0,
where M | is defined in (4.10a). Let us also assume that the pulse is initially oriented
perpendicular to the wavefront, i.e. M, = diag (0,0, M,,,). Then at later times,
M = diag (0,0, My,) where M,y = Myy[c(s,)/c(s)]%. Thus, a plane GwP remains
plane, and the pulse length changes as the velocity changes. As ¢ increases the pulse
length increases, and conversely, as ¢ decreases the pulse length decreases.

In the opposite limit from a plane wave, consider an initial pulse with zero
wavefront curvature, i.e. R,= diag(0,0,1/M,). In ordinary ray theory, this
initial condition defines a point source. The ¢wp solution follows from (5.11) and
(5.13) as M = diag (1/c¢V(s), 1/cV(s), My,), where again My, = My, [c(s,)/c(s)]2.
The current wavefront curvature is given by the submatrix M |, which in this case
is just diag (1/¢M(s), 1/¢™(s)), and the magnitude of the vector p, which is 1/c, by
definition. Thus, the wavefront curvature is ¢(s)/cD(s). Alternatively, the
wavefront of the point source has a radius of curvature equal to pf(s), where p is
the radius of curvature of the ray, and 6(s) is defined in (5.10).

Note from (5.4) and (5.10) that the radius of curvature for the point source can
be written as

p(s) = (c(s,)/IVel) sinh [[Ve] (t—1,)]. (5.19)

1f the source point is O in figure 1, then the centre of curvature of the wavefront
is at the point Q. In fact, at time ¢, the entire wavefront from a point source at
O is given by the circle of radius pf about Q. This suggests an easy geometrical
procedure, with ruler and compass, to determine the ray position P at any time
t given the initial position O and the initial direction 3. First, construct the
right-angle triangle OSC such that |OS] = [OC|siny and S,Q lie on the line
¢ = 0. Then draw the circle of radius |OC| about C. Next, find the point Q such
that SOQ is a straight line and |SQ|/|SO| = cosh [[V¢| (t—¢,)]. Then draw the
tangent to the circle that passes through Q. The point of tangency is P. Note that
the wavefront surface RP at time ¢ due to the point source at O is the circle of
radius [QP] about Q.
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5.4. Arbitrary initial data

Next consider more-general initial conditions for the awp. Specifically, let us
consider the general case of M, diagonal, M, = diag (m,,, My, My,), My, complex,
Im (m,,) > 0,7 =1,2,3. This cwp initially has its principal directions directed
along the axes €;(t,),j = 1,2,3. For t > {,, it follows from (5.13) and (5.15) that

m;, 0 Om ]
M) =|0 my 0 |, (6.20a)
Om, O ™My
My 9
where m; 1+c(1)(s)mj0’ 3=12, (5.200)
c(8,)?
g = c((;))2 Mgy + O?m,. (5.20¢)

The principal directions of the wp therefore rotate relative to the ray vectors
e;(ty),j =1,2,3. Let the new principal directions of M be parallel to v,(t),5 = 1,2,3,
where v;(t,) = e,(t,). Thus, v,(t) = €,(t,), and

1
v,(t) = (_I_W[el(t)-i-y(t) e5(t)], (6.21a)
1
vy(t) = m[‘)’(” e (t)+ey(t)], (5.21b)
whnere ‘y()— —W + m,—m, . ( . )

Note that v, (t) and v4(t) are complex vectors. They are the eigenvectors of M, but
not of Im (M). The latter are the principal directions of the awp. They are given
by (5.21) and (5.22) with m, and m, replaced by Im (m,) and Im (m;), respectively.
The eigenvalues of M are A,(t) = m,(t), and A,(f) and A,(t),

;ﬂ = [Z:gr_ om, y. (5.23)
Similarly, the eigenvalues of Im (M), and hence the principal widths of the cwe,
are Im (m,), and the other two follow from (5.22) and (5.23) with m, and m4 replaced
by Im (m,) and Im (m,), respectively.

