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ABSTRACT

The equations of motion for a fluid saturated permeable solid contain a frequency dependent viscodynamic
operator which follows from the solution of an oscillatory viscous flow problem in the pore space. At low
freqencies, the first two terms in the asymplotic expansion of the operator depend upon the solution of a
single Stokes flow problem. The second term, the inertial factor, is related 10 the mean square velocity in the
pores. Explicit expressions are given for the low freqency permeability and inertial factor in pore geometries
Jor which the full problem cannot be solved. Litile variation is found in the inertial factor for different
cylindrical pore models.

1. INTRODUCTION

The form of the equations of motion for a biconnected, fluid-saturated poroelastic medinm were first
proposed by Biot (1956). The same equations have been derived more recently from first principles using
homogenization theory (Burridge and Keller, 1981; Levy, 1979; Auriault, 1980). Of the various MACroscopic
constitutive parameters in the final equation, the viscodynamic operator is certainly the most complex and
least understood. This freqency dependent operator contains the inertial drag and viscous dissipative effects due
to the pore fluid motion. Biot (1956) suggested characterizing the operator by considering the frictional drag
at the pore surface due to the viscous pore fluid flow. In addition, he included an inertial term, to be
determined independently. However, homogenization theory prescribes an explicit procedure for determining
the operator, a procedure that differs from Biot's. We will point out the differences in the two schemes, and
also note that Zwikker and Kosten (1949), in earlier work on the acoustics of porous media derived
expressions for a complex effective inertia that is more in line with homogenization theory than Biot's
scheme. This discrepancy between the two theories of Zwikker and Kosten (1949) and Biot (1956) has led to
some confusion. It has generally been accepted that Biot's general set of equations of motion contains
various limits including that of a nearly rigid frame, for which Zwikker and Kosten's effective inertia was
proposed. However, Biot's 1956 theory, though more general than that of his predecessors’, does not account
correctly for the frequency dependence of the pore fluid inertia and dissipation. We wish to emphasize this
aspect, which has been previously noted and discussed by Bedford et al. (1984), Auriault et al. (1985), and
Attenborough (1986). An excellent review of the acoustics of porous media can be found in the review by
Attenborough (1982).

The main results of this paper are in the identification of simplifications to the form of the operator at
frequencies low compared with the characteristic frequency at which the viscous skin depth is of the same
order as a typical pore width. In the low frequency, Stokes flow regime, the operator is characterized by the
static permeability and an effective mass which can be defined by a dimensionless inertial factor. We deduce a
simple but general form for the latter that depends upon the solution of the same steady flow problem which
determines the static permeability. Exact solutions are obtained for a variety of cylindrical pore models. The
present results may be of practical use in calculating the viscodynamic operator for realistic microgeometries.
Alternatively, there are potential applications to the inverse problem of inferring the microstructure from
measured data, e.g., the attenuation of the Stoneley wave in acoustic logging signals from boreholes.

Researchers in the recent past have emphasized the importance of understanding the viscodynamic
operator. In particular, we note the work of Bedford (1986), who compared the fast and slow wave speeds and
attenuations for a layered medium obtained by two different procedures: (1) the exact dispersion equation, and
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(2) Biot's equations with the correct viscodynamic term. Excellent agreement was found. Other authors, e.g.
Auriault et al. (1985), Johnson et al. (1986), have looked at the asymptotic forms of the operator at high
frequencies, where the two leading terms in the expansion follow from the solution of a potential flow
problem in the pores.

2. DYNAMIC POROELASTICITY AND THE VISCODYNAMIC OPERATOR

Let u and w be the macroscopic solid displacement and the relative fluid displacement, respectively. The
absolute fluid displacement U satisfies w = ¢(U-u), where ¢ is the porosity. Biot's equations of dynam:c
poroelasticity are (Biot, 1962) i

)

pB u. /Bt + pr W, lat = , | (1a)

‘.l B

puf + Lw, = ~p,. (1b)

where p=¢ p¢ + (1-9)pg and pg, py are the solid and fluid densities, respectively. The average stress 7;; and
pore fluid pressure p can be related to the strains by linear equations, see for example Biot (1956) The
viscodynamic operator £ is the subject of the present paper. The simplest form of £, proposed originally by
Biot (19356) is

= (k) ow /it + md*wil = LW ¢

where t is the dynamic fluid viscosity and k, the permeability for steady state flow. The density m is an
effective density for the pore space. It is sometimes written as

= T ol ?)

where T > 1, is the inertial factor or structure constant of the pore space. The first term in £ in Eq. (2) is
attributable to Darcy's law for flow in a porous medium, Vp = —(u/k) ow/ot, while the second term
represents the inertial drag offered by the frame to the pore fluid. In Biot's original notation of 1956, we have
Ty =1~ p1ofd pp where pyg <0.

