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Asymptotic expansions as é—0 that are uniformly valid in 7 are obtained for the membrane’s
motion and the scattered acoustic pressure field. The small parameter € is the density ratio of the
acoustic fluid and the membrane. For simplicity of presentation, only plane, compact incident
pulses are considered. The scattered field depends on the pulse’s structure. If it is a sufficiently
narrow bandwidth pulse which contains none of the in vacuo natural frequencies of the
membrane, then it is essentially reflected as though the baffled plane is completely rigid. However,
if the pulse spectrum is sufficiently broad so that it contains one or more of the in vacuo natural
frequencies of the membrane, an additional scattered field is produced. This scattered field

insonifies distant observation points after the rigidly reflected pulse has arrived. It is the sum of '

slightly damped and oscillating outgoing spherical waves that represents the “‘decayed ringing” of
the membrane. Application is given to the baffled circular membrane which is insonified by a

normally incident pulse. Graphs of the membrane’s motion and the farfield acoustic pressure are
given. They demonstrate the importance of the incident pulse width on the qualitative features of

the response.
PACS numbers: 43.20.Fn, 43.40.Dx

INTRODUCTION

The plane z = 0 is a rigid baffle that separates an acous-
tic fluid in the upper half-space z > 0 from a vacuum in the
lower half-space. A thin, tightly stretched membrane occu-
pies the region M of this plane. A pulse P/(x,t ), which satis-
fies the acoustic wave equation in the upper half-space, is
incident on this baffled membrane.

The scattered field depends on the pulse’s structure and
the membrane’s geometrical and physical properties. If itisa
narrow bandwidth pulse such that its spectrum is free of any
of the in vacuo natural frequencies of the membrane, the
pulse is reflected as though the entire plane z = O 1is essential-
ly rigid. However, if the spectrum of the pulse contains one
or more of these natural frequencies, the membrane is then in
“near resonance” with the pulse, producing a scattered field
in addition to the rigidly reflected field. This scattered field
also depends on the physical width of the pulse. Thus, for
example, when the pulse is free of the membrane, the scat-
tered field results from the “ringing” of the membrane as it is
“damped” by the back pressure of the fluid.

Since membrane (and plate) theories are valid essentially
only for the “lower” modes of vibration, we assume that the
pulse’s bandwidth is restricted so that it can only excite the
first few modes of the membrane. It may be necessary to
consider the flexible region M of the plane as a three-dimen-
sional elastic body if broader bandwidth pulses are consid-
ered.
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The pulse scattering problem is formulated in Sec. I as
an initial-boundary value problem for an integrodifferential
equation for the lateral motion of the membrane. The scat-
tered acoustic field is then given by an integral over the mem-
brane’s surface. This problem is then solved in Secs. IT and
III by first expanding the membrane’s motion in its in vacuo
normal modes. We assume that these modes are known ei-
ther analytically or by numerical evaluation. The time-de-
pendent coefficients in this expansion satisfy a coupled sys-
tem of ordinary, integrodifferential equations. They are
reduced to a coupled system of algebraic equations by apply-
ing the Laplace transform. An asymptotic expansion of the
solution of this algebraic system is obtained in the small pa-
rameter ¢, which is defined as the density ratio of the acous-
tic fluid to the membrane. Then by inverting the asymptotic
expansion of the Laplace transform, we obtain an integral
representation for the membrane’s motion and for the scat-
tered acoustic field. These asymptotic approximations are
uniformly valid in ¢ as e—0.

In Sec. III we obtain qualitative features of these asymp-
totic approximations. To simplify the presentation, we con-
sider only plane compact pulses that excite modes corre-
sponding to simple eigenvalues of the membrane. However,
we indicate how the analysis can be extended to pulses that
excite modes of multiple eigenvalues. Finally, our analysis is
applied in Sec. IV to the circular membrane that is insonified
by a specific, normally incident, plane compact pulse. A dis-
cussion of the response and graphs of the membrane’s mo-
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tion and farfield acoustic pressures are given.