Now consider the case when the arclength s = s—s, is small relative to the radius
of curvature of the ray, p = 1/«. From the definition of 6(s) in (5.10), it follows
that 6(s) = s+ O[(«35)?]. Therefore, 6 is approximately equal to the angle sub-
tended by the arc from s, to s(t). Expanding the eigenvalues for 6 < 1, gives

m2
A, =m +6 L +0(6%), 5.24a
L= O 0 (5.24a)
2
Ay = my— 02— O(6%). (5.24)

m;—my
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The eigenvectors v, and v; become

v, = e, +0(s)— m_“)m —et)+0(6"), (5.25)
10

v, = e3—0(s)mm+°me1(t)+0(02). (5.25b)
10 30

Consider the two limits of m,, and m,, both imaginary, and (1)
Im (m,) » Im (m,,) and (2) Im (my,) > Im (m,,). Case (1) represents an initial Gwp
that is long in the direction of propagation and narrow in the orthogonal direction.
If (1) corresponds to an initial gwp that is long and narrow, then (2) corresponds
to one that is short and broad. Note that in either case it is not necessary to consider
the width in the out-of-plane direction e,, because there is no coupling with the
in-plane parameters because of the initial condition that M, is diagonal.

Case (1). The initial awp can be visualized as a javelin-shaped disturbance
propagating in the direction of it’s axis. As it propagates, the centre of the awrp
describes a circular arc of radius p. However, from (5.5) and (5.25) it is clear that
to first order in 6, the principal directions v, and v, of M(f) remain real and equal
to the initial principal directions e,(t,) and e,(t,). Therefore, the ‘javelin’ tends to
maintain its initial orientation, even though it is not propagating in a straight line.

Case (2). Inthis case, the initial 6wP may be considered as a discus perpendicular
to the initial direction of propagation. As it propagates, the principal directions
tend to follow the ray directions e, (1) and e,(t). There is no conservation-of-direction
effect as for the javelin.

These apparently unusual wave-field events can be easily understood by simple
geometrical arguments. Consider the discus event first. Figure 2 shows three points

Ve A

E

P
D
Ficure 2. The ray picture for three points in a thin, flat gwe: the discus event.

A, B and O of the ¢wP at time ¢,. As discussed before, the point O of the cwp is
transported along the circular arc OP of radius |OC} arriving at P at time ¢. The
angle subtended by the arc is k5 = (s—s,)/p, given by (5.8b). Now consider the ray
path of point A. Its initial direction is the same as for O, therefore, the centre of
curvature of the ray path is also at C. However, the radius of curvature is |[AC|.
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The point A is thus transported along a concentric arc to the point D. The angle
subtended by the ray through A at time ¢ is the same as that of the ray through
O, by (5.8b). A similar argument holds for the ray through B. Hence, the discus
AOB is transported as shown in figure 2 to DPE.

The case of the long, narrow GwWP can be understood by considering figure 3. The
centres of curvature of the ray paths through two points A and B on the ¢wp are
now at €’ and (", respectively. The radius of curvature of the ray path through
A, for example, follows simply as |AC’| = |OC|+|0A| cotyr. The point A is
transported at time ¢ to the point D, with vector position yp. The latter follows
from (5.5) as

yp = y()+]0A][(1 +cot ¢ sin ks) ey(t,) +cot (1l —cosks) e (£)],  (5.26)

where. y(f) is the vector position of P. A similar equation follows for yy. The
orientation and elongation of the Gwp at time ¢ follows from

=7 = e,(t,) + cot Y sin kse,(t,) + (1 —cos ks) e, (t,)]. (6.27)

Hence, |[ED] > |ABJ. Also, the pulse rotates in the same sense as the ray direction
(anticlockwise in figure 3) if i < }m, but in the opposite sense if iy > {n. In either
case, the rotation of the gwe is of order («5)?, for small angle «3, in agreement with
the findings above.

5.5. Numerical illustrations

A simulation of the ‘discus’, or flat WP, is shown in figure 4. This figure displays
four pictures of the envelope of the awp at different times. The envelope, defined
by taking the magnitude of the field w(x,f) times the phase factor
exp [—iw(x—y)p], is plotted for clarity. The circular ray trajectory is also shown
for convenience. Note the behaviour is as predicted ; the envelope rotates so as to
remain perpendicular to the ray direction.

