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An exact solution is given for the reflection of a plane wave normally incident on a rigid solid
with periodically spaced semi-infinite circular holes. Analytical considerations, verified by
numerical calculations, show that the reflection coefficient is unity at the cutoff frequencies
defined by the periodicity of the holes. This result is independent of the volume fraction of the
holes. It implies that the porous solid acts like a rigid solid at these frequencies. The problem of
plane-wave incidence from the holes is also solved. A reflection coeflicient of unity is obtained

at the same frequencies, again implying a rigid effect. Below the first cutoff frequency, the
reflection coefficient can be parametrized by a simple scalar frequency dependent quantity.
This simple result can be interpreted in terms of a displaced pressure continuity condition.

PACS numbers: 43.20.Fn, 43.20.Bi

INTRODUCTION

A century ago, Lord Rayleigh' discussed the low-fre-
quency reflection of acoustic waves from a porous medium.
Since then there have been major developments in the theory
of wave propagation in porous media and acoustic reflection
from them.>* A thorough review of the various theories is
given by Attenborough.* Most previous treatments have im-
plicitly considered randomly distributed pores, and wave-
lengths much larger than the pore diameter. In this article,
we assume a doubly periodic arrangement of the pores, each
of which is a circular tube with its axis perpendicular to the
surface of the solid. The fluid is assumed to be inviscid but
the wavelength of the incident wave may take on any value.
In the limit of very long wavelength, the quasistatic results of
Rayleigh' are obtained.

The leading term in the long wavelength limit can also
be recovered from Biot’s theory of dynamic poroelasticity.**
The relevant parameters used are those of a rigid frame, with
an inviscid pore fluid in straight, cylindrical channels. The
latter implies an effective pore fluid mass equal to the actual
mass. The reflection transmission problem is then solved by
assuming the open pore boundary condition® at the inter-
face. This limit of Biot’s theory is one of the simplest possi-
ble. However, the Biot theory does not include effects for
which the wavelengths are on the order of the pore size. It is
the purpose of this article to examine the finite frequency
behavior of the response. Effective boundary conditions are
derived which extend the quasistatic approximation to the
first cutoff frequency.

The limit of a single hole in a rigid half space can be
viewed as the limit of the present problem where the porosity
or volume fraction of the holes vanishes. The single hole as a
radiator of sound is discussed extensively in Morse’ for
wavelengths long compared with the radius. The exact solu-
tion for finite frequencies has recently been solved,® using the
methods of the present article. The related problem of a pipe
with a finite flange has also been considered,® using a quite
different solution method—the Weiner—Hopf technique.
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. FORMULATION

The doubly periodic porous medium is depicted in Fig.
1. The pore fluid and fluid in the upper half-space are as-
sumed to be inviscid, with density p and acoustic sound
speed ¢. Time harmonic dependence of frequency o is as-
sumed. The term exp( — iwt) will be understood but omit-
ted throughout.

The inviscid assumption is valid in the context of vis-
cous fluids if the pore radius R is much greater than the

viscous skin depth d = \7/pw where 7 is the viscosity. This
condition is equivalent to @> 7/ pR 2. In this limit, the vis-
cous effects are confined to a viscous boundary layer within a
neighborhood d of the rigid surface. Explicit corrections
could be made to take account of the dissipation in the vis-
cous layer, but we will not attempt this here, since it is only a
boundary layer correction, and does not affect the solution
to first order. At higher viscosities, such thatd /R = O(1),
the present method is invalid. The correct approach is to
explicitly take into account the shear mode in the fluid. The
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FIG. 1. Schematic diagram of the porous solid, medium 1, and the fluid
half-space, medium 2.
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problem is then completely analogous to the present config-
uration with the fluid replaced by an elastic solid. The solu-
tion is made much more difficult by the coupling between the
compressional and shear modes. The related problem of a
viscous fluid in an infinite tube is discussed at length by Ray-
leigh.! However, ifd /R > 1, the viscosity dominates the fluid
dynamics, and the modal frequencies can be approximated.
This limit is considered in Rayleigh,' Sec. 3.5.1. Pierce'® also
discusses the effects of viscosity in Sec. 10.6 of his book.