The pulse scattering problem can be solved numerically
by obtaining the response of the membrane to time periodic
incident fields, either, for example, by a method of matched
asymptotic expansions' or the method of normal modes,”
and then numerically evaluating the inverse Fourier trans-
form integral. Alternatively, the time-dependent scattering
problem can be solved by methods which rely on the ap-
proximate decoupling of the fluid-structure equations and
on the pulse’s spectral content, see, e.g., Refs. 3 and 4. The
finite element method is then used to determine the struc-
ture’s approximate motion. A new numerical method for
solving the time-dependent scattering problem is given in
Ref. 5. It is a finite difference technique which uses “artifi-
cial” boundary conditions on a finite region to simulate the
infinite region, z > 0. The use of such artificial boundary con-
ditions for numerically solving wave propagation problems
has been previously employed (see, €.g., Ref. 6). In this meth-
od the fully coupled fluid-membrane equations are solved.

I. FORMULATION

In dimensionless variables x = (x.y,z) and ¢, the pressure
in the acoustic fluid P (x,¢ ) satisfies the wave equation

AP=P,, for z>0, (1)

where A, is the three-dimensional Laplacian. The dimen-
sionless space variables are obtained by scaling with respect
to a characteristic length Lof the membrane. The dimension-
less time ¢ is obtained by scaling with respect to L /c,,, where
¢, is the sound speed of the acoustic fluid.

The equation of motion for the dimensionless lateral de-
flection w(x,y,t } of the membrane, which lies in the region M
of the plane z =0, is given by

Aw — *w,, = ec*P(x,p,0,t), for (xy)eM, 2)

where A is the Laplacian in x and y. In addition, we have
used the notation

e=t,/en, €=lp/pnll, cu=(T/p )",  (3)

where T and p,,, are the membrane’s tension and density per
unit area, respectively, and p, is the density of the acoustic
fluid. The scale factors for the membrane displacement and
the acoustic pressure are related by the ratio L /(p,c2). The
acoustic pressure P(x,),0,¢) acts as a driving force on the
membrane.

Since the plane z = 0 is acoustically rigid outside of M,
we have the condition

P,xy0,4)=0, (xyleM. )
The requirement that the acoustic and membrane velocities
are continuous on the membrane’s surface gives the condi-
tion

P,(x,y,0,t) =

—w,bept), (xpEM. (5)
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The acoustic pulse which is incident on the planez =0
isdenoted by P’ (x,t ). It is a solution of the wave equation (1).
If the entire plane was rigid, then the incident pulse would be
reflected as the pulse PR (x,t)=P’(x,y, — z,¢), which is also
a solution of (1). Thus, we express the total acoustic pressure
inz>0as

P(x,t)=P'(x,t) + PR(x,t) 4 p(x,?), (6)
where p(x,t ) is the scattered pressure field that is caused by
the membrane’s presence. By inserting (6) into (1), (2), (4), and
(5), we find that the scattered field satisfies the following
problem:

Ap=p,, 2>0; (7a)
0, (xyjeM ,

P01} = [ — Wy » (eyleM, (7o)

Aw — w, = e?[2PT(x,p,0,t) + p(x.3,0,¢)] ,

(eyleM , (Te)

wkxyt)=0 on B, (7d)

where B is the boundary of M. To complete the formulation
of the scattering problem, we impose the quiescent initial
conditions

pIx,0) = p,(x,0) =0,
wix,y,0) =

z>0, (7e)
(e.p)eM . (79)
and the outgoing wave condition

w,{x,p,0) =0,

p,+p—0 as r-w, (78)

where r=|x|. Equations (7¢) and (7f) imply that the incident
pulse reaches the membrane at ¢ = 0.

To simplify the analysis of the scattering problem (7), we
now reformulate it as a problem for w. Thus we first employ
the adjoint Green’s function G (x,f x',t ‘) given by

S(t'—t—R) " St'—t—R))
47R 47R,
where § is the Dirac delta function and R and R, are defined

by

R=|x—x|,

Gixt|x't')=

, (8a)

Ri=[lx—xP+—yP+@+2P1"2.