In both figures 4 and 5 the pulse initially propagates in a direction perpendicular
to Ve, and subsequently travels into regions of slower wave speed. It takes an
infinite amount of time to reach the plane ¢(x) = 0. Note that many of the pulse
parameters simplify for the case of the initial pulse direction chosen (i = ir). Thus,
p = 1/|V¢|, the angle x5 = (2tp) arctan [tanh (2¢p)], the speed is c(s) = cos («k5) and
6 of (5.10) is @ = tan«s.

The opposite limit to the ‘discus’, the ‘javelin’ is shown in figure 5. The only
difference between figures 4 and 5 is with the initial Gwp parameters m,, and my,.
Note from figure 5 that the pulse maintains its orientation for a large ray angle
3. This is to be expected from (5.26) with coty = 0, as is the case here. In fact,
note from the bottom pair of views in figure 5 that the ultimate sense of the pulse
rotation is retrograde from that of the ray direction.
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Ve

Fioure 3. The ray picture for three points in a long, narrow Gwe: the javelin event. Note that
the three angles BC”E, OCP and ACD are all equal «3.

Fioure 4. The flat ‘discus’ propagating in a medium of constant velocity gradient. The left and
right series of pictures show two orthogonal perspectives of the envelope of the we at four
times. The parameters are w = 4,|Ve| = &, % = In, myy = t§si, Mgy = &i. The top pair of
views is at t = 0, and the subsequent pairs are at t = 20, 40, 100. The area shown is a square
of side 100.
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¢c=0

F1cure 5. The case of a long, thin 6wp in a medium of constant velocity gradient: the ‘javelin’.
The views are the same in figure 4, except that the bottom pair is for time ¢ = 60. All other
parameters are the same as figure 4, except the beam width and length parameters. Now
we have m,, = i and my, = 15i-

6. REFLECTION AND TRANSMISSION FROM CURVED INTERFACES

6.1. Interface conditions

Let Z{£,,&,) € B® be a surface across which the material parameters g, p, suffer
a discontinuity. We take £,, £, to be orthogonal coordinates on the surface. Letting
7(0,0) = Z,, we write the interface locally, near £, = £, = 0, as

Z(§1, gz) = Z_0+§1, L +§2 t,+ (Du gi"' 2D12 §1 §2+D22 gg) Ly, (6.1)

where ¢, t, are orthogonal unit vectors in the tangent plane at Z,, and ¢, is the
unit normal. The boundary conditions for u are

% continuous across Z, (6.2a)
uVu-t, continuous across Z. (6.20)

Now Z divides R? into two regions, Q~, and Q*. We consider a GwP of the

standard form
U = ) glogtD (6.3)
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that is incident upon Z at Z,, from Q~. U is the field  in the absence of an
interface. We will represent the total field as

U=UD+UB for xe-,
U=UD for xeft, (6.4)

We show that (6.2) can be satisfied, asymptotically as @ - oo by taking UR, U™
to have the form of a gwp,
UR = YR giog®

UM = P giog™, (6.5)

Thus, from our previous theory, ¢®, ¢ must satisfy the eikonal equation (2.7)
in the appropriate regions, respectively, 2, 2*. Each pulse will propagate along
a central ray, and propagation equations follow from our previous theory for
pB =Vo® pT = VD MPB = VVB MT = VVpD where derivatives are
evaluated along the central ray of the appropriate Gwp, which must travel into
the appropriate region, @~ or 7.

Putting (6.3), (6.4) and (6.5) into (6.2a) we get

Y giopD 4 P glog'® — (D) glod®  for x on Z(-, -). (6.6)
Thus, to retain equality in (6.6) as w > o0, we take
$D(Z,t) = $PNZ, 1) = ¢ UZ, ). (6.7)

Now once ¢0 is known, (6.7) and the eikonal equation (2.7) determine ¢®, ¢
in Q7,Q% respectively. That is, ¢® satisfles a first-order partial differential
equation in four-dimensional space-time, with side conditions on the three-
dimensional hypersurface (Z(£,,£,),t). This is analogous to giving initial con-
ditions in three-dimensional space, and solving the eikonal equation to determine
¢® in space, for all time.