Let u(x) be the velocity potential in the fluid. Consider
the incident wave

mc__Aexkz (1)

where k = w/c. This represents a plane wave incident from
the porous medium (region 1 in Fig. 1) on the fluid half-
space. The analysis for a plane wave normally incident from
the fluid is very similar and is discussed in Appendix A. We
assume

[u, =u+uy¥, z<07,
U=
Uy, Z>0+.
The scattered field in the pore in the unit cell of Fig. 1
satisfies

(2)

Vil +kuf=0, z<0, r<R, ,
(3)
MY _ 0, 2<0, r=R
ar ’ ' '
Express 4 as a series of eigenfunctions,
= S 4, ¥, (ne” %, 4)
n=0
where, for n = 0,1,2,...,
W, (r) = [ Jolk,r)/Jo(k, R) ], (5)
kn =j1n/R s (6)
£, =(k2—k)V?, Im§,>0, (7

where J,, is the Bessel function of the first kind of order m.
The numbers j,, are the ordered positive roots of J,(x) =0,
with j,, = 0 and, hence, k, =0, £, =k, and ¥, = 1. The
normalization of ¥, is chosen so that

f fwn(r)wm(r)dA =nR?,,, . (8)
<R

The constants 4, n»0, are the amplitudes of the reflected
modes. In particular we define

R, ,=4,/4, 9

which is the reflection coefficient of the zeroth mode. Note
that the incident wave &' is just the zeroth mode propagat-
ing in the positive z direction. The total field in z <0 can be
written, from Eqgs. (1), (2), and (4),

u, =Ae* + dje =" 4 i A, ¥, (r)e %=,
n=1

Next, consider the field in the upper fluid half-space.

The field is doubly periodic, defined by the unit cell problem:

(10)

Veu,+k*u,=0, z>0, |x|<a, |y <b,
du
—==0, z>0, |x|=a, [y|<b, (11)
Jx
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duy _

dy
In addition, we have the continuity of # and the continuity of
the velocity in the z direction at the interface z =0,

, z>0, |x|<a, |y|=

u,=u,, z=0, r<R, (12)
0, z=0, |x|<a, |y|<b r>R,
%4y _ 1y (13)
3z =L, z=0, r<R.
Jdz
Il. GREEN FUNCTION

The fundamental unit cell problem of Eqgs. (1) and (12)
can be solved using g(x;x"), the Green function which satis-
fies, for z' > 0,

Vg +k’g=6(x—x'), z>0, |x|<a, |y|<b,
(14)

% _, z>0, |x|=aor |y|=b,

an  1z=0, |x|<a, |y|<b,

where d /dn is the normal derivative. By the usual methods
(e.g., Ref. 2),

© cosa,xcospf,ycosa,x cosf,y

(xx') = —!
g ) 2’ab ”"”z‘;o (Sm(snpmn
X(eiﬂmﬂz*z“ +eipmn(z+z‘)), (15)
where
a,, =mm/a,
Bn =nﬂ'/b9 (16)
pmn=(k2_a2 _ﬁi)l/z’ Im(pmn)>0
5 — [2, m=20,
™1, m=#0.

This Green function allows us to write the field ¢, in the fluid
half-space in terms of the z velocity onthecircler<R,z=0;

u,(x) = f fg(xx (x

The velocity in (17) can be expressed, via Egs. (13) and
(10), in terms of the unknowns 4, n = 0,1,2,... . Then, with
z=20in Eq. (17), and using the continuity condition Eq.
(12), we obtain, for r <R,

Mdx"dy'. (17)

& 1 & cosa,xcosf,y
A+ AV, (r)y=— _—
2N = T 5,
xf f(kA -3 A,§,‘l/,(r’))
<R I=0

Xcos a,,x" cosfB,y dx'dy’. (18)