The simple form of .4 g:ven in (2) is implicitly a low-frequency approximation because it uses the
steady state Darcy term pIus a first order inertial correction term. However, even to this approximation there
are two parameters, k, and T, that depend upon the pore geometry. In the frequency domain, with time
dependence exp (—ia)t),

2

£J0) = -i(ok) -me 4

There is a wide diversity in terminology for the acoustics of porous media. Thus, flow resistivity o=
1k, is often used instead of permeability (Zwikker and Kosten, 1949). The inertial factor T, is the same as
the structure constant k of Zwikker and Kosten (1949). Carman uses the term tortuosity thh respect to both
permeability (Carman, 1956, p. 12) and effective conductivity (Carman, 1956, p. 46). Itis in the latter sense
that tortuosity is also understood by Johnson et al. (1982}, Carman's definition of tortuosity is as a measure
of the deviation of the streamlines from straight lines in the direction of the applied pressure gradient as a
consequence of the tortuous passage of the pore fluid. As we will see from the examples below, T, depends
upon the pore cross-section even when the streamlines are all straight and the pores cylindrical. Therefore, to
cali T, the tortuosity, flies in the face of our common understanding of the word. We prefer to call it the
mertxal factor, effective mass factor or even the real part of a complex tortuosity.

We will be concerned with generalizing £(®) to higher frequencies. Alternatively, one can define a
frequency dependent complex density P(w) and a complex permeability K(w), by analogy with (4), through
the relations

~ 2 . -
£0) = -plw)e = -owkie) . &)
We note some general analytic properties of these functions, considered as functions of complex @. Johnson
et al, (1986) have shown that Z(—w*) = Z(w), where the asterisk denotes complex conjugate. They have
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also shown that the only singularities of Z(w) occur on the negative imaginary ®-axis. Similar results hold
for the functions P(®) and k(w), although we note that P(w) has a simple pole at & = 0, due to the specific
way in which it was defined., For real ®, we can write

5(@) = Re(P(@)) +i (/o) Re (17k(®)) . (6)
Brown (1981) has shown that for 0 > 0,

Re (p(w)) < m and Re (I/k(@)) 2 Uk, .

“Thus, if we define a frequency dependent inertial factor T(®) by K

T(w) = (@/p) Re(p(@)) (N

then T(0} = T, and Brown's results imply that T(@) £ T,. In particular let T, be the high frequency limit of
T(w), then T < T,. This infinite frequency limit of T() is identical to the quantity ¢ of Johnson et al.
(1982, 1986). .

Finally, we define a dimensionless frequency-dependent factor F through

A@) = ik JF(o) (®)

or,

F(0) = k /o) . ©)

3. THE CONSISTENT THEORY FOR Z(w)

We now describe the prescription for obtaining Z(w) for a given pore geometry. The procedure follows
from the work of Burridge and Keller (1981}, Levy (1979) and Auriault (1980), each of whom derived Biot's
original equation from first principles using homogenization techniques. The idea is to introduce two length
scales, one microscopic and the other macroscopic. For example, the micro length might be a typical pore
diameter; and the macro length, the wavelength of elastic waves. The final equations are obtained in terms of
macroscopic coordinates, but the various constants depend upon the solution of canonical "cell” problems in
the microscopic coordinate system. The relevant problem for £(w) considers an incompressible fluid in a
pore "cell" subject to a uniform oscillatory pressure gradient. The same problem for a compressible fluid was
proposed by Bedford et al. (1984). Their justification was that this procedure is entirely consistent with the
form of Biot's equations of poroelasticity. Thus, we refer to this approach as the consistent theory for ().
However, we note that Bedford et al. (1984), in considering a compressible pore fluid, were over-complicating
the problem (see note 17 of their paper). Homogenization theory and elementary considerations indicate that
the pore fluid can be viewed as incompressible for the purposes of estimating £{w).