(8b)
The function G satisfies
AG—-G,= —8t—t"¥x—-x'), z>0;
G,=0, forz=0; G=G,=0, fort'«t. 9

By combining Eqgs. (7a)and (9), integrating the result over the
four-dimensional region, 0 < t <¢"and z> 0, applying the ap-
propriate divergence theorem, and making use of (7b) and
(8a), we obtain

pixe) = — o[ [ 222D e gpae
T q
M
(10a)
where q is defined by
glx)=[(x — x')> + (y — ¥'P + 22]"2. (10b)

Inserting (10) into (7c), (7d), and (7f) gives the requtred
integrodifferential equation problem for w as
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- Aw — fw,

= ec2(2P' (x2,0,t)

A

' l’t _
- 21 ff wﬂ(x N4 qO) H ( ' — qo)dx' dyn) ,
T 9
M

for (xyeM , (11a)
wix.y,t)=0, for (x,yeB, (11b)
wxp,0) = w,(x.,0) =0 (11¢)

where H is the Heaviside function and the ““cylindrical” ra-
dius g, is defined by

Qobeyx' =[x —xP + -y V1" (11d)
The integral operator in (11a) is proportional to the fluid
back pressure on the membrane due to the membrane’s mo-

tion. Once (11) is solved for w(x,y,? ), the scattered acoustic
pressure in the fluid is given by (10).

Il. THE SOLUTION OF THE INTEGRODIFFERENTIAL
PROBLEM

We solve (11) by the eigenfunction expansion method;
that is, we seek solutions of (11) in the form

wiegt) = 3w, Wale), (12)

ne|
where the ¢, (x,y) are the orthonormal, in vacuo eigenfunc-
tions of the membrane. They satisfy

Ay, + ko, =0, (xyleM, (13a)
. =0, [xy)eB, (13b)
where p2mk2¢? is the eigenvalue associated with ¢,. By

virtue of the orthonormality of the eigenfunctions, the mod-
al amplitudes w,, (¢ ), which are given by

w,(e) = ()= f f Jn et Mx dy (14)

satisfy the following infinite, coupled, system of integrodif-
ferential equations:

L, =262,0)+ 5 5 [[[[ #-crmxan

T m=1
MxM

A=) ? —(t — goMxdydx’dy’,
9o
n=123,... (15a)
The operator L and the coefficients g, are defined by
2
Lw,,—7+k: n s (15b)
&alt)=— {¢,.,P"(xp,0:2)) . (15¢)

From (7f) and (14) it follows that the w, (¢ ) satisfy the initial
conditions

w,(0) = =0, n=123,... (16)

dw,(0)
dt
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The functions g, (¢} are the coefficients of the eigenfunction
expansion of the incident pulse evaluated on z = 0.

To solve the system (15) and (16), we first take its Lap-
lace transform. This gives the following infinite, coupled sys-
tem of algebraic equations for the Laplace transform i, of
Ww,:

D, s,€lid, (s;€}

=[s* + k2 —ea,,(s)] D, (se)
=262, + € 3 Tpnlllylsiel, n=123,... (17)

Here, s is the transform variable, £, is the transform of g, (¢ ),
and the a,,,, (s) are defined by the fourfold integrals

amls= [ [ [ bt

MxM
E“qa
dxdydx'dy . (18)
9o

The prime on the sum in (17) signifies the omission of the
m = n term.

To obtain an asymptotic expansion of the solution of
(17) as e—0 that leads to an asymptotic expansion of the
solution of (15) and (16) that is uniformly valid in # as #— o,
we first observe that i, {s;€) is O (€) since the right side of (17)
is O (€). Then we seek a solution in the form

z s;e) , (19)

J=1
where the w form an asymptotic sequence’ in j for each n. In
particular, u#? = O{(€’) as €—0. Thus, we obtain from (17)
the asymptotic approximation

, = 28,(s)e/D,(s:€) + O(€). (20)
It is not possible to solve (17) by a regular perturbation ex-
pansion in € since this leads to an expansion for w, (¢ ) that is
unbounded as #— 0, as we can demonstrate. The zeros of
D, (s;€) are approximations to the complex eigenfrequencies
of the fluid-membrane system.!