(1. SIMPLIFICATION AND THE MATRIX EQUATION

Multiplying Eq. (18) by ¥, (r), p = 0,1,2,..., implies an
infinite system of equations for the unknowns A4,
n =0,1,2,... . This system simplifies by introducing several
new dimensionless variables. First, define the porosity ¢,
0<p<m/4,
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# = 7R */4ab. (19)
Let

k =kR, (20a)

& =£R, (20b)

Pmn = PmnRs (20c)

a, =a,R, B,=8.R, (20d)

A, = (4,/4) (& /k),

1
n = _Zf j V,(r) cos a,,x cos B,y dx dy
7TR <R

>

8p> m=n=0,

2@, +BDH"? -
=(—"—2"—J[(@, +B:)"*], (20e)
@, +B:-f,
m? + n*>0,
where the latter result is derived in Appendix B. Define the
matrix (M] and array {N} by the elements p, ¢ = 0,1,2,...

a

Y =m,n=o#&""" Kamn ’é% (21a)

N, =My, — (2/K)8,0. (21b)
The infinite system of equations can then be written

[M1{4} = {N}, 22)

where {4} is the array with elements A, ,»p=0,12,..1In
general, the matrix [M] is complex and symmetric. The so-
lution {4} to the system of equations (22) represents an
exact solution to the scattering problem through Eqs. (10),
(13), (17), and (20). Thus Eq. (10) is exact since the cho-
sen eigenfunctions are complete. All diffraction effects,
which would be important at high frequencies, are implicitly
contained in this eigenfunction solution.

We now proceed to further simplify the system of equa-
tions (22) into a form more amenable to computation. First,
eliminate 4, from the system using the first equation to give

- 2 i 7 &
RIIEA(): 1 —E-l—?kp;l BPCP’ (23)
where
- - f = K} = Kg
M0=kM00=1+¢+2k¢(2 — + o
m=1 Pmo n=1 Pon
«© Kz
+2 E _0mn>, (24)
mmn =1 Pm,,
B, A/, (25)
C, = 2i\j,, Mo /M, (26)

Let {B} and {C} be the arrays with elements B, and C,,
p=123,.... Then {B} satisfies the system

[Q1{B} =A{C}, (27)
where, for p, ¢ = 1,2,3,...,
Opg = Winlig [Mp, — (I_‘/Mo)MpoMqO]- (28)

In general, the matrix [Q] is complex and symmetric and
depends upon k. Similarly, {C} is complex and depends
upon k. We have simplified the system in the above manner
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so that in the limit as kK —0, the static limit, we obtain a real,
symmetric matrix problem. We will discuss this in detail
below. Another limiting case of interest is the single hole
limit, obtained as a/R and b /R both tend to infinity. It is
shown in Appendix C how Eq. (27) reduces to the known
system of equations for the single hole problem.® The limit-
ing problem also provides a check on the numerical results,
discussed later. A further reason for preferring Eq. (27) to
Eq. (22) is that the matrix elements of [ Q] remain bounded
at the modal frequencies k,,,, where Pmn = 0. The matrix
elements of [ M] are singular at these frequencies. However,
the matrices [M] and [@Q] both contain singular diagonal
elements at the pore cutoff frequencies &,, p>1. This insta-
bility is due to the definition of M,, in (21a), and can be
easily corrected by using {4} instead of {4}, for example.

IV. LOW-FREQUENCY ASYMPTOTIC EXPANSION

The quasistatic case of the wavelength much larger than
the cell size occurs when k € 1, for ¢ = O(1). With regards
to Eq. (27), we assume the ansatz

[Q1=12“1+k[QU] +K*Q®] + -+,
(B}={B} +k{B"} + k*{BD} + -,
{CH={C+ HCM} + EHCP} + -+,

where [Q @], [@ "], etc., are independent of k. Explicit ex-
pansion of Eq. (28) gives, forn =0,1,2,...,

(29)

