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Asymptotic expansions as e--,0 that are uniformly valid in t are obtained for the membrane's 
motion and the scattered acoustic pressure field. The small parameter ß is the density ratio of the 
acoustic fluid and the membrane. For simplicity of presentation, only plane, compact incident 
pulses are considered. The scattered field depends on the pulse's structure. If it is a sufficiently 
narrow bandwidth pulse which contains none of the in vacuo natural frequencies of the 
membrane, then it is essentially reflected as though the baffled plane is completely rigid. However, 
if the pulse spectrum is sufficienfiy broad so that it contains one or more of the in vacuo natural 
frequencies of the membrane, an additional scattered field is produced. This scattered field 
insonifies distant observation points after the rigidly reflected pulse has arrived. It is the sum of 
slightly damped and oscillating outgoing spherical waves that represents the "decayed ringing" of 
the membrane. Application is given to the baffled circular membrane which is insonified by a 
normally incident pulse. Graphs of the membrane's motion and the farfield acoustic pressure are 
given. They demonstrate the importance of the incident pulse width on the qualitative features of 
the response. 

PACS numbers: 43.20.Fn, 43.40.Dx 

INTRODUCTION 

The plane z = 0 is a rigid baffle that separates an acous- 
tic fluid in the upper half-space z > 0 from a vacuum in the 
lower half-space. A thin, tightly stretched membrane occu- 
pies the region M of this plane. A pulse P t(x,t ), which satis- 
ties the acoustic wave equation in the upper half-space, is 
incident on this baffled membrane. 

The scattered field depends on the pulse's structure and 
the membrane's geometrical and physical properties. Ifit is a 
narrow bandwidth pulse such that its spectrum is free of any 
of the in vacuo natural frequencies of the membrane, the 
pulse is reflected as though the entire plane z = 0 is essential- 
ly rigid. However, if the spectrum of the pulse contains one 
or more of these natural frequencies, the membrane is then in 
"near resonance" with the pulse, producing a scattered field 
in addition to the rigidly reflected field. This scattered field 
also depends on the physical width of the pulse. Thus, for 
example, when the pulse is free of the membrane, the scat- 
tered field results from the "ringing" of the membrane as it is 
"damped" by the back pressure of the fluid. 

Since membrane (and plate) theories are valid essentially 
only for the "lower" modes of vibration, we assume that the 
pulse's bandwidth is restricted so that it can only excite the 
first few modes of the membrane. It may be necessary to 
consider the flexible region M of the plane as a three-dimen- 
sional elastic body if broader bandwidth pulses are consid- 
ered. 

The pulse scattering problem is formulated in Sec. I as 
an initial-boundary value problem for an integrodifferential 
equation for the lateral motion of the membrane. The scat- 
tcred acoustic field is then given by an integral over the mem- 
brane's surface. This problem is then solved in Seca. II and 
III by first expanding the membrane's motion in its in vacuo 
normal modes. We assume that these modes are known ei- 

ther analytically or by numerical evaluation. The time-de- 
pendent coefficients in this expansion satisfy a coupled sys- 
tem of ordinary, integrodifferential equations. They are 
reduced to a coupled system of algebraic equations by apply- 
ing the Laplace transform. An asymptotic expansion of the 
solution of this algebraic system is obtained in the small pa- 
rameter •, which is defined as the density ratio of the acous- 
tic fluid to the membrane. Then by inverting the asymptotic 
expansion of the Laplace transform, we obtain an integral 
representation for the membrane's motion and for the scat- 
tered acoustic field. These asymptotic approximations are 
uniformly valid in t as 

