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Short Note 

The tube wave as a Biot slow wave 

Andrew Norris* 

INTRODUCTION and 

The tube wave speed in a simple fluid-filled circular bore 

reduces to cT = v,/(l + K,,$LL)~” as the frequency goes to zero, 

where vf = (K,/pf) ‘I2 is the acoustic sound speed in the fluid, 

pr is the fluid density, K, is the fluid bulk modulus, and p is 
the formation shear modulus. Biot (1952) deduced this simple 

relation by considering the low-frequency asymptotic ex- 

pansion of the exact dispersion relation. In 1956, Biot pro- 
posed a theory (Biot, 1956a, b) that predicts a new type of 
compressional bulk wave in fluid-saturated porous media. 
This “slow wave” is associated mainly with the motion of pore 
fluids. It appears that Biot never related this theory to his 
previous work on the bore problem, although the connection 
is apparent if the bore is considered as a pore. Typically, the 
bore radius is about 10 cm, while the relevant acoustic logging 
frequency is on the order of 1 kHz. With water as the bore 
fluid, the viscous skin depth is on the order of 100 pm. There- 
fore, if the bore is to be considered as a pore, the relevant form 
of Biot’s theory is the limit in which the pore radius is large 
relative to the viscous skin depth of the fluid. This form is the 
high-frequency limit, in which the effects of the fluid viscosity 
are negligible and the slow-wave dissipation is relatively low. 

where u and w are the solid and relative fluid displacements, 
p = $pr + (1 - +)p, is the average density, p, is the solid den- 
sity, + is the porosity, and m is the effective fluid density. m is 

sometimes written m = Tpl/+, where T (2 1) is the pore-space 

tortuosity. The shear modulus of the porous medium is p and 

K, is the bulk modulus of the solid grain. The other parame- 

ters are 

and 

DYNAMIC POROELASTICITY 

The poroelastic equations in the absence of viscous dissi- 
pation are (Biot, 1962) 

ii2 82 
p-u+p --w= 

?t2 / at2 
u+pV’u+aMVV-w 

(1) 

Equation (5) is the Biot-Gassmann relation between the bulk 
moduli K, of the saturated medium and K of the dry medium. 

The two compressional-wave speeds are found by consider- 
ing solutions in the form (II, w) = (A, B)I? cos [w(t - ti 1 x/c)], 
where ti is an arbitrary unit vector. The constants A and 5, 
and the speed c, follow from a simple eigenvalue problem. The 
speeds are given by 

r’z i;= 
pJ$u+m,w=aMVV.u+MVV.w, 

Cf (2) 

a = I - K/K 57 (3) 

1 + a-+ -_-+- 
M K, K, ’ (4) 

K, = K + a2M. (5) 

(6) 
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where 

and 

C2=J?!x 
1 

TPf 

(8) 

The roots defined in equation (6) simplify if the elastic moduli 
and densities satisfy Biot’s compatibility condition (Biot, 
1956a), ct = aM/p, Then, the two roots are exactly c0 and 
cZr where c2 = c,[(l - ap,/p)/(l - $pf/Tp)]“‘, and it can 
be shown that c2 < c, c c,,. 

THE TUBE WAVE 

The tube-wave limit follows from taking the limit of an 
isolated cylindrical pore by (1) taking the limit of vanishing 
porosity; (2) using the appropriate tortuosity T for a single 
cylindrical pore parallel to the direction of wave propagation; 
and (3) calculating the correct form of the dry frame modulus 
corresponding to the isolated pore. 

First consider the limit of $4 0. Then a = O(4) and 
@A4 = O(l), where 0 means “order of.” On the basis of the 
Hashin-Shtrikman bounds, a > 4 for all 4 > 0. Keeping T of 
order unity, the two speeds of equation (6) reduce to c0 and c1 
of equations (7) and (8). c0 is the compressional-wave speed in 
a homogeneous elastic solid. c,is the Biot slow-wave speed. 