— —1/72\ 1

;gn) = ViipJigLpgn + ( n ) 2 8 (30a)
1p

,‘,3"*” =0, (30b)

where

—12 = K oK, mo 2 K0 Kpon
qul = 2¢( [ ) ( Z £(2I+q” + Z

nQ@i+1
m=1 Q& n=1 Bf, +1

-4} K‘ K
+2 Z prmn Y qmn . 1)
mn=1 (Eﬁ +ﬁi )(l+ 1/2)
The first two terms in the expansion of {C} are
o
5" - 2 Lo » (32a)
1+¢
cw—_1 | co (32b)
I4 1+¢ 000" p

Inserting the ansatz equation (29) into Eq. (27), and equat-
ing terms of different order in k, yields a sequence of prob-
lems for the arrays {B (™'}, n = 0,1,2,... . The first two are

[Q91{B“}={C}, (33a)
[QUIHB"}={C"} - [@V"HC“}. (33b)

The zeroth-order equation (33a) is a real, symmetric sys-
tem. It is interesting to note, using Eqs. (30b) and (32b),
that the solution to the first-order system equation (33b) is
trivially

B(l)= i LOOO'B(O)'

* T1te P (34)

We turn our attention specifically to the reflection coef-
ficient R,, of Eq. (23), expanding it as
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Ry=RQ +ikRV + (i)’ R > + (35)
It is easy to show
1-¢
R® _ _( ), (36)
11 1+4
2
RMW— ( B@ _ L )
11 l+¢ Z]lppo()p (l+¢)ooo
(37)

Define the quasistatic effective increase in length of the pores
as L(0), where

1_¢) 2KkL(0) 72
R,=—-{—= o(k?). 38
1 (1+¢ e + O(k) (38)
Therefore, by Egs. (35)—(38),

LO) _ Lwo _ LooB®. (39

It is also clear from Eqs. (23b), (32b), (34), and (35) that
R {7 is real and may be determined from these equations. A
simpler method is to use Eqgs. (38) and (54) below, to yield

R® = 2(; :;}:)2 (LEQO) )2, (40)

V. REFLECTION AND TRANSMISSION COEFFICIENTS

For arbitrary frequency, the transmitted field in the flu-

id half-space follows from Eqgs.(10), (13), (17), and (20e)
as

o

u(x) =4 Y —=

m,n=0 pmn

F,. (k) cosa,,x cos B,y €™
(41)

where

F,.(k) (42)

5 (koo = 5 R
= K, . — K,..A4,).
6," 6,, Omn IZ:Q imn“%]

The numbers F,,, are the amplitudes of the different order
transmitted plane waves. Only a finite number of these are
propagating at a given frequency. The propagating modes
satisfy p2,, >0, and the remaining evanescent modes have
P2.n <0. The only mode that propagates at all frequencies is
the (00) or plane wave in the z direction. Define the trans-
mission coefficient

Typ(k) = Foo(k). (43)
Then by Egs.(42) and (9), we have the general relation
le(I;) =¢[1—R11(7€)] (44)

The plane-wave transmission coefficient for normal in-
cidence from the fluid half-space follows from Appendix A
as

Ty (k) =4 (45)

From Egs. (9), (45), and (A9), we deduce the general re-
sult
T, (k) =1—R,, (k). (46)

Define the reflection coefficients R, for incidence from the
fluid as

Rp(k) =1+ Fiy(k), (47)
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where the scattered field u5° of Appendix A is

uf=4 Y% k F:.. (k) cos a,,x cos B,y e*™,

mn=0 Ppn
(48)
with the modal amplitudes given by
F,,=—F_. (49)
It is straightforward to show that
Ry (k) =1—¢ + ¢R,, (k). (50)

Equations (44), (46), and (50) describe all four fundamen-
tal reflections and transmission coefficients in terms of a sin-
gle one, in this case R, ,.