With ¢(D given, we can in principle solve for, say, ¢ in Q~ without the further
paraxial approximation. We consider Z to have a global extension to C® as an
analytic function of £, &,. If ¢0 is also an analytic function of complex x, then
(2.7) and (6.7) can be solved by complex ray tracing. At any point of complex Z,
and at any time ¢, a ray leaves the interface heading into £~ . Its initial direction,
Vo® is determined by differentiating (6.7), that is,

0Z oZ

® Y4 _ygan Y2 .
Equation (6.8) determines two linearly independent components of Vg{®. The
third component is obtained by differentiation of (6.7) with respect to ¢, and from
2.7

1,2. (6.8)

AV | = —$D(Z,0). (6.9)

Note that in (6.8) and (6.9), VoD, ¢ can be determined also by the complex ray
theory for ¢{©; they are given by the corresponding quantities for the incident ray
on Z at time ¢.

Now from (2.12), ¢D is conserved along the incident ray. From (6.7) this same
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value is picked up for ¢® ie. the phase ¢ is conserved on reflection and
transmission. By (2.12), ¢ is again conserved along reflected and transmitted rays.
Thus, the field will be exponentially larger than anywhere else, when we follow
the reflected and transmitted rays that are continuations of the incident ray for
which Im ¢ = 0. That is, the reflected and transmitted ¢wes have central rays
that are excited when the central ray of the incident Gwp strikes the interface. This
happens, of course, in real space, and in general it is only these central rays that
remain in real space for all time.

We next compute the paraxial approximation. We evaluate (6.8) and (6.9) at
£, =£,=0, at time t* when the central ray of the incident a¢wp strikes the
interface. From (6.1) we obtain

B .p = pD.g
Py 1P 1’} att=¢*

p(R) 1, = p(I) ‘1, (6.10)

dp®| = 1.

Equation {6.10) is also obtained in ordinary ray theory. By standard arguments
it implies the usual law of reflection. Similarly, Snell’s law is derived from the
equivalent conditions on the transmitted central ray

(Ty.4 — pD.
p t —P t ’
p(T).t; =p<’>-t:,} at ¢ = t* (6.11)
cpt™ = 1.

Jump conditions for M® M) at t*, in terms of M, can now be constructed
as conservation laws for the various components of M = VV¢. They arise naturally
from second derivatives of (6.7), evaluated at §, = £, = 0. Hence, by using (2.15),
we obtain that

ApTMp+p-Ve (6.12)

is conserved on reflection and transmission.

We differentiate (6.7) with respect to ¢, then with respect to £;,j = 1,2, to get
two more conservation laws. After use of (2.7), and (6.1), evaluated at §, = £, = 0,
we get

(Veje) t;+ctf Mp, j=1,2, (6.13)

is conserved on reflection and transmission.
Finally, three more conservation laws are derived by differentiation of (6.7) with
respect to §;,&;,5,0 = 1,2:
tF Mt +(2/c)(p-t,) Dy, j,l=1,2, (6.14)
is conserved on reflection and transmission.
Now (6.12), (6.13), (6.14) and the representation
3
pP= '21 Pty (6.15)
o

give six equations for the six components ¢ Mt,,j,l=1,2,3. M can then be
written by a change of basis.
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It remains to derive jump conditions for the amplitudes, V¥ (Z,, t*), V{T)(Z, t*).
From (6.6) and (6.7) we obtain

VO VB = YD Z =7, t=t* (6.16)
From (2.1), (6.4), and (6.5), we obtain, to leading order in w
p [VOPD 1)+ VR (PB -t)] = p [V (D - 1,)]. (6.17)

Now equations (6.16) and (6.17) arise also in ordinary ray theory. From the result
that ¢|p| = 1 for the central incident, reflected, and transmitted rays, and using
Snell’s law and the law of reflection, we obtain from (6.16) and (6.17) the usual
reflection and transmission coefficients.