Furthermore, we wish to emphasize that the asymptotic
approximation (20) is valid only when 42 is a simple, in vacuo
eigenvalue of the membrane. This is because the O (€?) be-
comes O (€) when g2 is not simple. To illustrate the modifica-
tions required to handle the case of a multiple eigenvalue, we
suppose that the eigenfunctions ¢, and ¢, both share y7 as
their common eigenvalue. We then rewrite (17) for n = [,
and /,, respectively, as

i, (s:€) =

D, lT’I, (s;€) + 5“1,121"\’12(3;5) =€g,(s)+ € z Y a,., W »

m—1

(21a)

D, (s:€) + €ayy, (s;€)ily, [s;6) = €8y, 5) + € 3 "a,, D,
m=1

(21b)

The double prime indicates that both them =], and m =1,
terms are missing in the infinite sums. This two-by-two sys-
tem of equations can be solved for it;, and i, . The vanishing
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of the determinant of this system yields the complex eigen-
frequencies of the membrane-fluid system. This was shown
in Ref. 1 for a time periodic incident wave. The general case
for an eigenvalue with more degeneracy follows by similar
reasoning.

We now assume that the in vacuo eigenvalues of the
membrane are simple or that the corresponding &, for multi-
ple eigenvalues are zero or negligibly small. Then (20) and
the convolution theorem imply that

wn (1) = 2eLgn(§)d (t—EME+0(E, 22)

where d,, (¢ ) is the inverse Laplace transform of D [~ !(s;¢). To
determine this function we first obtain the zeros of the non-
linear equation D, (s;€) = 0. It can be shown that D, has two
zeros, which we denote by S, (€) and S, (€). Asymptotic expan-
sions as e—0 for these roots are readily obtained as

S, = —el,/2k, + ik, —€R,/2k,)+ O(}), (23a)
5,=371, (23b)
where the * denotes complex conjugation. The quantities R,
and I, are thereal and imaginary parts of a,,,( — ik, ), respec-

tively. As in the analysis in Appendix A of Ref. 1, we can
show that

R, —”fuvm’—k 0. [PMdx dy dz, (24a)
z2>0

In=knrr |, (k8 sing’ dp’' d9>0,  (24b)
Q 0

where the directivity factors F,(k,,f) and the scattered
acoustic potentials @, (x) are produced by the membrane vi-
brating with frequency y,, and mode ¢, (x,y). They are given,
respectively, by

Fy (o) = — = f f e~ ™y Emdedy,  (25a)
tk,q(x;x')
oalx) = — f IE ey, )

wheref=x/|x| is the unit vector in the observation direction
and vy is the vector with components (£,7,0). The F, are the
Fourier transforms of the modes ¢, with respect to the ob-
servation direction. In addition, I, /k, is the total cross sec-
tion of g, and R, is twice the corresponding dimensionless
Lagrangian.

It follows from (23) by using standard residue calculus
that the d,,(¢) are given by

d.(t)=H(t)e “™sin(T,t}/T,, (26a)
where

Ya=+1,/2k, + O(e), (26b)

.=k, —€R,/2k, + O(€). (26¢)

Thus d, decays on the “slow” time scale €z and oscillates on
the “fast” scale ¢. It is analogous to the response of a simple
damped oscillator to a Dirac delta forcing function. Com-
bining (26) with (22), (15c¢), and (12) and interchanging the
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order of summation and integration, we find that the mem-
brane’s displacement is given by

wixp,t,€) = — 2EJ‘M f J(; 'P a.B80.£)

XK (xyaB;t — £)dé da df + O (€Y),
(27a)
where the kernel X is defined by

KixpaBit)= 3 t.bcoltnlaBM, ().

n=1
The scattered pressure is then obtained by inserting (27) into
(10). This calculation will be performed in the next section
for special incident pulses.

(270)

Ill. EVALUATION OF THE TRANSIENT RESPONSE

In this section we evaluate (27) and the corresponding
farfield pressure, and physically interpret the results for
three simple incident pulses.

A. The normally incident, plane, “spiked"” puise
This pulse is given by
Plixyzt)=68@z+1t), t>0, (28)

so that it “touches” the membrane at ¢ = 0. Inserting (28)
into (27) and performmg the ¢ integration, we find that

wixpte) = — 2e f fMK paBitiadd + 0. (29)

Thus, the integral of the kernel (27b) over the membrane M is
the response of the membrane to the pulse (28). Combining
(27b) with (29), we obtain

wicp )= —2€ 3 (4, Walxs) + O, (30)

where the inner product (¢,,1) is defined in (14). From (30)
and (26) it is evident that w is the superposition of modes
whose amplitudes decay slowly in time and oscillate at a
frequency slightly different from k,,. By combining (24b) and
(26b), and observing from (25a) that F,, decreases asn and k,,
increase, by the Riemann-Lebesque theorem,® we find that
the higher-order modes decay faster than the lower-order
ones.
Inserting (30) into (10) gives the scattered pressure as

plxt;€) = —— Elk n (Y1)
x Im (J~J- H(tq'— q) ?"l(‘—q"p" dx' dyl)
+ 2.“”"’”

f —6(t 9 Wa 'y \dx dy + 0 ().
(1)
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In the farfield, |x| = r— o« and (31) is simplified to

