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An exact solution is given for the reflection of a plane wave normally incident on a rigid solid 
with periodically spaced semi-infinite circular holes. Analytical considerations, verified by 
numerical calculations, show that the reflection coefficient is unity at the cutoff frequencies 
defined by the periodicity of the holes. This result is independent of the volume fraction of the 
holes. It implies that the porous solid acts like a rigid solid at these frequencies. The problem of 
plane-wave incidence from the holes is also solved. A reflection coefficient of unity is obtained 
at the same frequencies, again implying a rigid effect. Below the first cutoff frequency, the 
reflection coefficient can be parametrized by a simple scalar frequency dependent quantity. 
This simple result can be interpreted in terms of a displaced pressure continuity condition. 

PACS numbers: 43.20.Fn, 43.20. Bi 

INTRODUCTION 

A century ago, Lord Rayleigh • discussed the low-fre- 
quency reflection of acoustic waves from a porous medium. 
Since then there have been major developments in the theory 
of wave propagation in porous media and acoustic reflection 
from them? A thorough review of the various theories is 
given by Attenborough. 4 Most previous treatments have im- 
plicitly considered randomly distributed pores, and wave- 
lengths much larger than the pore diameter. In this article, 
we assume a doubly periodic arrangement of the pores, each 
of which is a circular tube with its axis perpendicular to the 
surface of the solid. The fluid is assumed to be inviscid but 

the wavelength of the incident wave may take on any value. 
In the limit of very long wavelength, the quasistatic results of 
Rayleigh • are obtained. 

The leading term in the long wavelength limit can also 
be recovered from Biot's theory of dynamic poroelasticity. 4'5 
The relevant parameters used are those of a rigid frame, with 
an inviscid pore fluid in straight, cylindrical channels. The 
latter implies an effective pore fluid mass equal to the actual 
mass. The reflection transmission problem is then solved by 
assuming the open pore boundary condition 6 at the inter- 
face. This limit of Biot's theory is one of the simplest possi- 
ble. However, the Biot theory does not include effects for 
which the wavelengths are on the order of the pore size. It is 
the purpose of this article to examine the finite frequency 
behavior of the response. Effective boundary conditions are 
derived which extend the quasistatic approximation to the 
first cutoff frequency. 

The limit of a single hole in a rigid half space can be 
viewed as the limit of the present problem where the porosity 
or volume fraction of the holes vanishes. The single hole as a 
radiator of sound is discussed extensively in Morse ? for 
wavelengths long compared with the radius. The exact solu- 
tion for finite frequencies has recently been solved, 8 using the 
methods of the present article. The related problem of a pipe 
with a finite flange has also been considered, ø using a quite 
different solution method--the Weiner-Hopf technique. 

I. FORMULATION 

The doubly periodic porous medium is depicted in Fig. 
1. The pore fluid and fluid in the upper half-space are as- 
sumed to be inviscid, with density p and acoustic sound 
speed c. Time harmonic dependence of frequency co is as- 
sumed. The term exp( - loot) will be understood but omit- 
ted throughout. 

The inviscid assumption is valid in the context of vis- 
cous fluids if the pore radius R is much greater than the 

viscous skin depth d = xf•/pco where r/is the viscosity. This 
condition is equivalent to co>•7/pR 2. In this limit, the vis- 
cous effects are confined to a viscous boundary layer within a 
neighborhood d of the rigid surface. Explicit corrections 
could be made to take account of the dissipation in the vis- 
cous layer, but we will not attempt this here, since it is only a 
boundary layer correction, and does not affect the solution 
to first order. At higher viscosities, such that d/R = O( 1 ), 
the present method is invalid. The correct approach is to 
explicitly take into account the shear mode in the fluid. The 

• 2 

FIG. 1. Schematic diagram of the porous solid, medium 1, and the fluid 
half-space, medium 2. 