6.2. Simplifications and general results

We now analyse the jump conditions on the six elements of M given in
(6.12)—(6.14). We use the ray vectors e;,j = 1,2, 3 defined in §4, equation (4.3). We
also refer M to this basis, via (4.6). Thus, we consider the six elements of the
symmetric complex matrix M. We will show that a certain amount of decoupling
occurs, i.e. the six jump conditions reduce to three sets of one, two and three
equations, respectively.

We first define the matrix § as

Sy =(1/c)t;r e, i,j=1,2,3. (6.18)
Thus ¢S is unitary. We also define the vector g by
gy =¢€,"Ve, k=1,23. (6.19)
The first decoupled equation is just (6.12), which we rewrite as
My, +g,, (6.20)

conserved on transmission and reflection. This isolates the (33) elements of M. The
next set of coupled equations for M, and M,, follow from (6.13) and (6.18)—(6.20).
We get that

X SpletMy+g,], §=1,2, (6.21)
k=1, 2

are conserved on transmission and reflection. Finally, we get a system of three
coupled equations for M,;, M,, and M,,. These follow from (6.14), by using
(6.18)—(6.21), as

. m2=1 \ 285 Sy M+ 2855 Djy — 18458, 93+k§ . (S;3 Sy + 813851 9x s
o ’ sl=12, (6.22)

conserved on transmission and reflections. Equations (6.22) are just the usual jump
conditions for the wavefront curvatures of ordinary ray theory (Hubral 1980).
Equations (6.21) and (6.20) are new ; they consider quantities that are relevant only
for cwps, that do not enter into ordinary ray theory or the gaussian beam method
(Popov 1982).
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Consider, for example, incidence of a GwP at an interface between two homo-
geneous media. In addition, assume the incident awp has one of its principal
directions in the direction of propagation. Then, M, = 0,k = 1,2, for the incident
¢wp. Equation (6.21) then implies that M,, = M,, = 0 for both the reflected and
transmitted ¢wps. The reflected and transmitted cwps thus still have principal
axes along their respective propagation directions. This ‘conservation of orienta-
tion’ contrasts with the results of §5 for the simplest inhomogeneous medium with
constantly varying acoustic properties. In that case, we saw that the principal axis
and the ray direction, both initially aligned, tend to deviate from one another as
the Gwp propagates.

Finally, we note the jump conditions across an interface between homogeneous
media in two dimensions, with wave speeds ¢; and ¢,. Let the wp be incident from
medium 1, and make angle 6,,0 < 6, <in, with the interface normal. The
transmitted cwp makes an angle 6, with the normal, where sin@, = (c,/c,) sinf,.
The incident Gwp is characterized by elements M{D, M{D and M{D. The reflected
and transmitted GWP matrix elements are

M,, = (c2/c?) M{D, (6.23a)
33 1 33

_— ¢, cos, —

= _ 08?0, =) 1 cosf, _cosl
117 cos?h M pcos?O\ ¢ ) (6.23¢)

Here, the reflected (transmitted) matrix elements are given by taking
0 = 6,(0,),c = ¢,(c,) and the plus (minus) sign in (6.23¢). The radius of curvature,
p, of the interface, is positive (negative) if the centre of curvature lies in medium
2(1). Finally, in regard to (6.23a), we note the comment following (4.14).

6.3. Numerical example

We now illustrate the above analysis by applying the results to a simple problem
of a awp incident upon an obstacle. We consider a two-dimensional WP in a
homogeneous medium with wave speed ¢, that contains a circular region with a
different wave speed c¢,. The geometry of the scattering problem is shown in
figure 6. The awp is initially centred at A, at a distance r, from the centre of the
circle of radius a. The initial pulse direction makes an angle 6 with the line AB.
The spatial distribution of the initial cwp about A is specified by
M = diag (m,y, iy,)-

Cp

€1

FicUre 6. Geometry of the two-dimensional scattering problem.
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value is picked up for ¢® ie. the phase ¢ is conserved on reflection and
transmission. By (2.12), ¢ is again conserved along reflected and transmitted rays.
Thus, the field will be exponentially larger than anywhere else, when we follow
the reflected and transmitted rays that are continuations of the incident ray for
which Im ¢ = 0. That is, the reflected and transmitted ¢wes have central rays
that are excited when the central ray of the incident Gwp strikes the interface. This
happens, of course, in real space, and in general it is only these central rays that
remain in real space for all time.