& Pa(t —r.i56)
pxt)=2eH(t—r) Z k, (¢s,1) —

eH(t r)

——6(: n+0ole, (32a)

where the p, are deﬁned by

Pt — rie=e ="~ "|F, [k, B)sin[T,(t - —6,] .
(32b)

The phase 6, is the argument of the complex number F,
defined in (25a).

The total pressure at a point in the farfield consists first
of the reflected spike PR = §(t — z) that passes the point at
theinstant ¢ = z. It is then followed by the smaller-amplitude
[O(€)] scattered pressure (32) that arrives at £ = r»z. This
wave is composed of two parts. The first is an outgoing
spherical spike that corresponds to the second term in (32a).
It only acts at the instant ¢ = r. The second component is the
superposition of outgoing spherical pulses that decay slowly
as functions of 7 — r and whose angular behavior is described
by the directivity factors F, (g, ,f). It acts, for all £>r, and
decays to zero as #— 0. It corresponds to the “ringing” of
the membrane due to the impact of the pulse. The ringing
decays because of the back pressure of the fluid on the mem-
brane. If structural damping was included in the membrane
mode, then it would also contribute to the decay.

B. The normally incident, plane, compact pulse

This pulse is given by

Plixyzt)=glz +1), (33)
where the function g(£ ) is smooth for 0<£ < rand isidentical-

ly zero for £ rand £<0. By inserting {33) into (27) and using
(26) we find that the membrane’s displacement is

wixy,te)

=—2€Z

n=1

(.1

¥nxp)

x(]:g(;)e““"_“’sin [T, — €)1 | +0(€).
(34)

The interaction of the pulse with the membrane occurs in the
time interval [0,r] where it is described by the convolution
integral in (34). The details of the transient reponse of the
membrane during this interval depends on the specific form
of the pulse and its convolution integral, This is demonstrat-
ed in Sec. IV for a normally incident, plane, compact pulse
on a circular membrane. However, when > 7 the upper limit
of the integral in (34) can be replaced by 7. Then w is given by

wix.p,t;€}
(r/J...l)

= —26'2' )e €Yl
X [4, SHI(F,.I) — B, cos(T,t)] + 0(€), >,

(35a)
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where

4, = f gl )cos k, & dE, (35b)

=f”g(§)sin k£ dE.

Thus, after the pulse interacts with the membrane, w is again
the superposition of modes which slowly decay in time and
oscillate at roughly the in vacuo eigenfrequency k,,.

The scattering acoustic pressure is obtained by inserting
(34) into {10). This gives

plx,t€)
=+< 3 (W)

x[ f HU=9)y 0 y1ete — g’ dy'

-£ 3 k()

MTn=-1

X [[ 2L=Dy, i - giae ay +0(€.
M q

{35¢)

(36)
where the function J (¢) is defined by
J(t)=Im(fg(§)e‘""“d§). (37)
(4]

In the farfield, (36) is simplified to
r)g(t’—r)_ € H(t r)Zk (@..1)
n=1

x f | bVl —r 4 08x ay +0(€), (39

T

where § = (x',y',0).

Thus, a fixed observation point in the farﬁeld is first
insonified by the reflected pulse P ® (z,¢ ) = g(t — z)for tin the
interval z<t <z + r. Thisreflected pulse is O (1), and the scat-
tered pressure (38) is O (€). The first term of the scattered
pressure is a spherical pulse that insonifies the observation
point for ¢ in the interval r<¢<r + 7. Thus, it arrives at and
leaves the observation point after the reflected pulse, and
during the overlap time it is small compared to the reflected
pulse. However, after the tail of the reflected pulse passes the
observation point, the total pressure is given by (38) and it is
O (€). Moreover, when > + 7, so that the tail of the spheri-
cal wave, which is given by the first term in (38), passes the
observation point, the scattered, and hence the total pres-
sure, is given by the second term in (38).