The procedure described in this section is different from Biot's original ideas for extending Zg(®} to
higher frequencies (1956). The latter approach is discussed in Appendix A. However, the earlier procedure of
Zwikker and Kosten (1949) for finding the complex inertia of a fluid in a rigid frame is essentially the same
as the consistent theory.

Consider Eq. (1b) for the pore fluid motion with zero macroscopic pressure gradient and the solid phase
oscillating uniformly as

u{x,t) = uoexp(—icot) ,

where u, is a constant vector, Then Z(w) satisfies

LW = pfo.)zu0 , (10)

where w exp(-iot) is the average relative displacement in the pore fluid. It is found by solving the
following "cell" problem in a unit cell, denoted by the pore volume Vp and pore surface Sp:
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—uAU+pU=-VF, in V_; ' (11a)

y f y P
VU0, inV ; (11b)
¥ p
it
U= uoem , on Sp : . (11c)
- : |

where U(y,t) is the microscopic fluid displacement and y the microscopic spatidl coordinate, with operators
Vy and Ay = Vy . Vy. The average displacement <w> is defined by

aws = @V [ (0,0 wi gy 12)

\Y

?

where ﬁ(y,t) =_U0(y)exp(—iu)t) solves the problem (11). _ _
Alternatively, we can define the microscopic relative fluid displacement w(y,t) = ¢(U—u0)exp(—iwt)
which satisfies the system,

—;LAyW+ pw = —¢Vy"p_— g, in Vp , (13a)

VY'WmO , m"Vp , (13b)

w=0 , on Sp ) (13¢)
The macroscopic pressure gradient is g=—9pf w2 u, exp(-imt). The average <ws is

<w> = (IV) J' W (y) dy (14)

Y

where w = \_vo(y) exp(-imt) solves (13). Equations (1) and (12), or (13} and (14) are two equivalent
procedures for determining /() through (10). The first, (11} and (12), is similar to the method proposed by
Bedford et al. (1984) and by Auriault et al. (1985). The pressure gradient form, (13) and (14), is more akin to
the original formulation of Biot ( 1956), but the definition of Z(w) in (10) is different than his, see Appendix
A.

Once the frequency dependent <w> is found, the viscodynamic operator follows as

£@) = p?ulf<ws )" (15)

Example 1: Circular Cylindrical Pores

Introduce the dimensionless frequency Q.= coaczpf/u, where a,, is the pore radivs. Let u, make an
angle 6 with the axis; then it is straightforward to show that

(<cwseu i = G{[, (VIR / B, ()1} cos’0 (16)

where J, is the Bessel function of order n. The Darcy permeability follows from the low frequency expansion
of k(w) as
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and the complex frequency dependent density is |
P(@) = (P 8) {I-T, (NI, (ViQ)]} sec’® . (18)

We note that p(w) is exactly the same as Zwikker and Kosten's (1949) effective inertia.
‘Example 2. Slit-Like Pores . -y
!

Let 2as be the width of the slit. Define the dimensionless frequency Q.= waszpﬂu, then if u, makes
an angle @ with the walls of the slit we have

(<w>ou )’ = ¢ {{tanViQV(VEL) - 1} cos’® (19)
from which we deduce, ’

k, = §(a/3)cos’0 0)

P(@) = ~(py9) {[an(VIO V(IR - 17 se’o . e1)

4. NONDIMENSIONAL EQUATIONS

Consider the micro problem defined by Eq. (11). We nondimensionalize the equations by introducing a
characteristic length b of the pore. For example, b is the radius of a circular cylindrical pore. Define the
dimensionless frequency Q as

Q= (pszfu)w : @2)

Introduce dimensionless variables x, U and p, defined by U= U, it o p(icnuuofb)e"i“)t, y = bx.
The nondimensional equations are

AU+iQU = -Vp , in Vp : (23a)
VeU=0, in Vp ; (23b)
U=d, , on Sp ; (23c)

where the operators A and V are in the dimensionless variable x and i1, is the unit vector uyfu,.
The complex permeability k(w) of (5) is now

k(@) = (§b°Q) (<Use il — 1) (24)
where <U> is the average of U over the pore space, defined as in (14). The complex density is now, by (5),

P@) = (P0)/ (1—<Useit) 25)
and the function F is ‘

F(@) = (k/0b) IQU<U> R -1)] 26)
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5. LOW FREQUENCY ASYMPTOTIC APPROXIMATION