2113 J. Acoust. Sec. Am. 82 (6), December 1987 0001-4966/87/122113-10500.80 @ 1987 Acoustical Society of America 2113 



problem is then completely analogous to the present config- 
uration with the fluid replaced by an elastic solid. The solu- 
tion is made much more difficult by the coupling between the 
compressional and shear modes. The related problem of a 
viscous fluid in an infinite tube is discussed at length by Ray- 
leigh.• However, ifd/R >> 1, the viscosity dominates the fluid 
dynamics, and the modal frequencies can be approximated. 
This limit is considered in Rayleigh, 1 Sec. 3.5.1. Pierce•ø also 
discusses the effects of viscosity in Sec. 10.6 of his book. 

Let u (x) be the velocity potential in the fluid. Consider 
the incident wave 

ui? c = `4e i• , ( 1 ) 
where k = w/c. This represents a plane wave incident from 
the porous medium (region 1 in Fig. 1 ) on the fluid half- 
space. The analysis for a plane wave normally incident from 
the fluid is very similar and is discussed in Appendix A. We 
assume 

{u• = u•"t: + u•% z<0-, u = (2) 
U2, Z•0 +. 

The scattered field in the pore in the unit cell of Fig. 1 
satisfies 

V u] =0, < , + gut z O, r<R 

Oul (3) 
--=0, z<0, r=R. 

Or 

Express u• • as a series of eigenfuncfions, 

u•t: = • A• eg• (r)e- ½'•, (4) 
n=O 

where, for n = 0,1,2 ..... 

• (r) = [ Jo(k•)/Jo(k, R) ] , (5) 
k• =jl•/R , (6) 

g• =(k2--k}) 1/2, Im•>0, (7) 
where J,• is the Bessel function of the first kind of order m. 
The numbersjl• are the ordered positive roots ofJ• (x) = 0, 
with Jlo = 0 and, hence, k o = 0, •'o = k, and •o = 1. The 
normalization of • is chosen so that 

•,f•.(r)%.(r)dA=rrR26,... (8) <R 

The constants d,, n•>0, are the amplitudes of the reflected 
modes. In particular we define 

R• =.40/.4 , (9) 
which is the reflection coefficient of the zeroth mode. Note 

that the incident wave ui• • is just the zeroth mode propagat- 
ing in.the positive z direction. The total field in z < 0 can be 
written, from Eqs. ( 1 ), (2), and (4), 

u l=.4e•+.4oe-i•+ • .4• •,(r)e -½•. (10) 
Next, consider the field in the upper fluid half-space. 

The field is doubly periodic, defined by the unit cell problem: 

V2u2+k2u2=O, z>0, [xl<a, ]yl<b, 

øU2=o, z>0, Ixl=a, lY'l<b, (11) 

OU2=o, z>0, Ixl<a, lYl=b. 
In addition, we have the continuity ofu and the continuity of 
the velocity in the z direction at the interface z = 0, 

u2=u, z=0, r<R, (12) 

Ou2_I, u z--o, Ixl<a, l Yl<b, r>R, Oz [-•z •, z=0, r<R. (13) 
II. GREEN FUNCTION 

The fundamental unit cell problem of Eqs. ( 1 ) and (12) 
can be solved using g (x;x'), the Green function which satis- 
fies, for z' • 0, 

V2g+k2g=6(x--x'), z>•O, Ixl<a, ly[<b, 

(14) 

=0, [z>O, Ixl =a or lYl =b, 
0n !z--0, Ixl<a, lYl<b, 

where 09/o9n is the normal derivative. By the usual methods 
(e.g., Ref. 2), 

-- i cos am X cos 13.y cos a,• x' cos fl•y' 

g(x[x t ) -- • • (•rn(•ntOrnn 
X (e •0'"1•-"1 + e'•ø'"(' +"•), (15) 

where 

12' m • m•/a, 

l• = nrr/b, 

2 2)1/2, p,,• = (k 2-a,, -• 

__{Z rn=0, 3• 1, m•O. 

(16) 
Im (p,•) >0, 

This Green function allows us to write the field •2 in the fluid 
half-space in terms of the z velocity on the circle r < R, z = 0; 

u2(x) = f• f g(x;x',y',0) 0u---22 (x',y',0)dx' dy'. (17) <R O•Z t 

The velocity in (17) can be expressed, via Eqs. (13) and 
(10), in terms of the unknowns.4•, n -- 0,1,2 ..... Then, with 
z = 0 in Eq. (17), and using the continuity condition Eq. 
( 1 2), we obtain, for r < R, 

.4 + • A,*t(r) - 1 •, cOSam xcos/•y 
I = o ab p•,• 6,,, 6. 