We next compute the paraxial approximation. We evaluate (6.8) and (6.9) at
£, =£&,=0, at time t* when the central ray of the incident cwp strikes the
interface. From (6.1) we obtain

PO G=PO )y
Pty =p-t,,

cdp®l=1.

(6.10)

Equation {6.10) is also obtained in ordinary ray theory. By standard arguments
it implies the usual law of reflection. Similarly, Snell’s law is derived from the
equivalent conditions on the transmitted central ray

(TYy.4 — pD.
P t —P t ’
p(T).t; =P(1)‘t;} at ¢ = t* (6.11)
dpM = 1.

Jump conditions for M® M) at t*, in terms of M, can now be constructed
as conservation laws for the various components of M = VV¢. They arise naturally
from second derivatives of (6.7), evaluated at §, = §, = 0. Hence, by using (2.15),
we obtain that

pTMp+p-Ve (6.12)

is conserved on reflection and transmission.

We differentiate (6.7) with respect to ¢, then with respect to £;,j = 1,2, to get
two more conservation laws. After use of (2.7), and (6.1), evaluated at §, = £, = 0,
we get

(Veje) t;+ctf Mp, j=1,2, (6.13)

is conserved on reflection and transmission.
Finally, three more conservation laws are derived by differentiation of (6.7) with
respect to §;,&,,5,0 = 1,2:
tF Mt +(2/c)(p-t,) Dy, j,l=1,2, (6.14)
is conserved on reflection and transmission.
Now (6.12), (6.13), (6.14) and the representation
3
P=2X (Pt (6.15)
j=1

give six equations for the six components ¢ Mt,,j,l =1,2,3. M can then be
written by a change of basis.
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t=10

Freure 8. Scattering of a ewp from a cylindrical region of greater wave speed. The incident
awpP strikes the interface at about ¢ = 30. At later times, separate reflected and transmitted
GWPs propagate.

7. CONCLUSION

The WP may be thought of as a particle whose centre follows the ray trajectory
of geometrical optics. At any instant in time, the particle is in the form of a
specifically oriented ellipsoidally shaped disturbance. As it propagates, the particle
never degenerates into a point; its finite size persists even at the geometrical
caustics and foci of the rays. The particle size varies in such a way that it always
maintains its initial total energy. These are the fundamental properties of a cwp
in a smoothly varying medium.

All of the necessary parameters follow from a system of ordinary differential
equations along the rays. The fundamental evolution equation is the classical ray
equation, which could be derived from Fermet’s principle. Equations for the awp
parameters then follow from the variational equations. We have derived the
equations for the second-order spatial derivatives of the phase about the ray
position. The second-order temporal derivative is given by (2.15), and the
second-order mixed derivatives may be obtained easily. These quantities allow one
to approximate the phase correct to second order, in both space and time about
the ray (y(t),t). Higher-order variational equations would permit higher-order
Taylor-series approximations. The evolution equations can be solved explicitly for
a medium with a spatially constant velocity gradient. A awp in such a medium
rotates relative to the ray direction even as the ray itself rotates. This phenomenon
may be interpreted through the concept of the packet as a bundle of rays, rather
than as a particle. However, it is more than a bundle of neighbouring rays, because
the awp also accounts for the local behaviour of the disturbance in the ravy
direction.
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The theory has also been extended to consider piecewise smooth media. The
awps follow the standard laws of reflection and transmission at the surfaces of
discontinuity. The theory as outlined would be adequate to treat, for example, the
propagation of an acoustic pulse in a multilayered material. The theory could be
adapted without much difficulty to consider ultrasonic-pulse propagation through
elastic materials containing interfaces. However, a fully elastic theory should also
include the effects of anisotropy. We defer until later a thorough discussion of the
elastic problem.