At low frequencies, such that || << 1, we can seek a solution to (23) in the form of an asymptotic
expansion,

U= U% 4 aou® + gopu® 4 . (272)

p = p+ ip” TETe) A - (27b)
Substituting these expansions into (23) and comparing terms of equal order in giyes to order (1):

AU® - vp@ g v | (282)

veu@20 | in v, (28b)

v . ﬁo , on Sp . " (28¢)
The solution to this is simply vl i, and p(o) = constant. The O(£2) equations then become,

A0 ity =-vp v (299)

veu-eo | in Vo (29b)

v -0 , on SP {29¢)
Forj =2, the O(Qi} equations are

au? oyt o g0y v (302)

veuP-o, v ; (30b)

0 _
UY=0 , on Sp . (30¢c)

Referring to (24) and (27) we see that the asymptotic expansion of the effective permeability is

k() = ¢b° ﬁo-[<Um> +iQ<U%s 4 ] : 31)

The Darcy's law permeability k., defined as k(0) is
2 1) .
k, = o0 <Ug> (32)

The determination of k,, therefore requires solving the system (29). The frequency dependent factor F then
follows from (9), (31) and (32) as

F=1-iQ[<U%g> 1<Uis1 0% (33)
The Inertial Factor

We now define a low frequency inertial factor T, by analogy with Zg(w) of Eq. (4), where m = Tpg/o.
In general, we define

T, =~ #/2p,) (4" Z(w)de] |, - 34)

Journal of Wave-Material Interaction, Vol, 1, No. 4, October 1986
370



Norris ’ On the Viscodynamic Operator in Biol's . . .

If we write F = F(Q), then this definition is equivalent to

o2
T, = i(pb’/k,) [AF@yaQ) |, (35)
or, from (33) and (35),
2), . 2
T, = <U¢ )'u0>/<U( )-u0> 1. (36)

Thus, it appears that the determination of T, requires solving for both U and UD). However, it is not

necessary to solve for U2) gince, as shown in Appendix B,
t

Ui = <UPous | (37)
and thus,
T, = U ol 38)

The result (37) means that both ko and T, follow from the solution to problem (29). The )permeability
depends upon the mean of U} in the direction of u, while T , depends upon the mean of %U(l 12. We note
that

T -1=[< i X U(l)|2> / <U(i)-ﬁ0>2] + [<(ﬁO'U(l) - <ﬁo°U(1)>)2> I<U(1)°ﬁo>2] >0 (39

A
with equality if and only if U s constant and parallel to u, everywhere in the pore. However, this is
impossible, since vl = Oon Sp. Thus,

T,> 1 . (40}

The inequality T, > 1is O(1) in the sense that Ty~ 1 = (1), not O(2) for Q << 1,
The definition of T implies that

F = 1- (iQk /b)) T, + 0@ @1
is the low frequency correction factor. Alternatively, the low frequency permeability is

k(@) = k_+ (QKYb1) T +0() @2)
or the density is

-~ )

plw) = (ipb 1k ) + pT /4 +0(C) . @3)

6. LOW FREQUENCY EXAMPLES: CYLINDRICAL PORES

The problem of solving for uD i greatly simplified if the pore unit "cell" is assumed to be an infinite
cylindrical tube of constant cross section. Let e, be the unit vector parallel to the tube axis. The general
sotution to (29} is Vp(l) = e,x (e, xi ) and U(125 -u e, €08 0, where 6 is the angle that u, makes
with the tube axis. The function v U(l)(x,y) satisfies

U+ Uy v 1=0 , in @, (442)

=0, on r, (44b)

where Q _ is the area in the (x,y) plane of the cross section and I',, is its perimeter.

This system of equations describes Poiseuille flow and is completely analogous to those obtained in the
torsion problem for an elastic rod of cross-section £,. Therefore, we can draw upon known solutions to the
Poisson equation for several simple geometries. A good reference to the torsion problem and its selution can
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be found in the book of Timoshenko and Goodier (1970), We present results below for cross-sections of
elliptical, rectangular, triangular and more complicated shapes. For each of these shapes, the function yd
can be obtained explicitly, whereas the full problem (11) or (23), can only be solved for the elliptical or
rectangular shapes. And even then, the "exact" solutions are much more complicated than the relatively
simple ones below.