•<Rf (k.4--l__•o`41•l •[ll(l")) 
XcOSamX'COSl•y'dx'dy'. (18) 

III. SIMPLIFICATION AND THE MATRIX EQUATION 

Multiplying Eq. (18) by • (r),p = 0,1,2,.,., implies an 
infinite system of equations for the unknowns 
n = 0,1,2 ..... This system simplifies by introducing several 
new dimensionless variables. First, define the porosity 
0 <4 < •r/4, 
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Let 

• = •rR 2/4ab. (19) 

(20a) 

(20b) 

(20c) 

(20d) 

COS CtmX COS J•nY dx dy 

6to, rn=n=0, 
--2 -- 2 1/2 

= I--2 -- 2 '2 • 1 am + l•, --A• 
m • + n • > O, 

where the latter result is derived in Appendix B. Define the 
matrix [M] and array {N} by the elementsp, q = 0,1,2 .... 

•% = •] 4• K•.• K• + 1 0•, (21a) 
(•lb) Nr = M•o -- (2/•)6•o. 

The infinite system of equations can then be written 

[M ]{• = {N}, (22) 

where {A--} is the array with elements •v, P = 0,1,2 ..... In 
general, the matrix [M] is complex and symmetric. The so- 
lution • to the system of equations (22) represents an 
exact solution to the scattering problem through Eqs. (10), 
(13), (17), and (20). Thus Eq. (10) is exact since the cho- 
sen eigenfunetions are complete. All diffraction effects, 
which would be important at high frequencies, are implicitly 
contained in this eigenfunction solution. 

We now proceed to further simplify the system of equa- 
tions (22) into a form more amenable to computation. First, 
eliminate •o from the system using the first equation to give 

R,,--=•o = 1 -- •2 -•----• •:• BrCp, (23) Mo 
where 

• P•o •= • Po• 

m,n= l •mn /' 

= 
% = 2iM/Mo. (26) 

Let {B} and {C} be the arrays with elements B• and C•, 
p: 1,2,3 ..... Then {B} satisfies the system 

{C}, (27) 

where, forp, q: 1,2,3 ..... 

Q• = i•d• [Mm - (•/Mo)M•M• ]. (28) 

In general, the matrix [Q] is complex and symmetric and 
depends upon •. Similarly, {C• is complex and depends 
upon •. We have simplified the system in the above manner 

so that in the limit as •-• 0, the static limit, we obtain a real, 
symmetric matrix problem. We will discuss this in detail 
below. Another limiting case of interest is the single hole 
limit, obtained as a/R and b/R both tend to infinity. It is 
shown in Appendix C how Eq. (27) reduces to the known 
system of equations for the single hole problem. s The limit- 
ing problem also provides a check on the numerical results, 
discussed later. A further reason for preferring Eq. (27) to 
Eq. (22) is that the matrix elements of [Q] remai n bounded 
at the modal frequencies •:,,•, where p,• = 0. The matrix 
elements of [M] are singular at these frequencies. However, 
the matrices [M] and [Q] both contain singular diagonal 
elements at the pore cutoff frequencies kp, p> 1. This insta- 
bility is due to the definition of M•,q in (21a), and can be 
easily corrected by using (A) instead of (•), for example. 

IV. LOW-FFIEQUENGY ASYMPTOTIO EXPANSION 

The quasistatic case of the wavelength much larger than 
the cell size occurs when •:,• 1, for • = O( 1 ). With regards 
to Eq. (27), we assume the ansatz 

[Q ] = [Q(O)] + •. [Q(O] + •:2[Q•2)] + ... , 
{B} = {B (o)3 + •(B (i)} + • 2{• (2)} + ... , (29) 
{c} = {c (ø>} + m} + ={c + ..., 

where [• (o•], [g (u], etc., are independent of •. Explicit 
pansion of Eq. (28) gives, for n = 0,1,2 ..... 