Now consider the energy flux balances. For incidence
from the porous side it is easily shown that the energy bal-
ance is

¢Z’l 2 an 2
L
o & 2 Pmn
(51)
and, for incidence from the fluid side,
Z’l 2 2
1=|R22|2+¢|T21|2+k(z¢l | +2 ')
o £, @ Pmn
(52)

The modal sum (1) is over those n5£0, for which j,, < kR,
and sum (2) over (m,n)+(0,0) for which m®/a® 4+ n*/
b? <k?/m* Letk,,, be the dimensionless cutoff frequency of
mode (m,n),

k.. = (a2 +B2)/?R
= 2/rd[m?(b /a) + n*(a/b)]">. (53)

If I_c<min(12m,l_cm)<rr<j“ = 3.83..., then both modal
sums are zero and the energy balances can be expressed,
using Eqs. (44), (46), and (50), as

[Rul>+6[1 —R,[>=1 (54)
for incidence from the pores, and as
¢|1—R|1|2+|1_¢+¢R11[2=1 (55)

for incidence from the fluid half-space. Equations (54) and
(55) are easily seen to be equivalent.

V1. BEHAVIOR OF A4, NEAR THE CUTOFF
FREQUENCIES 4,,,,

For any m, n, we have from Eq. (42)
F,.(k) 8,6 = K

Ry(k)=1— n_ Pmn 4 (k).
H K()mn 4¢ PZ:I KDmn ’
(56)
Also, Eq. (23) can be rewritten as
2 = M,
By=1——"—— —2 4,k 57
R ( M, FE_:I M, (k). (57)
Define e=p,,,; then, as |€| -0, Eq. (21a) implies
44 1
M, =(6,,.6 s K ) -+ O(1). (58)
Thus, for p>1,
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M, /My =2K,,,/K,,, + O(¢). (59)
Define

x K _ —
S, = LAy (60)
. ,,Z’. X o (Kopn)

Omn

then, Eqgs. (56) and (57) become, in the neighborhood of
k

mn?

Rll(]_() =1 _Smn - (an/KOmn)

X (8,,6,/44) + O(e), (61)
R, (k) =1-25,, + O(e). (62)
Eliminating S,,,,, from Egs. (61) and (62) gives
- F,. 8,5,
Omn

However, if € is real and 0 <€ <«1, then, (51) implies that
|F,.s| = O(1). Equation (63), in combination with Egs.
(44), (46), and (50), shows that in the limit, as k- k,,,

o8]
! ©20.01

04 |

0.8
0.4

0.6

0.4 |

i I 1 T 1 1 '

R ,Rp—1, (64a)
T,T,,—0. (64b)

The above analysis is for arbitrary m and n. In particu-
lar, it does not depend upon the porosity ¢, or indeed the
pore shape. Any symmetric, cylindrical pore would have the
same effect. However, as ¢ — 0, we must be careful to scale ¢,
accordingly. In this limit the width of the “resonances” at
k., will shrink. The limit of ¢ -0 is actually quite a patho-
logical one; see Fig. 2. As ¢ tends to zero, the modes X,
become infinitely dense and the lowest one tends to zero.
This produces a very jagged appearance in |R,,(k)|, for ex-
ample. At zero frequency we know that R, = — 1as ¢ 0.
But the above results say that there will be a frequency very
close to zero at which R, = 1. This type of behavior is char-
acteristic of the limit of a continuous spectrum from a dis-
crete spectrum; see, for example, Ref. 11, Sec. 4.13.

The limits in Eq. (64) indicate that the interface of the
porous solid acts like a rigid membrane at the cutoff frequen-

0.4 .

0.8 - 0.76

0.4 |

0.2 J

N

T 1 1 l | 1 T

KR

FIG. 2. The magnitude of R, versus frequency k= kR for several values of the porosity ¢. The magnitude actually goes to unity at each of the modal
frequencies ,,,. However, these peaks are not shown in the plots because of the large step size chosen for k relative to the resonance widths. This
discrepancy is most evident for smaller values of ¢, when the frequencies &, are very dense and the peaks exceedingly narrow.
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cies k,,,. No energy is transmitted across the interface when
the wave is incident from either side.