Having found uh (x,y) the permeability is k cos28, where

k = ¢’ <u's ‘ @5)
with ‘ S |
U o KI- J. p® dxdy .l (46)
P

and Ap is the cross-sectional area. ‘The inertial factor is TO secze, where

2 .
T =<0 2 @7

These results, (45)-(47), are based on the assumption that the cylindrical pores are all aligned. However,
if the pores arg randomly oriented, the effective permeability is (1/3)k, where the 1/3 factor comes from the
average of cos“0. Similarly, the inertial factor for the randomly oriented distribution of pores is 3 T, Thus,
the permeability decreases, and the inertial factor increases for the random pore geometry.

Example I; Elliptical Cross-Section

T

Let the characteristic length b be one of the radii and the other one b/8, where 0<8<eo, The pore surface

is then x2 + y“6“ = 1 in the dimensionless coordinate system x = (x,y,z). The solution to (44) is

U < - (xPay®o™1) 11201489 48)
and thus,

(k /60" = L[4(1+87] 49)
or

k, = (0A /87) 28/(1+8") . (50)
We note that 25/(1+82) < 1, with equality for a circular pore. The inertial factor turns out to be

To =4/3 (51)

which is independent of §.

Example 2: Rectangular Cross-Section

Let the rectangle have sides of length 2b and 2b3, where 0 < & < . The region Q_ in the
dimensionless coordinates x and y is defined by [x] < 1, |y] < 8. From p. 311 of Timoshenko andp Goodier
(1970),

u-qeny Y amd) 1" 1 (cosh(nmy/2yicoshandd)] costr2).  (52)

nw1,3,5...
Using Eqs. (46), (52) and the relation
Y (m'= ') (53)

l‘l:cl,3,5
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'qu}is : ‘v
we deduce
2 5 5 .
k /b" = (173) [1- 192877y Y, (Um) tanh(nd/2)] . (54)

ne=l ,3,5
For large 6, we can expand to get

k Jgb” = (1/3) [1 - (0.630/8)] + O(1/8") . (55)

An approximate form of (54), which incorporates the asymptotic result for § >> 1 and the exact result for a
square (8 = 1) that k /¢bZ = (0.420)/3 is , o

Ty

k /db” = (1/3) [1 - (0.630/9) + (0.0528)] . (56)

This turns out to be a very good approximation for the entire range 1 €8 < oo, see Fig. 1. The limit § -3 o
corresponds 10 a slit-like pore of width 2b, for which k0/¢b2=1/3.

DELTA

Figure 1 Comparison of the exact (Eq. (54), solid curve) and approximate (Eq. (56), dashed curve) formulae
for the permeability of rectangular pores as a function of the aspect ratio. The maximum relative
error is less than 3%.

The inertial factor T, follows from (47), (52) and the relation

Y am®y = ¥960) 57
n=l,3,5...
as
65 {1-480x° 3 n7®[(6/nn5) tanh(nmd/2) — sech’(nmd/2)] }
T = n=1,35... ) (58)
o 2
{1-1925"%5 Y (0~ tanh(nndi2)] }
w3 S...
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~6/5{1+(03.06l8)+0{1/8)] - ‘ EE BRIE (59)

The square (§=1) has T, = 1.378, therefore a uniform approximation to T, for the entire range 1 < 8 < oo,
that is valid in the two limits is

T, = 6/5 [1 + (0.306/8) ~ (0.158/8)] . - (60)

 We note from Fig. 2 that (60) is a good approximation.

DELTA

Figure 2 The inertial factor of a rectangular pore versus aspect ratio; solid curve, exact expression from
Eq. (58); dashed curve, approximation in Eq. (60). The maximum relative error is less than 1%.

xample 3: ilateral Trian

Let the pore cross-section be in the shape of an equilateral triangle with vertices in the (x,y) plane at
(0,0), (1,1/43) and (1,~1/¥3). The area is thus 1/¥3 and the solution to (44) is

o - it gy-H -1 . ©1)

With b equal to the length of one side, the dimensional permeability k, follows from (45) and (61) as
¢b2/80. The inertial factor T, follows from (47) and (61) as 10/7.

xampled: AT with v

The perimeter of this pore cross-section is made by considering the “tube" defined by the interior of the

unit circle. A circle of radius §, 0 £ 8 < 2, is drawn about a point on the tube edge, and the final pore
cross-section is the part of the tube exterior to the circle of radius 8§, see Fig. 3.
For a given §, define the angle o, 0 < ot €, by

cos(a/2) = (8/2) (62)
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then the pore cross-sectional area is, see Fig. 4,

Ap = sinol— o coso . : 63)

5 1. 1.5

Figure 3 Examples of the cross-section of the grooved tube for 8 = 0.5, 1.0, and L.5.