When t3r + 7, i.e,, for sufficiently large values of t, the
second term is simpliﬁed to

=220 5 b (g 1)a, 0~ k) + Ol
n=1
t—r>1, (3%a)
Kriegsmann et al. : Scattering by membranes 5



where
go=e "5, (S)| |F (k8|
xsin[T,(t—r—86, +X,] (39b)

and X, is the phase of 2,({S,). Once again, the farfield scat-
tered pressure is the superposition of outgoing spherical
pulses that decay slowly as functions of # — r. It represents
the pressure due to the “decayed ringing” of the membrane.

C. The obliquely incident, plane, compact pulse

This pulse is given by

Pllxyzt) =gla\lx —x*) +az +1), (40)
where g(£ ) is the same smooth, compact function as in Sec.
ITI B. The constants @, and &, satisfy a} + a3 =1, 2, <0,
and a, > 0. The last inequality insures that the pulse is inci-
dent on the membrane from above while the first indicates
that the pulse travels from left to right in the x-y plane.
Without loss of generality we have chosen the orientation of
the x—y plane for this to occur. We assume that at £ = 0 the
incident pulse has just struck the membrane at the point
(x*.y*,0) on B where the line x = x* is tangent to B (see Fig.
1). As ¢ increases, the leading edge of the pulse a,(x* — x) = ¢
propagates further across M until £ =z, when this line is
tangent to the “last” point (x,y,0) in M (see Fig. 1). A similar
sequence of events occurs for the trailing edge of the pulse. In
particular, when ¢ = 7 the trailing edge strikes (x*,y*,0), and

when ¢ =t + 7 it passes through (%,7,0). Consequently, the
membrane is insonified only for 0<7<7 + 7.

By inserting (40) into (27), interchanging the order of
summation and integration, and introducing the change of
variables, @ = £ — a,(x* — a), we find that w is given by

wix,p,t;€)

= ~2¢ 5 vubeol [thlat)

n=1

x(_[: Cdt—y— a]g(a}da)da dB+0(eY), (41a)
where

x=a,x* —aj. (41b)

In deriving this result we have replaced the lower limit by
zero because g vanishes for negative arguments. The integra-
tion in {41a) is over the three-dimensional region D (¢ ), which
is defined as the set of points («,3,0) that lie below the plane
o =t+ a(x—x*) and within the cylinder D .={(a,5,0)|
0<o <7 {af)eM ). Astincreases from zerothe region D (¢ )
expands to incorporate more of the cylinder until z =7 + 7.
After this instant the plane is above the cylinder D, and thus
D(t)=D..

It is difficult to derive the detailed qualitative features of
the membrane’s motion from (41), during its insonification
period and for an arbitrary g(£ ), other than by a numerical

FIG. 1. An arbitrary membrane and the
intersection of the pulse’s leading edge
with the plane z = 0 for two times.

f
y
leading edge
t#£0
leading
edge t = 0
/—\
(x.y.0)
X*, *'0
(x*,y*.0) M
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evaluation of the integrals and sums in (41a). However, when
t>t + 1, i.e., when the incident pulse “lifts” from the mem-
brane, the upper o limit in (41) can be replaced by 7. Then by
interchanging the order of integration in (41) and using (26a)
we obtain

wix.p,ti€)

_ 2‘,2,‘2 —eru¥n Ii:cy)

X [(CnAn _Ean )Sln Fnt - (EnAn + Can)

- XcosT,t]+0(), t>t+r, (42a)
C,=(¢¥n.cosk,x), (42b)
E,=(¢,sink,y), (42¢)

and 4, and B, are defined by (35b) and (35¢). Thus, as in the
previous two examples, after the pulse interacts with the
membrane, w is the superposition of modes that decay slowly
in time and oscillate roughly at the eigenfrequencies k,,.
The scattered pressure is obtained from {41a) and (10a).
After the pulse lifts from the membrane, ie., 3¢ + 7, the
scattering pressure in the farfield is again the sum of decay-
ing, outgoing, spherical pulses given by
pute) = — 2820 F ko u (e — rie) +0(E),
r nel
for t —r>t+1, (43a)
where the u,, are given by
u,(t — rf,€
=|F,|{(C,4, — E,B,)sin[T (t—r)—06,]
- (EnAn + C,IB,.)COS[F,.(t - r) - 011 ] ]
xe =1, (43b)
and 8, is the argument of F,, (k, ,f).
IV. SCATTERING OF A NORMALLY INCIDENT, PLANE,