• pq • / 

Q(a• + • = 0, (30b) Pq 

where 

) .... , (•2._F•2.)(,+•/• ' (31) 
The first two terms in the expansion of {C} are 

CtO• _ 2• L• , (32a) 
v --•• . (32b) 

•+$ 

Inserting the ansatz equation (29) into Eq. (27), and equat- 
ing terms of different order in k, yields a sequence of prob- 
lems for the arrays (B (•)), n = 0,1,2 ..... The first two are 

[Q <o)] (B to)) = (Win)), (33a) 
[Q •o)] (B •") = (C •") - [Q (o] (c (m). (33b) 

The zeroth-order equation (33a) is a real, symmetric sys- 
tem. It is interesting to note, using Eqs. (30b) and (32b), 
that the solution to the first-order system equation (33b) is 
trivially 

Btl• _ i r nto) v •o•v . (34) 
I+$ 

We turn our attention specifically to the reflection coef- 
ficient R • • of Eq. (23), expanding it as 
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-= • + (i•)2R (2) _L ... 11 T ' (35) 

It is easy to show 

R (o) 1 -- • "= -- (1--•) ' (36) 
½ ) R •-- I •L•B•O • 2 L• . ll l+• I (1+•) 

(37) 

Define the quasistatic effective increase in length of the pores 
• L(0), where 

R,, = _(1--•ea•(o) + O(•2). (38) 
•erefore, by •s. (3•)-(38), 

• ß (O) L(0) _ L• • •1 •L•Sp . (39) R 1-• •(• 
It is also clear from •s. (23b), (32b), (34), and (35) that 
R •) is real and may be dete•ined from thee equations. A 
simpler meth• is to use •s. (38) and (54) •1ow, to yield 

V. REFLECTION AND TRANSMISSION COEFFICIENTS 

For arbitrary frequency, the transmitted field in the flu- 
id half-space follows from Eqs.(10), (13), (17), and (20e) 
as 

Fr• ( • ) cos a,,x cos •y e •"•, 

(41) 

u2(x) 

where 

(42) 

The numbers F,,• are the amplitudes of the different order 
transmitted plane waves. Only a finite number of these are 
propagating at a given frequency. The propagating modes 
satisfy 2 p• > 0, and the remaining evanescent modes have 

2 

p,,• < 0. The only mode that propagates at all frequencies is 
the (00) or plane wave in the z direction. Define the trans- 
mission coefficient 

Tn(•:) = Foo(•:). (43) 
Then by Eqs.(42) and (9), we have the general relation 

The plane-wave transmission coefficient for normal in- 
cidence from the fluid half-space follows from Appendix A 

(45) 

From Eqs. (9), (45), and (A9), we deduce the general re- 
suit 

Te•(k) -- 1 - Rn([-). (46) 
Define the reflection coefficients Ree for incidence from the 
fluid as 

R•(•) = 1 + F•o(•:), (47) 

where the scattered field u• of Appendix A is 

u•=A •o • F•"•(Tc) cøsct'"xcoSfinyeq'"'•' 
with the modal amplitudes given by 

F;,. = --F.=. 

It is straightforward to show that 

Raa(•:) = 1 -- q• q- q•R,,(•:). 

(48) 

(49) 

(50) 

Equations (44), (46), and (50) describe all four fundamen- 
tal reflections and transmission coefficients in terms era sin- 
gle one, in this case R n. 