9.8 |

I

DELTA

Figure 4 The area of the grooved tube as a function of §.

The limit of a circular pore is o= m. Define polar coordinates (r,8) about the center of the circle of radius &,
with 0 = 0 as the axis of symmetry, see Fig. 3. Then the solution to (44) is

UM = 14y (8% = £ [1 = 2cos0t] . (64)
The permeability follows from (45) and (64) as
k0/¢b2 =1— (120 + 200 cos2o — 7 sin 20.) / [16(sinc — & cos Q)] (65)

where b is understood o be the radius of the original ungrooved circular tube. Thus, k0!¢b2 ~> 1/8 as the
groove disappears (8 — 0). The inertial factor is from (47) and (64),
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T, = @7k, (/A ) {[30.+ 3 sina. - 360 cos’(ew2) - 216a.cos (or2) |
~ 960: 00s(0U2) ~ 34 sinct cos”ex + 376 sinax cos*(0/2)] / 144 66)
o2
+4 005’ (02) [~ (12) (@ + sine) In [2 cos(ou2)] + 2 f cos’0 In [2 cos6] 48]} .
0

the groove becomes more pronounced, -
1.6

The inertial fa‘(_:t_or_ is plotted in Fig. 5. Note that it increases from 4/3, the circulFr value, to about 1.42 as .
R

DELTA

Figure 5 The inertial factor T, of the grooved tube.

Example 5: Distributions of Pores

The above results can be used to consider more complicated pore geometries comprising networks of
these simple shapes - for example, if we allow the cross-section to change with axial distance, A simple case
of this is a network of circular pores in series. Let R be the variable radius, then it is well known (Johnson
et al., 1986) that the permeability is

k, = (0/8) (I/<R*><R%>) (67)

where < > denotes the average. Thus kg is dominated by the narrowest sections. It is easy to show that the
same network has

T, = 43) <R %>R’ 69)

which will also depend strongly on narrow throats. It thus seems possible for T, to assume a very large
value, T,>>1, in such a pore geometry.
Conversely, a network of circular pores of different radii in parallel gives

k = (/8 [<R*>/ <R 69)
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T = @43 [<R*><R% 1 RS (10)

Now, k, is dominated by the larger radii and T, also depends upon the distribution, However, it is clear that
T, = 4/3.

Next, consider a slit-like pore of constant cross-section in the flow direction, but of varying width d in
the transverse direction. Thus, the flow is in the z-direction and the slit is defined by the region between
y=td(x¥2. We find that

_ (1) [<d s 1 <d>] | a0

T, = (6/5) [«d><d’>/ <d’>’] . (712)

This case is analogous to the circular pores in parallel, where T, depended weakly upon the distribution. As
an example, consider the periodic sawtooth profile d = d,(1+ex/L) on the fundamental period -L<x<L. We
find, from (72),

= 6/5){1+ (43) [+ (73)

which is maximum for € = 1 giving T, = 8/5. Alternatively, a periodic sinusoidal profile d = d,(1 +
esinnx/L), —L<x<L produces

T, = (6/5) [1 + (166 ~ 3¢/ 242436537 . (74)

This has a maximum of T, = 14/9 ate = 8/15. It appears that Ty, is always of order unity, but still greater
than one for cylindrical pores in parallel. However, if the slit cross section varies in the direction of flow, but
is constant in the transverse direction, i.e., d=d{z}, then

k, = (§/12) (U<d*><d>) (75)

and

T, = (6/5) <d"'><d> . (76)

This case is analogous to the circular pores in series.