APPENDIX A. GAUSSIAN WAVE PACKETS AND THE ACTION PRINCIPLE

Consider the equation of motion for the field u(x, )

Ou(x,t) = 0, (A1)
where 6 is the wave operator
82
Oy = pgg—Vch (A 2)
or the Schrédinger operator
by = 'ﬁg+ﬁ2V2— V(x) (A3
s = 5T 2m ) )

Above we have shown that in the high-frequency (high-energy) limit, a gaussian
wave packet is an exact solution to (A 1) for suitable initial conditions. Asymp-
totics determine the equations of motion (2.9) for the centre y(t) and the momentum
p(t) of the packet, and (2.27a) governs the evolution of the complex width M(¢).

Here we propose a general method to determine the parameters for all frequency.
We note that the equation of motion (A 1) can be derived from the action
(Hamilton’s) principle

o8

e (34

where 6 is taken to be self adjoint and the action is
S = Ju*(x’, t') Ou(x’,t'ydx’ de’. (A 5)

If u is a vector field, contraction over the spacial scripts is implied. Treating u*
and u as linearly independent, one immediately retrieves (A 1).

If u(x,t) is chosen to have a restricted form, for example a single cwp as in (2.29)
or a linear combination of such packets, the parameters {A,(¢)} defining these
functions are optimally fixed by minimizing the action S with respect to the
parameters,

88  dfu*
SAF(D)  SAF()

(X', ') bu(a’, ') dx’ dt’ = 0. (A 6)

Treating A; and A} as independent variables, we obtain the equations of motion

Ju*(x,t) _
JW0U(X,t) dx = 0. (A 7)
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For the wave equation, one obtains nonlinear equations involving second-time
derivatives of the As, whereas only first-time derivatives enter for the Schrédinger
operator.

It is straightforward to show that in the high-frequency limit, the equations of
motion for the awp parameters y(f), p(t), M(t) and V(t) are those given in §2. For
general w, the equations contain extra terms which in principle improve the awp
description of u(x, ), for example by sampling the velocity ¢(x) not only in the
immediate vicinity of the ray y(¢), but over a region of order the width of the
gaussian about the ray. Important differences appear when c¢(x) varies rapidly over
the width, although the quality of the gwp solution depends on details of the
problem being studied.

By way of illustration, we note that Gwps have been quite useful in quantum
chemistry. As E. Heller (1975) and Drolshagen & Heller (1984) have stressed, in
molecular photodissociation processes, Gwps not only lead to simplified calcula-
tions but also provide physical insight. Consider a diatomic molecule AB in its
ground state. The wave function for the relative position x of A and B is initially
uy(X), corresponding to the reduced mass moving in the effective potential V(x).
Suppose a photon of energy #w is absorbed by the molecule, exciting an electron
by an energy fiw,,. The effective potential V(x) in the excited state, being different
from V(x), causes u(x,t) to vary with time. In particular, let us assume that u,(x)
is well approximated by a gaussian of width a, centred at y,. Then if V(x) is
strongly repulsive, i.e. dV/dz > 0, the centre y(t) increases sufficiently rapidly that
a(t) remains essentially constant during the time ¢, it takes for the overlap

Ay = f w(x, t)u(x, t)dx (A 8)

to become small, A(t,) <€ 1. The photodissociation cross section is proportional to
the square of the Fourier transform of A,

o(w) a|A(@ -0l (A9)

[v o]
where A{w—wey) = J A(t) cos (w—wg,) tdt. (A 10)
0

Therefore, o(w) reflects the power spectrum of the autocorrelation of the wave-
function. Because u(x,?) has a simple form for times of importance, a real-time
description in terms of a ¢WP gives a clear picture of the process and explains the
frequency dependence of o(w) in a transparent fashion. The more standard energy
eigenfunction description of the photodissociation problem is considerably more
complicated mathematically and less clear physically. In summary, the simplicity
of a awp description of the photodissociation process depends on (1) the initial state
u,{x) being approximately gaussian and (2) the distortion of the packet being slow
compared to the time for u(x,t) to become spacially separated from uy(x).