The tortuosity T for wave motion parallel to the axis of a 
cylindrical pore of arbitrary cross-section redu~es~ !o unity in 
the limit when the viscous skin depth is vanishingly small, 
which is the present high-frequency limit of the Biot theory. 
This result follows from the simple observation that as the 
viscous skin depth vanishes, there is no coupling between the 
solid and fluid motions in the axial direction. Thus, the ef- 
fective inertia p,2 (Biot, 1956a. b), representing the drag of the 
fluid on the frame, is zero. Because T = 1 - p,,/~$p,~ (Biot, 
1962), it follows that T = 1. Usually, it has been assumed that 
T + ~j as $-•t 0, so that ci + 0. In this limit, the pore space 
becomes very poorly connected and highly “tortuous.” How- 
ever, the present limit process maintains the connectivity of 
the pore and actually minimizes T. With T = I, cl becomes 
[from equations (4) and (8)] 

(9) 

where the modulus K, is defined as 

In order to obtain K, the dry frame modulus, in the limit of 
@- 0, consider the porous medium as a thick annular elastic 
shell with inner radius a and outer radius b. The length of the 
shell is arbitrary, and the porosity of this medium is just the 
volume fraction occupied by the pore, defined by r < a. The 
solid occupies a < Y < h, and therefore the porosity is 4 = 

(a/h)‘. The dry bulk modulus is found by subjecting the 
porous medium to a hydrostatic pressure. Thus, consider the 
static elasticity problem of the shell subject to uniform pres- 
sure on the exterior surface. This surface is the cylindrical 
surface Y = h, plus the two end caps a < Y < h. The inner pore 
surface r = a is left free of traction. If p is the applied pressure, 
define the dry bulk modulus K by AV/V = -p/K, where AV 
is the incremental volume change from the original V. The 
solution is 

1 _=- 
K 

(11) 

where P,~ is the solid shear modulus. This result is valid within 
the range of linear elasticity for 0 5 4 < 1. 

The modulus K, follows from equations (3), (lo), and (11) as 
K, = p.s. The limiting value of the Biot slow-wave speed be- 
comes, from equation (9). C, = of/(1 + Kf/pJ1” which is ex- 
actly the long-wavelength limit of the tube-wave speed for a 
bore in a formation with shear modulus us. Thus, the tube 
wave is the limiting case of the Biot slow wave when the bore 
is considered as an isolated pore 

AN ADDITIONAL RESULT 

The ratio of amplitudes E/A of the assumed plane-wave 
solution (u. w) = (A, B)li cos [w(t - fi. x/c)] is known to be 
negative for the Biot slow wave (Biot, 1956a). In the limit 
under consideration, as 4 + 0, 

For example, if L’,, = 3 000 m/s, L’, = 2 000 m/s, p, = 2.5, uf = 
1 500 m/s, and p,. = 1, then B,/A = ~ 117/l 1. The relative fluid 
displacement w is equal to @(U - u), where LJ is the absolute 
average fluid displacement. Therefore, as + - 0 in the pore-to- 
bore limit, the ratio of solid-to-fluid displacement in the direc- 
tion of propagation, i.e., in the axial direction, is 
u/U = $/(I + B/A). This displacement goes to zero in the limit 
as 4 + 0, as would be expected, since the solid displacement is 
then averaged over an infinite volume compared with the 
borehole volume. The result is still interesting for $ > 0, be- 
cause it indicates how the fluid and solid interact in the pres- 
ence of more than one pore or bore. 

CONCLUSION 

Then tube wave is a iimiting case of the Biot siow wave when 
the bore is considered as an isolated pore in a homogeneous, 
porous medium. The correspondence follows naturally from 
Biot’s theory of dynamic poroelasticity, which predicts an ad- 
ditional slow compressional wave in the bulk porous medium. 
The slow-wave speed reduces exactly to the zero-frequency, 
tube-wave speed when the appropriate parameters are taken 
in Biot’s theory for a porous medium with straight pores and 
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vanishing porosity. The tube wave is further evidence of the REFERENCES 
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