These results for distributed pore diameters and widths indicate that the same pore geometry that most
strongly limits permeability, i.e., narrow constrictions or throats, also produces a large inertial factor. This
correspondence suggests the possibility of a universal scaling relation involving k, T, and maybe one or
more other parameters. This idea is pursued by Johnson et al. (1986), who postulate a relation between k,,
o, and A, where o is the infinite frequency timit of T(«), defined in Eq. (7), and A is a length parameter.
We will not develop the possible connections among these quantities, except to note that Ty, = 4/3 o, for
tubes in series,

7. CONCLUSIONS

A consistent formulation for determining the viscodynamic operator in Biot's equations has been
described. At low frequencies the operator depends upon the static permeability and a dimensionless inertial
factor both of which are determined from the solution of a Stokes flow problem. The inertial factor is always
greater than unity, We have obtained explicit solutions to the Stokes flow problem for a variety of
cylindrical pore models of constant cross-section. It is found that the inertial factor varies between 1.2 and
1.4, when these types of pores are aligned parallel to the wave direction. Random orientation, without
inter-pore flow, will increase this by a factor of three but pore-core connections will cause a decrease.
Networks of cylindrical pores in series and parallel can also lead to an enhanced inertial factor. In particular,
narrow constrictions and throats, of the type that restrict through-flow, can increase T, significantly.
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APP:ENDIX A: BIOT'S ORIGINAL THEORY FOR Z(w)

Biot (1956) suggested extending the low frequency form of £ g defined in Eq. (4) By correcting the drag term
(-iep/k ) to account for the frequency dependence. He proposed

£(0) = £y(@) = ~0'm - (k) Fy(®) (A1)

where Fp is a frequency dependent correction factor, Biot considered only simple pore models for which Fp

could be calculated explicitly. We now generalize his formulation to include arbitrary pore shapes. Qur
purpose is to compare this with the "consistent” theory for () described earlier.

~ Consider the pore fluid Eq. (13) with the oscillatory pressure gradient g = —¢p} w? u, exp(-iwt). The

stress tensor in the fluid is

== ¢58ij - iwu('&i_j + Ej’i) . (A.2)
The drag of the pore boundary Sp on the fluid is the vector <> exp(—iwt), where
<T> = ~—(I/Vp)J tijn}.dS {A.3)
S

P
and n is the unit normal to the fluid/solid interface, directed out of Vp. By the divergence theorem and Eq.
(13a),

<> = @ plbu +<ws) (A4)

where <w> is defined in Eq. (12). We note that du, + <w> = ¢p<Us>, where <U> is the average absolute
fluid displacement in the pore space. The average drag in the direction of u, divided by the average relative
velocity in the same direction is

[<t>euf(-ioew>eu )] = i p o ufl<ws+u)] +io p = [OWK@)] + iop, (A.5)

which follows from (5) and (15). The value of this ratio at zero frequency is $p/k,, which is the Darcy
coefficient. The frequency dependent factor Fg is defined by normalizing the above ratio to be unity at o3 = 0,
Thus, Fg = 1 at zero frequency, and at other frequencies,

Fy = [k,/k(0)] + [ipk /o) = F(®) + [iop k /ou] (A.6)
where F is defined in (9). Substituting Fp into the definition of £p gives
. 2
Ly = (IOHF/) = (©'pyd) (T, ~ 1) = ()~ (@’p j4) (T, - 1) (A7)

where m = T pd¢ and T, > 1 (Brown, 1980). Thus, Biot's prescription for gives a larger effective inertia
than that of the consistent theory,
Finally, we note that for circular cylindrical pores, Biot's factor follows from (5), (18), (A7) and the relation

1,0 = @) 1,0 ~ 1,00 (a8)
as
Fy = (i0./4) (7,662 1 1,(i0))) cos”6 (A.9)

in agreement with Biot (1956). The result for slit-like pores follows from (5), (21) and (A7) as

Fy = (2)/3) [ 1 - ¥iQ, cot (Vi)™ (A.10)

also in agreement with Biot's original results.
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APPENDIX B: PROOF OF EQUATION (37)
‘We now brb\?e the assertion (37). Consider the identities
J‘ [UmUm U<2) U( )] 4V = j WPAU? - Pau®) gv
P

ZJ'[U(I)UQ) Ua) qu} dS=0 - @)

8, A

where the last one follows from the boundary conditions UM - u@ - gon S Substituting for AU and
AU®@) using (29} and (30), we have

J‘ Uy -y g g av- j U@y _y, me] 4V =

J‘ pPu® - pPy®y. ds + J‘ pPv.u® -y, U(z)] v ®B.2)
SP VP

The surface integral is zero by virtue of the no slip boundary conditions, and the final volume integral
vanishes because of the incompressibility conditions (29b) and (30b). This completes the proof of (37).
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