Now consider the energy flux balances. For incidence 
from the porous side it is easily shown that the energy bal- 
ance is 

•n 

and, for incidence from the fluid side, 

(2) Pmn / 
(51) 

(2) Prnn 

(52) 

The modal sum ( 1 ) is over those n •0, for whichj• n < kR, 
and sum (2) over (m,n)•(0,0) for which m2/a2+nZ/ 
b 2 < k •/n a. Let •:.,• be the dimensionless cutoff frequency of 
mode (re,n}, 

= 

= 2xf•[rna(b/a) + n2(a/b)] •/•. (53) 
If •<min(km,kol)<rt<j•=3.83 .... then both modal 
sums are zero and the energy balances can be expressed, 
using Eqs. (44), (46), and (50), as 

IRi,I • + •11 -- a,,I = 1 (54) 
for incidence from the pores, and as 

•11--Ri,I2 + I1- • + •Rll[ 2= I (55) 
for incidence from the fluid half-space. Equations (54) and 
(55) are easily seen to be equivalent. 

Vl. BEHAVIOR OF ,q'• NEAR THE CUTOFF 
FREQUENCIES 

For any m, n, we have from Eq. (42) 

Rii(• ) •-- l-- Korn=• • -• p=l Kornn 
(56) 

Also, Eq. (23) can be rewritten as 

RH(•) •--- I 2 • M•o -- kMoo •.t• (k). (57) 
Define E------•,,,; then, as I1-0, Eq. (21a) implies 

Thus, for p> I, 

(58) 
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Mvo/Moo = 2Kv•./Ko,.. + O(e). (59) 
Define 

S,.. •, (k.•.) (60) 
v = I Koran 

then, Eqs. (56) and (57) become, in the neighborhood of 

R•(•) = 1 - S,•, - (F,•,/Ko,• • ) 

X (•J,•5•/44) -4- O(e), (61) 

R•(•) = 1 -- 2Sin, + O(e). (62) 
Eliminating Sra• from Eqs. (61) and (62) gives 

Rii(•) 1- gmn = -- -- + O(e). (63) 

However, if e is real and 0 < e,• 1, then, (51 ) implies that 
IFm• I = O(1). Equation (63), in combination with Eqs. 
(44), (46), and (50), shows that in the limit, as k-,k,•, 

R • •,R 22 -• 1, (64a) 

T•2, T:•-,0. (64b) 

The above analysis is for arbitrary m and n. In particu- 
lar, it does not depend upon the porosity •b, or indeed the 
pore shape. Any symmetric, cylindrical pore would have the 
same effect. However, as •b--, 0, we must be careful to scale e, 
accordingly. In this limit the width of the "resonances" at 
•.'ra,will shrink. The limit of •b-• 0 is actually quite a patho- 
logical one; see Fig. 2. As 4 tends to zero, the modes 
become infinitely dense and the lowest one tends to zero. 
This produces a very jagged appearance in Iall (•:) I, for ex- 
ample. At zero frequency we know that R • i • -- 1 as •b-• 0. 
But the above results say that there will be a frequency very 
close to zero at which R 11 = l. This type of behavior is char- 
acteristic of the limit of a continuous spectrum from a dis- 
crete spectrum; see, for example, Ref. 11, Sec. 4.13. 

The limits in Eq. (64) indicate that the interface of the 
porous solid acts like a rigid membrane at the cutoff frequen- 

0.8 

0.4 

t •mO.01 

0.4 

0.2 

o I 2 a 4 0 ! 2 a 4 

0.8 

0.4 

0.2 

0.4 

0.75 

0 ! 2 3 4 0 I 2 a 4 

KR 

FIG. 2. The magnitude of R 11 versus frequency • = kR for several values of the porosity 4. The magnitude actually goes to unity at each of the modal 
frequencies •:,•,. However, these peaks are not shown in the plots because of the large step size chosen for • relative to the resonance widths. This 
discrepancy is most evident for smaller values of•b, when the frequencies •;,•, are very dense and the peaks exceedingly narrow. 
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eies •:r•n ß No energy is transmitted across the interface when 
the wave is incident from either side. 

VII. EFFECTIVE BOUNDARY CONDITION 

For • <min(k•o,k0•), we know that R u satisfies Eqs. 
(54) and ( 55 ). In addition, as •:-, 0, R • • has the simple form 
of Eq. (38). We also know, from Eq. (64), that Ru-• 1 as 
•:-•min(k•o,ko•). We now propose to use these various 
pieces of information to devise a simple, physical description 
for Ru (•) below the first cutoff frequency. 