In Sec. III we obtain qualitative features of these asymp- 
totic approximations. To simplify the presentation, we con- 
sider only plane compact pulses that excite modes corre- 
sponding to simple cigenvalues of the membrane. However, 
we indicate how the analysis can be extended to pulses that 
excite modes of multiple eigenvalues. Finally, our analysis is 
applied in Sec. IV to the circular membrane that is insonified 
by a specific, normally incident, plane compact pulse. A dis- 
cussion of the response and graphs of the membrane's mo- 
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tion and farfield acoustic pressures are given. 
The pulse scattering problem can be solved numerically 

by obtaining the response of the membrane to time periodic 
incident fields, either, for example, by a method of matched 
asymptotic expansions t or the method of normal modes, 2 
and then numerically evaluating the inverse Fourier trans- 
form integral. Alternatively, the time-dependent scattering 
problem can be solved by methods which rely on the ap- 
proximate deeoupling of the fluid-structure equations and 
on the pulse's spectral content, see, e.g., Refs. 3 and 4. The 
finite element method is then used to determine the strue- 

ture's approximate motion. A new numerical method for 
solving the time-dependent scattering problem is given in 
Ref. 5. It is a finite difference technique which uses "artifi- 
cial" boundary conditions on a finite region to simulate the 
infinite region, z > 0. The use of such artificial boundary con- 
ditions for numerically solving wave propagation problems 
has been previously employed Isee, e.g., Ref. 6}. In this meth- 
od the fully coupled fluid-membrane equations are solved. 

I. FORMULATION 

In dimensionless variables x = (x,y•) and t, the pressure 
in the acoustic fiuid'P(x,t } satisfies the wave equation 

AoP=P,, for z>0, (1) 

where A o is the three-dimensional Laplaeian. The dimen- 
sionless space variables are obtained by scaling with respect 
to a characteristic length Lofthe membrane. The dimension- 
less time t is obtained by scaling with respect to L/c a , where 
ca is the sound speed of the acoustic fluid. 

The equation of motion for the dimensionless lateral de- 
flection w{x,y,t } of the membrane, which lies in the region M 
of the plane z = 0, is given by 

Aw -- c2w. -= ec•P{x,y,O,t ), for (x,y}•l , (2) 
where A is the Laplacian in x and y. In addition, we have 
used the notation 

C=C•/Cm, e=(pa/p,•)L, c.,=(T/p..} '/• , (3) 

where Tandp•, are the membrane's tension and density per 
unit area, respectively, and Pa is the density of the acoustic 
fluid. The scale factors for the membrane displacement and 
the acoustic pressure are related by the ratio L/(Pa c• 2 )- The 
acoustic pressure P (x,y,O,t) acts as a driving force on the 
membrane. 

Since the plane z = 0 is acoustically rigid outside of M, 
we have the condition 

P.(x,y,O,t ) = O, {x,y}•4. (4) 

The requirement that the acoustic and membrane velocities 
are continuous on the membrane's surface gives the condi- 
tion 

e,(x,y,o,t ) = - w,,{x,y,t } , (5) 

The acoustic pulse which is incident on the plane z = 0 
is denoted by P z (x,t). It is a solution of the wave equation ( 1 }. 
If the entire plane was rigid, then the incident pulse would be 
reflected as the pulse pn (x,t)•Pt(x,y, -- z,t ), which is also 
a solution of(l }. Thus, we express the total acoustic pressure 
inz>0as 

P(x,t ) = Pt(x,t ) + Pn{x,t) +p{x,t }, {6} 
wherep(x,t ) is the scattered pressure field that is caused by 
the membrane's presence. By inserting (6) into (1), {2), {4), and 
($), we find that the scattered field satisfies the following 
problem: 

Aao=p,, z>0; (7a) 

0, p,(x,y,O,t ) = -- w,, , (x•v)•_M, (7b) 
Aw -- c2w t, = ec 2 [ 2P -z (x•g,O,t ) + p(x,y,O,t ) ] , 
(x,y)ObI , (7c) 

w(x,y,t) = 0 on B, (7d) 

where B is the boundary of M. To complete the formulation 
of the scattering problem, we impose the quiescent initial 
conditions 

p(x,0) = Pt(x,O) = 0, z > 0, (7e) 

w(x,y,O) = w,(x,y,O) = O, (x,y)•l ,. (70 

and the outgoing wave condition 

Pr -l-Pt •0 as r--,oo , (7g) 

where r•lx I. Equations (7e) and {70 imply that the incident 
pulse reaches the membrane at t = 0. 