VII. EFFECTIVE BOUNDARY CONDITION

For k <min(k,q,k,,), we know that R, satisfies Egs.
(54) and (55). In addition, as k -0, R 11 has the simple form
of Eq. (38). We also know, from Eq. (64), that R,;—1 as
I_camin(l;w,l_cm). We now propose to use these various
pieces of information to devise a simple, physical description
for R,,(k) below the first cutoff frequency.

Consider the two coefficients Ry, and T;,. Equation
(44) is a general relation between them, which expresses the
conservation of fluid mass. At zero frequency, we also have
the static continuity of pressure condition across the inter-
face, that

1+ R,,(0) = T,,(0). (65)
Solving the simultaneous Eqs. (44) and (65) gives
R,1(0) =R {9, where R (¥ is defined in Eq. (36). Consider
the following generalization of Eq. (65) to nonzero frequen-
cies:

where a and /3 are real numbers that depend upon k, and
both equal zero when k = 0. Let R, = R (¢’ be the solution
to the simultaneous equations (44) and (66),

R = —[(®—¢)/(e* +¢)]. (67)

Note that both Eqs. (54) and (55) are satisfied if « and B are
related by

1+cos(a—fB)—cosa—cosB=0. (68)

A trivial solution to Eq. (68) is ¢ = 8 = 0, for which R (¢
=R {9, However, Eq. (68) is also satisfied if (i) a#0,
B=0,0r (ii) a = 0, 8 #0. In general,

14+ ¢*>—2dcosa

R (aB)|2 — 69

| 11 | 1+¢2+2¢COSB ( )
and, therefore,

IR [>IR (> (1 —¢)/(1 + ¢), (70a)

[RPISIRPI>(1—¢)/(1+ ). (70b)

In particular, R (¥ =1ifa —B= + 7.
The effective boundary condition equation (66), in con-

"+ R, (k)e® = Tu(l_c), (66) junction with Eq. (44), completely determines the four re-
1 1
¢
®=0.01
0.8 08
0.6 08 . 6
0.4 | " t 04 |
0.2 Qa2
o I T L] T 1 L] 1 o 1 i 1 1 1 T T
0 1 2 3 4 ] 1 2 3 q
1 1
0.8 4 0.8 J
0.8 . 0.4 f‘\ 0.8 - 0.78
0.4 J a4 J
02 | o2
o T T ¥ T 1 1 T o 1 1 Ll T 1 T 1
o 1 2 3 4 [} 1 2 . 3 4
kR
FIG. 3. Thephase §,,/7 where R,, = — |R,,| exp(8,,) vs k for the same values of ¢ asin Fig. 2. The value of ¢, , is 7 at each of k,,,,,. However, thisis not al-

ways indicated in the plots for the same reasons as given in Fig. 2.
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flection and transmission coefficients. The basis for Eq. (66)
was first, as an obvious generalization of Eq. (65), and sec-
ond, the energy balances Eqs. (54) and (55). We can inter-
pret Eq. (66) physically as a displaced pressure continuity
condition. For example, if 8 = 0 then it says that the trans-
mitted pressure at z = 0 equals the sum of the reflected pres-
sure at z = 0 plus the incident pressure at z = a/k. The low-
frequency results Eq. (38), along with Eq. (67), imply that
for R {25 to be equal to R, we must have

a/(1 —¢) —B/(1 +¢) =2kL(0) + O(k?) (71)
as k—0. If we let 8 = 0, then this determines the initial be-
havior of & as a function of k. As k 1min(k lo,l_cm ), we should
have a -, since R,; — 1. Alternatively, we could leta =0

and determine 8 as a function of k such that R (¥’ = R,,. If
we define & and /3 such that

R =R{P =R, k), (72)
then

e®=¢— (1+$)R,, (73)
and

P=—4—(1-4)/R,,. (74)

Either of these frequency dependent parameters allows us to
interpret R |, through the effective boundary condition equa-
tion (66). However, the exact values of @ and B have to be
determined from Egs. (73) and (74), which involves solving
the infinite complex system. One would hope that a simpler,
more direct method exists to determine the real quantity @

or B.