Consider the two coefficients R• and T•2. Equation 
(44) is a general relation between them, which expresses the 
conservation of fluid mass. At zero frequency, we also have 
the static continuity of pressure condition across the inter- 
face, that 

1 q- R•](0) = T]2(0). (65) 

Solving the simultaneous Eqs. (44) and (65) gives 
R u(0) = R •o•), where R to) is defined in Eq. (36). Consider 
the following generalization of Eq. (65) to nonzero frequen- 
cies: 

e •' + Rll(•)½il•= T•2(•), (66) 

where a and/• are real numbers that depend upon •, and 
both equal zero when • = 0. Let R • = R I? a) be the solution 
to the simultaneous equations (44) and (66), 

R I? a• - [ (e i• - •)/(e •a + •b) ]. (67) 
Note that both Eqs. (54) and (55) are satisfied if a and fl are 
related by 

1 + cos(a -/9) - cosa - cosfl= 0. (68) 

A trivial solution to Eq. (68) is a = fl = 0, for which R • 
=R •o• However, Eq. (68) is also satisfied if (i) a•0, 11 ß 

/• = 0, or (ii) at = 0, fl •0. In general, 

iR •?)l 2 = 1 q- 4 2 - 2• eosa (69) 
1 + $2 + 2• cos/5' 

and, therefore, 

I R l•a)l>[R I?ø)1•(1 - 4)/(1 + 4), (70a) 
,, I>(1-•)/(1 +•). (70b) 

In particular, R I? ) = ] ifs --/•/= ___ •r. 
The effective boundary condition equation (66), in con- 

junction with Eq. (44), completely determines the four re- 

I 1 

• e• 0.01 O. 1 0.• 0.• 

o., u t ! 

0-4 0.4 

0.2 G2 

0 0 
4 4 

I 1 

0.8 o.8 

0.6 0.• 

0.4 0.4 

0.2 0.2 

0 I 2 3 4 0 I 2 , • 4 

FIG. 3. The phase 0• ]/rr where R • • = -- JR; •[ exp ( iO• [ ) vs • for the same values of • as in Fig. 2. The value of•] ] is •r at each of k,•,. However, this is not al- 
ways indicated in the plots for the same reasons as given in Fig. 2. 
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flection and transmission coefficients. The basis for Eq. (66) 
was first, as an obvious generalization of Eq. (65), and sec- 
ond, the energy balances Eqs. (54) and (55). We can inter- 
pret Eq. (66) physically as a displaced pressure continuity 
condition. For example, if/3 = 0 then it says that the trans- 
mitted pressure at z = 0 equals the sum of the reflected pres- 
sure at z = 0 plus the incident pressure at z = a/k. The low- 
frequency results Eq. (38), along with Eq. (67), imply that 
for R 17 a• to be equal to Ru, we must have 

a/(1 --qb) --/•/(1 +•b) =2kL(0) +O(• 2) (71) 
as/c-, 0. If we let/• = 0, then this determines the initial be- 
havior of a as a function of•. As • train (klo, k m ), we should 
have a-, •r, since R • -, 1. Alternatively, we could let a = 0 
and determine/• as a function of • such that R r•a• _ • If 11 -- 

we define • and • such that 

R I• • =R (08) Ru(•:) ' (72) II 

then 

era=•- (1 +•)Rll (73) 
and 

ei$--- --•-- (1 --&)/R•. (74) 
Either of these frequency dependent parameters allows us to 
interpret R l • through the effective boundary condition equa- 
tion (66). However, the exact values of • and • have to be 
determined from Eqs. ( 73 ) and (74), which involves solving 
the infinite complex system. One would hope that a simpler, 
more direct method exists to determine the real quantity • 
or •. 