To simplify the analysis of the scattering problem (7}, we 
now reformulate it as a problem for w. Thus we first employ 
the adjoint Green's function G (x,t x',t ') given by 

G(x,tlx',t')-- 6(t'--t--R) -• 6(t'--t--Rt) (8a} 
4•rR 4rrR t 

where 6 is the Dirac delta function and R and R • are defined 
by 

a=lx-x'l, R, = m. 
(8b) 

The function G satisfies 

AoG -- G u = -- tJ{t -- t '}•(x -- x'}, z > 0; 

G, = 0, for z = 0; G = G, = 0, for t' < t. 

By combining Eqs. (7a) and (9), integrating the result over the 
four-dimensional region, 0 < t < t' and z > O, applying the ap- 
propriate divergence theorem, and making use of {7b) and 
(8a}, we obtain 

/,(x,t ) - 1_rr f I w.(x',y',t -- q) H (t -- qgtx' dy' , q 
M 

(10a) 

where q is defined by 

q(x;x')= [(x - x') 2 + (.v -y'): + z 21 m. (ion 
Inserting {10) into {7c), (7d), and {70 gives the required 

integrodifferential equation problem for w as 

2 J. Acoust. Sec. Am., Vol. 79, No. 1, January 1986 Kriogsmann eta/.: Scattering by membranes 2 



---- ec2( 2P t (x,y,O,t ) 
% 

qo 

for •x,•)•, 0 la) 
w(x•,t)•O, for •x,•)•, 01N 

w•,0) = w, tx•,O• = 0, (• lc• 
where H is •c Heaviside function and •e "cylindrical" ta- 
dira qo is defin• by 

•e in•al o•rator in (1 la} is propoaional to the fluid 
back pr•ure on the membrane due to the membrane's mo- 
tion. • (11) is •lv• for w(x,y,t }, the seat•r• acoustic 
p•s•e in the fluid is •ven by (10). 

II. THE SOLUTION OF THE INTEGRODIFFERENTIAL 
PROBLEM 

We solve (11) by the eigenfunction expansion method; 
that is, we seek solutions of(11) in the form 

w(xo•,t ) = • w. (t )•b. (x0'}, (12) 
n•l 

where the •b. (x,y} are the orthonormal, in vacuo eigenfunc- 
tiens of the membrane. They satisfy 

A•b. +c:k•.•. =0, (x,y)•'I, (13a) 
•. = O, {x,y)eB, {13b} 

where - 2 _,_ 2 _2 /a._•.c is the eigenvalue associated with •b n. By 
virtue of the orthonormality of the eigenfunctions, the mod- 
al amplitudes w. (t), which are given by 

tOn{t ) = (4n,ll)=f f •L(x,y)ll(x,y,t )ax dy , (14) 
M 

satisfy the following infinite, coupled, system of integrodif- 
ferential equations: 

I 

X H (t -- qo) d '-- dt 2 (t • qo}dx dy dx' dy', qo 

n-- 1,2,3 ..... (15a) 

The operator L and the coefficients g. are defined by 

d 
Lw.---- dt 2 + kn•W. . (15b) 
gdt )------ - (• J't(x•v,o,t )). (15c) 

From (7 0 and (14) it follows that the w.(t ) satisfy the initial 
conditions 

dill(O) 
ll•(0} = = 0, n = 1,2,3 ..... (16) 

dt 

The functions g. (t) are the coefficients of the eigenfunction 
expansion of the incident pulse evaluated on z = 0. 

To solve the system (15) and (16), we first take its Lap- 
lace transform. This gives the following infinite, coupled sys- 
tem of algebraic equations for the Laplace transform •. of 
w.: 

D. (s,,•)• (s;•) 

= 2ej.(s) +e •.'a,.n(S)•.(s;e), n = 1,2,3 ..... (17) 
m I 

Here, s is the transform variable, •n is the transform ofg. (t), 
and the am. (s) are defined by the fourfold integrals 

X •-•ø dx dy dx' dy'. (18} 
qo 

The prime on the sum in (17} signifies the omission of the 
m = n term. 