VIIl. NUMERICAL RESULTS AND DISCUSSION

All of the results shown are for a square array of pores.
The determination of the quasistatic effective length increase
L(0) of Eq. (38) required solving the real, symmetric, infi-
nite system equation (33a). It was found, mainly by trial and
error and also on the basis of similar calculations for the
single hole problem,® that truncation by a 75X 75 system
was adequate for convergence. A larger truncation size, typi-
cally 100 X 100, was used in solving the complex, symmetric,
finite frequency system equation (27). For each value of k
and §, it was necessary to solve the truncated system equa-
tion (27). This sets a limit to the number of points that could
be considered in (I;,qS) space. We thus restricted our atten-
tion to 0<k<j,;, the first cutoff frequency of the pores. The
frequency step size was, by necessity, relatively large. Hence,
it is not always apparent from the figures shown that, for
example, R,,— 1 as k—k,,,. Independent checks on several
arbitrary modal frequencies k,, did, however, show com-
plete agreement with our analytical findings.

We note the plots of R, in Figs. 2 and 3 for small values
of the porosity ¢. This seemingly erratic behavior, superim-
posed upon a smooth background, is typical of waveguide
phenomena involving very many modal frequencies. As
#—0, the peaks at k,,, still have finite magnitude, in fact
R,,—1 at these frequencies, but the widths of the peaks dis-
appear. This is analogous to the vanishing of the resonance
peaks in the acoustic scattering cross section of a soft or hard
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0.2
04 m%-\

-0.2

-04

REAL PART OF Ry
R,,(®=0.001)}
——-—= FROM REF. 8

-1.2

FIG. 4. The real and imaginary parts of R, vs k for ¢ = 0.001 compared
with the same quantity for the single hole from Ref. 8. Again, the limitations
described above apply at k,,,,,.

target as the impedance mismatch between the target and
host medium becomes large.'* In the limit of ¢ -0, the re-
flection coefficient reduces to the coefficient for a single hole
in a rigid half-space; see Fig. 4. Plots of other related quanti-
ties are shown in Figs. 5-8. Note that the results shown are
for an inviscid acoustic fluid. The effect of viscosity would be
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FIG. 5. Plot of the quasistatic end correction L(0)/R vs ¢.
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FIG. 6. The magnitude of R, vs k for different values of ¢. The magnitude

should be unity at & = k,,,, but this is not always indicated because of the FIG. 7. The phase 8,, defined by R,, = |R,,|exp(i6,,) versus frequency for

sparsity of points. different porosities. The value of 8y, is actually zero at k = %,,,, but this is
not always apparent in the plots. The curves correspond to ¢ as in Fig. 6.
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quasistatic form of |R,,| at k = 0.01.
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FIG. 9. The quantities @ and B of Eqgs. (73) and (74). The curves show @/ and B /r vs k /k\ for different values of ¢.

to broaden the resonances and lower the magnitudes at reso-
nance. The displaced pressure continuity condition param-
eters @ and S are plotted in Fig. 9.

Finally, we note that the results for the reflection and
transmission coefficients R, R,,, T',, and T, can be com-
bined to consider reflection and transmission through a po-
rous panel. Let / be the panel thickness and let R, T be the
reflection and transmission coefficients for the unsupported
panel, i.e., with free space on either side. Then, neglecting
multiple reflections of all modes other than the fundamental
(n =0), it is easy to show

T= Tlelzeikl/(l —R %leakl),
R =R22 + TRlleikl.

(75)
(76)

For very thin panels with k/<1, R and T simplify on the
basis of Eq. (38) and the results of Sec. V, to give T~1,
R~ —i[(1—¢)/26(1 + N [(1 + $)°2kL(0)+ (1 + ¢*)

Xkl]= — ikl In terms of the equivalent circuit theory of
Morse’ (p. 365), the panel has a characteristic impedance
Z =pc(1+ R)/1 — R).For thin panels, Z = pc(1 — i24).
The panel acts like an impedance p in series with a small resis-
tance of order w” The small resistance here is analogous to
the resistance due to power radiation from a duct into free-
space [Morse,” Eq. (2.3.4) ]. However, the resistance is due
to conversion from the fundamental mode to the higher,
nonpropagating modes. Radiation effects are unimportant.
The present results could be augmented by radiation loss for
a panel of finite lateral dimensions.