COMPACT PULSE FROM A BAFFLED CIRCULAR
MEMBRANE

The specific pulse is given by
5(10 — 15 cos @& + 6 cos w,& — cos ws€ ),
0<€<r,
= ’ 44
&) 0 &, (44)
0, £<0,

and w,,=2am/1, m = 1,2,3. This pulse has a maximum of
one at £ = 7/2. In addition, g(£ ) and its first five derivatives
vanish at £ = 0 and £ = 7. Thus, it is a good approximation
to asmooth compact pulse. The graph of g{¢ ) is shown in Fig.
2. The unit circular membrane is centered at x =y =0.
Since the incident pulse is independent of x and y, only the
radially symmetric modes are excited. They are given by

Vo =TV T3tn)s 1= 12 (45)

where ,, is the nth zero of Jy{iz) = 0. The eigenvalues y2 are
simple, so that formulas (34)39) are valid.

The inner product (¥,,1) is evaluated directly from the
properties of the Bessel function and is given by

('/’n’l) = = 2\/17/#11 . (46)
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FIG. 2. The incident pulse profile for r = 1.0.

The convolution integral in (34) and the function J, which is
defined in (36b), are computed numerically for the function g
given in (44). The results of a numerical evaluation of the
membrane’s motion from (34) for e=0.1, ¢=0.5, 7=1,
and x = y = O are shown in Fig. 3(a). For 0<t<1, the motion
is nearly sinusoidal in response to the incident pulse. For
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FIG. 3. (a) Membrane displacement at x =y =0 for € = 0.1, ¢ = 0.5, and
1 = 1.0. (b) Backscattering amplitude 7p as a function of ¢ — r. Same param-
eters as (a). P
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FIG. 4. Same as Fig. 3(b), except 7 = 2.61.

t>7, the membrane “‘rings” and its displacement slowly de-
cays to zero, as predicted by (35a).

In Fig. 3(b) the corresponding farfield backscattering
amplitude #p is graphed from (39a) as a function of t — r. The
response in Fig. 3(a) and (b} is oscillatory with a slowly decay-
ing amplitude. The additional quasiperiodicity is caused by
the superposition of modes as described by {39). The domi-
nant period is that of the fundamental mode, T, = 2mc/
#q1=1.31. Itsdominance is due to the proximity of 7to 7',. As
7approaches T, or some integral multiple of 7', the coupling
to the fundamental mode will become stronger. This is evi-
dent in Fig. 4 where 7 = 2.61. Figure 4 illustrates the typical
“ringing” and exponential decay of an isolated mode. Also,
for a given pulse shape g(£ ), as 7 increases the broader pulse
has more of its energy located in the low-frequency portion
of the spectrum. Thus, the broader pulse will not significant-
ly excite any particular mode in the superposition. This is
confirmed by the results presented in Fig. 5 where the back-
scattered amplitude is shown for the same values of € and ¢ as
in Fig. 3(a) and (b), but for 7 = 5.0. The additional modula-
tion is not present.

On the other hand, for a fixed pulse shape g(£ ), decreas-
ing 7 puts more energy into the high-frequency portion of the
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0.000
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FIG. 5. Same as Fig. 4, except 7 = 5.0.
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FIG. 6. Same as Fig. 4, except 7 =0.4.

pulse’s spectrum. Thus, the sharper pulse will excite more of
the membrane’s modes and make the response more quasi-
periodic in character. This is illustrated by the results pre-
sented in Fig. 6 where the backscattered amplitude is shown
for the same values of € and c as in Fig. 4, but for 7 = 0.4. The
jagged, almost random response indicates the presence of
many frequencies in the waveform. However, we observe
that as 7—Q the pulse width vanishes but the maximum val-
ue of the pulse, which is independent of 7, equals 1. Thus, the
limiting pulse as 7—0 does not correspond to a delta func-
tion. Hence, the small 7 response shown in Fig. 6 does not
necessarily give the qualitative features of the response to a
delta function given by (32). :
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