To obtain an asymptotic expansion of the solution of 
{17} as e-*0 that leads to an asymptotic expansion of the 
solution of{15} and (16} that is uniformly valid in t as t-•oo, 
we first observe that •n {S;e} is O {e} since the right side of { 17} 
is O (e}. Then we seek a solution in the form 

•n (s;e) = • •ø•(s;e), (19) 
where the w. ol form an asymptotic sequence ? inj for each n. In 
particular, u• • = O(eq as e--•0. Thus, we obtain from {17} 
the asymptotic approximation 

•. = 2• n (s)e/a. ($;e) + O (d). (20) 
It is not possible to solve {17) by a regular perturbation ex- 
pansion in • since this leads to an expansion for ll. (t } that is 
unbounded as t--*m, as we can demonstrate. The zeros of 

D n {s;e) are approximations to the complex eigenfrequeneies 
of the fluid-membrane system. • 

Furthermore, we wish to emphasize that the asymptotic 
approximation {20) is valid only whenp2• is a simple,/n vaeuo 
eigenvalue of the membrane. This is because the O (e '2) be- 
comes O (e) whenp2• is not simple. To illustrate the modifica- 
tions required to handle the case era multiple eigenvalue, we 
suppose that the eigenfunctions Or, and •b6 both share pt 2 as 
their common eigenvalue. We then rewrite {17) for n = 1• 
and 12, respectively, as 

a•,@•,(s;e) + ,%:@•:(s;e) = e•,(s) + • •" a•,@•, 
m I 

(21a) 

(2lb) 

The double prime indicates that both the m = 1• and m = 12 
terms are missing in the infinite sums. This two-by-two sys- 
tem of equations can be solved for •t, and •t:- The vanishing 
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of the determinant of this system yields the complex eigen- 
frequencies of the membrane-fluid system. This was shown 
in Ref. 1 for a time periodic incident wave. The general case 
for an eigenvalue with more degeneracy follows by similar 
reasoning. 

We now assume that the in vacuo eigenvalues of the 
membrane are simple or that the correspondingg. for multi- 
ple eigenvalues are zero or negligibly small. Then (20) and 
the convolution theorem imply that 

to. (t;e) = 2 g. (• }d. {t -- •)d•' q- 0 {e'e}, 

where d. {t } is the inverse Laplace transform old Z •{s;e}. To 
determine this function we first obtain the zeros of the non- 

linear equation D. (s;e) = 0. It can be shown that D. has two 
zeros, which we denote by S•{e} and S2{e}. Asymptotic expan- 
sions as e-•0 for these roots are readily obtained as 

S• = -- el./2k• + i(k. - eR./2k• } + 0 {aa), (23a) 

S• = S •', {23b} 

where the * denotes complex conjugation. The quantities R. 
and I. are the real and imaginary parts ofa.. ( -- ik. }, respec- 
tively. As in the analysis in Appendix A of Ref. 1, we can 
show that 

R. = f f f(IV.12--kl.12)dxdydz, (24a) 
I. =k. ]F.(k.,f)[2sinq•' dq•' dO>O, (24b) 

where the directivity factors F.{k.,f) and the scattered 
acoustic potentials q•. (x) are produced by the membrane vi- 
brating with frequencyp. and mode •b. (x•). They are given, 
respectively, by 

F.(k.•) = )•rffe-•k•r•b.(•,•l)d•d•l, {25a} 
M 

q.(x) = q(x;x'} •" (x'•'•x' dy', (25b) 
wh• •[x[ • •e •t v•tor in the o•afion d•fion 
•d • is the v•r • •m•nen• •,•,0). •e F. •e •e 
FoYer tm•o•s of •e m• •. with r•t to the o• 
•afion •tion. In addition, l./k. is the to• cross s•- 
fion ofq. •d R. is t•ce the •n•g d•emio•s 