VIII. NUMERICAL RESULTS AND DISCUSSION 

All of the results shown are for a square array of pores. 
The determination of the quasistatic effective length increase 
L (0) of Eq. (38) required solving the real, symmetric, infi- 
nite system equation (33a). It was found, mainly by trial and 
error and also on the basis of similar calculations for the 

single hole problem, 8 that truncation by a 75 X 75 system 
was adequate for convergence. A larger truncation size, typi- 
cally 100 X 100, was used in solving the complex, symmetric, 
finite frequency system equation (27). For each value of • 
and •, it was necessary to solve the truncated system equa- 
tion (27). This sets a limit to the number of points that could 
be considered in (•,•) space. We thus restricted our atten- 
tion to 0<•11, the first cutoff frequency of the pores. The 
frequency step size was, by necessity, relatively large. Hence, 
it is not always apparent from the figures shown that, for 
example, R • • • 1 as k • k,•. Independent checks on several 
arbitrary modal frequencies •,• did, however, show com- 
plete agreement with our analytical findings. 

We note the plots ofR • • in Figs. 2 and 3 for small values 
of the porosity •. This seemingly erratic behavior, superim- 
posed upon a smooth background, is typical of waveguide 
phenomena involving very many modal frequencies. As 
•--,0, the peaks at •m, still have finite magnitude, in fact 
R ll-, 1 at these frequencies, but the widths of the peaks dis- 
appear. This is analogous to the vanishing of the resonance 
peaks in the acoustic scattering cross section of a soft or hard 

0.2 

-0.6 , / R.(•=O.001) 
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FIG. 4. The real and imaginary parts of R,, vs •: for •: 0.001 compared 
with the same quantity for the single hole from Ref. 8. Again, the limitations 
described above apply at •:•.. 

target as the impedance mismatch between the target and 
host medium becomes large.•2 In the limit of • •0, the re- 
flection coefficient reduces to the coefficient for a single hole 
in a rigid half-space; see Fig. 4. Plots of other related quanti- 
ties are shown in Figs. 5-8. Note that the results shown are 
for an inviscid acoustic fluid. The effect of viscosity would be 
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FIG. 5. Plot of the quasistatic end correction L(O)/R vs 4. 
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FIG. 6. The magnitude of R22 vs •: for different values of 4. The magnitude 
should be unity at k = k.., but this is not always indicated because of the 
sparsity of points. 
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FIG. 7. The phase 022 defined by R• = I R2•lexp (i022) versus frequency for 
different porosities. The value of 0•2 is actually zero at k = kin., but this is 
not always apparent in the plots. The curves correspond to • as in Fig. 6. 
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FIG. 9. The quantities • and • of Eqs. (73) and (74). The curves show •/•r and •/•r vs k Ik,o for different values of •. 

to broaden the resonances and lower the magnitudes at reso- 
nance. The displaced pressure continuity condition param- 
eters • and B are plotted in Fig. 9. 

Finally, we note that the results for the reflection and 
transmission coefficients R]], R22, Tn, and T2• can be com- 
bined to consider reflection and transmission through a po- 
rous panel. Let l be the panel thickness and let R, T be the 
reflection and transmission coefficients for the unsupported 
panel, i.e., with free space on either side. Then, neglecting 
multiple reflections of all modes other than the fundamental 
(n = 0), it is easy to show 

T = r21T12eikt/( 1 - R •t 

R =R22 q- TRi•e •. 

(75) 

(76) 

For very thin panels with kl< 1, R and T simplify on the 
basis of Eq. (38) and the results of Sec. V, to give T-- 1, 
R----i[(]--•)/2•(] +•)][(] +•)22kL(0)+(1+•2) 
X kl ] = - ikJ. In terms of the equivalent circuit theory of 
Morse 7 (p. 365), the panel has a characteristic impedance 
Z = pc( 1 + R )/( 1 - R ).For thin panels, Z = pc( 1 - i2/•). 
The panel acts like an impedancep in series with a small resis- 
tance of order 02 . The small resistance here is analogous to 
the resistance due to power radiation from a duct into free- 
space [Morse, 7 Eq. (2.3.4) ]. However, the resistance is due 
to conversion from the fundamental mode to the higher, 
nonpropagating modes. Radiation effects are unimportant. 
The present results could be augmented by radiation loss for 
a panel of finite lateral dimensions. 