In certain problems, like photoexcitation, the final state u(x,t) is approximately
a ¢wWP that bounces back and forth in the potential well V(x). In this case, A(f)
exhibits multiply periodic behaviour so that o(w) exhibits peaks at these
frequencies, corresponding to excitation of 0,1, 2, ... vibrational quanta in the final
state.
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More generally, u(x, t) may break into several packets, corresponding to reflected
and transmitted waves at a classical turning point or in a region where V(x)
changes rapidly. In this case, several Gwps can be introduced with expansion
coefficients C;(t) which change to take account of this bifurcation. This scheme has
been used by Heller with fixed widths a,(t) = a,;(0) for each gaussian i. We note
that the action principle permits one to optimally determine the coefficients C;(t)
as well as the gaussian parameters.

In the past, a number of schemes have been proposed to determine the evolution
of the parameters A,(t). Heller exploited the fact that a gaussian remains gaussian
when propagating in a harmonic potential. By retaining up to second-order terms
in x—y(t) in an expansion of V(x,t) about y(t) at each ¢, he found that the A,(f)
satisfy equations of motion analogous to those of the high frequency asymptotics,
(2.9) and (2.27a). On the other hand, Sawada ef al. (1985) proposed minimizing
the error z(x,t) of the cwp solution

¥(x,t) = Oug(x, t). (A 11)

This leads to 8—/\?% jlx(x, H2dx =0, (A 12)
Qug(x,t) o _

or f_a%;‘_(t)_ﬁ u(x,t)dx = 0. (A 13)

This is a result different than that (A 7) given by the action principle proposed
above. Because 62 rather than 8 appears, (A 13) is more complicated than (A 7)
and we believe less accurate "as well. We are currently studying several model
problems to gain a better understanding of the advantages and limitations of the
action-principle approach.

APPENDIX B. A WRONSKIAN RESULT AND SOME GENERAL RESULTS

We first derive a wronskian relation for later use. Let (4, B;) and (4,, B,) be
two distinct solutions to the system of equations (2.9) and (2.25) for the same initial
data y,,p, at t = {,, but different initial values of A(t,) and B(¢,). Then it may be
shown quite easily from (2.25) that the wronskian

W(t) = AT (1) By(t) — BT (t) Ay(t) (B 1)

is constant, i.e. W(t) = W(t,). Because the coefficient matrices in (2.25) are all real,
it follows that the real and imaginary parts of A(f) and B(t) propagate
independently. Let
A(t) = AV () +i4AD (1) (B 2a)
B(t) = BV () +iB?(1), (B 2b)

where AV, A®, BY and B® are real matrices. The wronskian result then implies
a relation between these matrices.

The wronskian result with (4,, B,) = (4,, B,) = (A4, B) implies that A7 (t) B(¢) is
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symmetric if and only if the initial matrix AT (¢,) B(t,) is symmetric. Also, because
BA' = (AT (ATB)A™! (B 3)

it follows that M(t) = BA™! is symmetric if and only if M, is symmetric.
Next, it is shown that the imaginary part of the matrix M is positive definite.
This requires that M is symmetric, which is true, as shown above. Then,

ImM = %(BA—l— (BA™1)*), (B 4)

where the asterisk denotes the adjoint (complex-conjugate transpose). Use of the
wronskian result again gives

A*Tm (M) A = %(A*B—B*A)
=HL,+L7), (B 5)
where L,=A}PT B® —BOT AP, (B 6)

Thus, A* Im (M) 4 1s real and constant. If we now impose the initial condition
that Ly+ LT is positive definite, then it follows that A4 is non-singular. Therefore
A7 exists, and (2.20) shows that the amplitude ¥ remains bounded everywhere
in real space. In particular, there are no unphysical singularities at the geometrical
caustics and foci of real rays. We also have from (B 5), that

Im (M) = (A, A7)* Im (M) (4, 47Y), (B7)

which implies that Im (M) is positive definite if Im (M) is positive definite. This
completes the proof. We notethat it places no restrictions upon 4, and By, except
that L,+ LT is positive definite. Alternatively, we can require that A3 exists, and
the only other requirements are that M, is symmetric and that Im (M,) is positive
definite, both of which are essential from physical arguments.
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