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Short Note

The tube wave as a Biot slow wave

Andrew Norris*

INTRODUCTION

The tube wave speed in a simple fluid-filled circular bore
reduces to v = v /(1 + K /u)"/? as the frequency goes to zero,
where v, = (K ,/p,)"/* is the acoustic sound speed in the fluid,
py is the fluid density, K, is the fluid bulk modulus, and p is
the formation shear modulus. Biot (1952) deduced this simple
relation by considering the low-frequency asymptotic ex-
pansion of the exact dispersion relation. In 1956, Biot pro-
posed a theory (Biot, 1956a, b} that predicts a new type of
compressional bulk wave in fluid-saturated porous media.
This “slow wave” is associated mainly with the motion of pore
fluids. It appears that Biot never related this theory to his
previous work on the bore problem, although the connection
is apparent if the bore is considered as a pore. Typically, the
bore radius is about 10 cm, while the relevant acoustic logging
frequency is on the order of 1 kHz With water as the bore
fluid, the viscous skin depth is on the order of 100 pm. There-
fore, if the bore is to be considered as a pore, the relevant form
of Biot’s theory is the limit in which the pore radius is large
relative to the viscous skin depth of the fluid. This form is the
high-frequency limit, in which the effects of the fluid viscosity
are negligible and the slow-wave dissipation is relatively low.

DYNAMIC POROELASTICITY

The poroelastic equations in the absence of viscous dissi-
pation are (Biot, 1962)

and
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p,?u+m?w=aMVV~u+MVV-w, (2)
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where u and w are the solid and relative fluid displacements,
p =dp, + (1 — d)p, is the average density, p, is the solid den-
sity, ¢ is the porosity, and m is the effective fluid density. m is
sometimes written m = Tp /¢, where T (= 1) is the pore-space
tortuosity. The shear modulus of the porous medium is p and
K, is the bulk modulus of the solid grain. The other parame-
ters are

a=1-—K/K,, 3)
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and
K, =K + a*M. (S)

Equation (5) is the Biot-Gassmann relation between the bulk
moduli K, of the saturated medium and K of the dry medium.

The two compressional-wave speeds are found by consider-
ing solutions in the form (u, w) = (A4, B)i cos [o(t — i - x/c}],
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przutp s w= (KC + %) VV.u+ pViu+ aMVV-w where fi is an arbitrary unit vector. The constants 4 and B,
at ot and the speed c, follow from a simple eigenvalue problem. The
(1) speeds are given by
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where
cg = (K, +3w/p (M
and
M
2 ®)
Tp,

The roots defined in equation (6) simplify if the elastic moduli
and densities satisfy Biot’s compatibility condition (Biot,
1956a), cé = aM/pf. Then, the two roots are exactly ¢, and
¢y, where ¢, = ¢,[(1 — ap,/p)(1 — dp,/Tp)]'?, and it can
be shown that ¢, < ¢, < ¢,.

THE TUBE WAVE

The tube-wave limit follows from taking the limit of an
isolated cylindrical pore by (1) taking the limit of vanishing
porosity; (2) using the appropriate tortuosity T for a single
cylindrical pore parallel to the direction of wave propagation;
and (3) calculating the correct form of the dry frame modulus
corresponding to the isolated pore.

First consider the limit of ¢ — 0. Then a = O(¢) and
&M = O(1), where O means “order of.” On the basis of the
Hashin-Shtrikman bounds, a > ¢ for all ¢ > 0. Keeping T of
order unity, the two speeds of equation (6) reduce to ¢, and ¢,
of equations (7} and (8). ¢, is the compressional-wave speed in
a homogeneous elastic solid. c,is the Biot slow-wave speed.

The tortuosity T for wave motion parallel to the axis of a

cylindrical pore. of arbitrary cross-section reduces- to- unity in-

the limit when the viscous skin depth is vanishingly small,
which is the present high-frequency limit of the Biot theory.
This result follows from the simple observation that as the
viscous skin depth vanishes, there is no coupling between the
solid and fluid motions in the axial direction. Thus, the ef-
fective inertia p,, (Biot, 1956a, b), representing the drag of the
fluid on the frame, is zero. Because T =1 — p,,/dp, (Biot,
1962}, it follows that T = 1. Usually, it has been assumed that
T - o as ¢ — 0, so that ¢, — 0. In this limit, the pore space
becomes very poorly connected and highly “tortuous.” How-
ever, the present limit process maintains the connectivity of
the pore and actually minimizes T. With T = 1, ¢, becomes
[from equations (4) and (8)]

// Kf 2
Clzl?f// 1+K— R (9)
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where the modulus K, is defined as

! e—¢
— = lim —.
Ko 40 OK,

(10)

In order to obtain K, the dry frame modulus, in the limit of
¢ — 0, consider the porous medium as a thick annular elastic
shell with inner radius a and outer radius b. The length of the
shell is arbitrary, and the porosity of this medium is just the
volume fraction occupied by the pore, defined by r < a. The
solid occupies a < r < b, and therefore the porosity is ¢ =

(a/b)?. The dry bulk modulus is found by subjecting the
porous medium to a hydrostatic pressure. Thus, consider the
static elasticity problem of the shell subject to uniform pres-
sure on the exterior surface. This surface is the cylindrical
surface r = b, plus the two end caps a < r < b. The inner pore
surface r = a is left free of traction. If p is the applied pressure,
define the dry bulk modulus K by AV/V = —p/K, where AV
is the incremental volume change from the original V. The

solution is
1 1 1
o —+3), (1
K 1—-¢\K, u,

where p is the solid shear modulus. This result is valid within
the range of linear elasticity for 0 < ¢ < L.

The modulus K, follows from equations (3), (10), and (11) as
K, = ;. The limiting value of the Biot slow-wave speed be-
comes, from equation (9). ¢, = v /(1 + Kf/ps)”2 which is ex-
actly the long-wavelength limit of the tube-wave speed for a
bore in a formation with shear modulus p . Thus, the tube
wave is the limiting case of the Biot slow wave when the bore
is considered as an isolated pore.

AN ADDITIONAL RESULT

The ratio of amplitudes B/A of the assumed plane-wave
solution (u, w) = (A, B)A cos [&(t — @ - x/c)] is known to be
negative for the Biot slow wave (Biot, 1956a). In the limit
under consideration, as ¢ — 0,

B 4
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For example, if v, = 3 000 m/s, v, = 2 000 m/s, p, = 25, v, =
1 500 m/s, and p,; = 1, then B/A = —117/11. The relative fluid
displacement w is equal to $(U — u), where U is the absolute
average fluid displacement. Therefore, as ¢ — 0 in the pore-to-
bore limit, the ratio of solid-to-fluid displacement in the direc-
tion of propagation, ie, in the axial direction, is
uw/U = &/(1 4+ B/A). This displacement goes to zero in the limit
as ¢ — 0, as would be expected, since the solid displacement is
then averaged over an infinite volume compared with the
borehole volume. The result is still interesting for ¢ > 0, be-
cause it indicates how the fluid and solid interact in the pres-
ence of more than one pore or bore.

CONCLUSION

The tube wave is a limiting case of the Biot siow wave when

“the bore is considered as an isolated pore in a homogeneous,

porous medium. The correspondence follows naturally from
Biot’s theory of dynamic poroelasticity, which predicts an ad-
ditional slow compressional wave in the bulk porous medium.
The slow-wave speed reduces exactly to the zero-frequency,
tube-wave speed when the appropriate parameters are taken
in Biot’s theory for a porous medium with straight pores and
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vanishing porosity. The tube wave is further evidence of the
consistency of Biot’s theory of dynamic poroelasticity.
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