IX. CONCLUSIONS 

The exact solution for plane-wave reflection from a peri- 
odic fluid saturated porous solid has been derived and nu- 
merical results presented. Our major finding is the finite fre- 
quency effect that the interface acts like a rigid membrane at 
the discrete frequencies defined by the double periodicity of 
the pore spacing. This effective rigidity is independent of the 
porosity •6, and is also expected to be independent of the pore 
shape. We have also identified a simple, displaced pressure 

continuity condition that depends upon a single real fre- 
quency dependent quantity. This new condition is in the 
form of an obvious generalization of the static condition, but 
is only valid for frequencies up to the first cutoff. The simpli- 
city and utility of this effective interface condition suggests 
that further work is necessary in the area of deriving effective 
interface conditions from first principles, so that no arbi- 
trary parameters are required. 
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APPENDIX A: INCIDENCE FROM THE FLUID 

Consider the plane wave 
inc • A•- ik2 u2 (A1) 

incident upon the porous half-space. Assume the solution 

Ul, U = inc q- Aeik2 sc Z>•0. (A2) [tt 2: t• 2 q- tt 2 , 

Note that u• c does not include the rigid reflection Ae •. 
Therefore, u• • should vanish when the pores disappear. Ex- 
press u] as 

u]= • A•,(r)e -• (A3) 
n=O 

Proceeding as before, we can derive an integral relation simi- 
lar to Eq. (17). Use of the continuity condition then implies 
the equation analogous to Eq. (18), 

A;•/(r)=•-- 1 A/•t cosa•xcos•y 
l=O ab t ..... o p•,• 

<R• 

(A4) 
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The orthogonality of the •, leads to the system 

[MI (• '} = (N'}, (^5) 

where [M] is the same as before [Eq. (21a) ], and 

A; = (A ;/A)(•s/k), (A6) 

N; = (A7) 
Noting that 

iv; =Mo -ivs, (A8) 

where N s is defined in Eq. (2lb), it is clear that the solution 
to the system (A5) can be written in terms of the solution to 
Eq. (22) as 

.4 3 =6vo -A s. (A9) 

APPENDIX B: DERIVATION OF EQ. (20e) 

It is easily seen from its definition in Eq. (20e) that, 
because of the symmetry involved, 

Ksmn -- l • f q•s(r)e""m•+a•'dxcly. (BI) 
Let 7/= (a2• +/•2• )•/2 and introduce polar coordinates, so 
that 

rrR 2 ads(r)rdr eir .... (o-o') dO. (B2) 
From Eq. (5) and Ref. 13, Eq. (9.1.21), 

Ksmn - 2 fo R 2Jo(kpR) Jø(kpr)Jø(7/r)rdr' (B3) 
Equation (20e) then follows from Ref. 13, Eq. (11.3.29). 

APPENDIX C: THE SINGLE HOLE LIMIT 

As a/R, b/R -• oo, the porosity • --, 0 and the double sum 
in Eq. (21 a) becomes in the limit a double integral. This can 
be reduced to a single integral using polar coordinates. After 
some straightforward manipulation it can be shown that the 
elements of [Q] and {C} in the fundamental equation (27) 

tend, in the present limit, to (p,q = 1,2 .... ): 

C s = 2avo J•tv/(1 - i•aoo), (C1) 
Qs, = (1- • 2/j•s ) '/26s, + J•x/--•q 

X{apq q- [• [avoaqo/(1 --/•aoo) ] }, (C2) 
where, for rn,n = O, 1,2 ..... 

•0 © $3j2 t ($)d$ Ctmn(• ) =2 ($2__•;2)l/2(s2__j•m 2 '2 ) (s -j•. 
(C3) 

The real and imaginary parts of ao, (/c) are proportional to 
the quantities Z, and 0,, defined in Eq. (28.8) of Morse.7 
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