IX. CONCLUSIONS

The exact solution for plane-wave reflection from a peri-
odic fluid saturated porous solid has been derived and nu-
merical results presented. Our major finding is the finite fre-
quency effect that the interface acts like a rigid membrane at
the discrete frequencies defined by the double periodicity of
the pore spacing. This effective rigidity is independent of the
porosity ¢, and is also expected to be independent of the pore
shape. We have also identified a simple, displaced pressure
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continuity condition that depends upon a single real fre-
quency dependent quantity. This new condition is in the
form of an obvious generalization of the static condition, but
is only valid for frequencies up to the first cutoff. The simpli-
city and utility of this effective interface condition suggests
that further work is necessary in the area of deriving effective
interface conditions from first principles, so that no arbi-
trary parameters are required.
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APPENDIX A: INCIDENCE FROM THE FLUID
Consider the plane wave
une = fe — ik (A1)
incident upon the porous half-space. Assume the solution
U, 20,
- [u2 =ul 4+ 4™ + u¥, z>0.
Note that #35° does not include the rigid reflection Ae

Therefore, #5° should vanish when the pores disappear. Ex-
press u, as

(A2)

ikz

uy=3 A%, (re %~ (A3)
n=0
Procecding as before, we can derive an integral relation simi-
lar to Eq. (17). Use of the continuity condition then implies
the equation analogous to Eq. (18),
o 1 &, = cosa,,xcosf,y
SAN N =24—-— Y 41 ¥ ————
=o ab /=%

mn=20

pmnamsn
XJ j Y, (r') cos e, x' cos 3,y dx'dy'.
<R

(A4)
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The orthogonality of the ¥, leads to the system

[M1{4}={N}, (AS5)
where [M] is the same as before [Eq. (21a)], and

Ay = (A;/4)(,/k), (A6)

N,=25,. (A7)
Noting that

N, =M, —N,, (A8)

where V), is defined in Eq. (21b), it is clear that the solution
to the system (A5) can be written in terms of the solution to
Eq. (22) as

A, =6,—4 (A9)

p

APPENDIX B: DERIVATION OF EQ. (20e)

It is easily seen from its definition in Eq. (20e) that,
because of the symmetry involved,

1 i(@,,x + B,p)
Ky = de‘l’p(r)e T8 dx dy.

-y (B1)

Let ¥ = (@2, + £2)"? and introduce polar coordinates, so
that

1

pmn
7R ?

From Eq. (5) and Ref. 13, Eq. (9.1.21),
B 2

"~ R¥y(k,R)
Equation (20e) then follows from Ref. 13, Eq. (11.3.29).

R 21
J\I/p(r)rdrj 0= 49 (B2)
(4] (4]

R
J Jo(k,r)Jo(yr)rdr. (B3)
0

pmn

APPENDIX C: THE SINGLE HOLE LIMIT

Asa/R,b /R — «,theporosity ¢ —0and the double sum
in Eq. (21a) becomes in the limit a double integral. This can
be reduced to a single integral using polar coordinates. After
some straightforward manipulation it can be shown that the
elements of [Q] and {C} in the fundamental equation (27)
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tend, in the present limit, to (p,g = 1,2,...):

C, = 2a,0:[j), /(1 — ikagy), (Ch)
Qpe=(1— /_62/1'%‘,)”25” + Vel
X{a,, + ik [@na/(1 —ikag) ]}, (C2)
where, for m,n =0,1,2,...,
_ ® s T2 (s)ds
am"(k)=2J 2 T 24y1/2 21 2 2 2 :
o (85— k) — i) (8T —jin)
(C3)

The real and imaginary parts of a,, (k) are proportional to
the quantities y, and 6,, defined in Eq. (28.8) of Morse.”
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