It follows from (23) by us•g sm• r•idue •e•us 
t•t the d. (t) •e •ven by 

d. (t) = H (t • - •/s•{r. t )/F., (26a) 
wh•e 

y. • + •/2k. + O (e), (26b) 

Thus d. decays on the "slow" time scale et and oscillates on 
the "fast" scale t. It is analogous to the response of a simple 
damped oscillator to a Dirac delta forcing function. Com- 
bining (26) with (22), (15c), and (12) and interchanging the 

order of summation and integration, we find that the mem- 
brane's displacement is given by 

w(x•y,t,e) = -- • 

XK (x,y;a•t;t -- • }d• da d• + 0 (•), 
(27a} 

where the kernel K is defined by 

K (x,y;ad3;t) = • •b. (x,y)•b. (ot•)a. (t). (27b) 
n I 

The scattered pressure is then obtained by inserting (27) into 
(10). This calculation will be performed in the next section 
for special incident pulses. 

IlL EVALUATION OF THE TRANSIENT RESPONSE 

In this section we evaluate (27) and the corresponding 
farfield pressure, and physically interpret the results for 
three simple incident pulses. 

A. The normally incident, plane, "spiked" pulse 

This pulse is given by 

P'(x•,t)=6(z+ t), t>0, (28) 
so that it "touch•"the membrane at t = 0. Inserting (28) 
into (27) and performing the t integration, we find that 

w{xot, t;e) = -- f + ol). (29) 
Thus, the integral of the kernel (27b) over the membrane M is 
the response of the membrane to the pulse (28). Combining 
(27b) with (29), we obtain 

to(xo,,t;,e) = -- 2½ • (•.,l)d.(t}•.(xO,) + 0(•), (30} 
. I 

where the inner product (•b., 1) is defined in (14). From (30) 
and (26) it is evident that to is the superposition of modes 
whose amplitudes decay slowly in time and oscillate at a 
frequency slightly different from k.. By combining (24b) and 
(26b), and observing from (25a} that F. decreases as n and k• 
increase, by the Riemann-Lebesque theorem, s we find that 
the higher-order modes decay faster than the lower-order 
oiles. 

Inserting (30) into (10) gives the scattered pressure as 

m q 

•'n•t 

X f f H(t -- q) B(t -- q )•.(x'.•y')dx' dy' + O(e•). q 

(31) 
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In the farfield, Ix[ = r--,oo and (31) is simplified to 

p(x,t } = 2•H (t -- r} • k. (•,,,I) p. (t - r,•;e) 
n i ß 

+ e H {t -- r)6{t _ r) + 0 (•}, (32a} 

where thep. are defined by 

p. It - r,e,el=--e - - "IF. Ik.,e)lsin [ It - rl - O. ]. 
{32b} 

The phase 0• is the argument of the complex number f'• 
defined in (25a). 

The total pressure at a point in the farfield consists first 
of the reflected spike P n = •(t -- z) that passes the point at 
the instant t = z. It is then followed by the smaller-amplitude 
[O {e)] scattered pressure (32} that arrives at t - r>z. This 
wave is composed of two parts. The first is an outgoing 
spherical spike that corresponds to the second term in {32a}. 
It only acts at the instant t = r. The second component is the 
superposition ofoutgoing spherical pulses that decay slowly 
as functions oft -- ß and whose angular behavior is described 
by the directivity factors F, •,,•}. It acts, for all t > r, and 
decays to zero as t-•oo. It corresponds to the "ringing" of 
the membrane due to the impact of the pulse. The ringing 
decays because of the back pressure of the fluid on the mem- 
brane. If structural damping was included in the membrane 
mode, then it would also contribute to the decay. 

B. The normally Incident, plane, compact pulse 

This pulse is given by 

P•(xd;•.,t ) = g{z + t ), (33) 

where the funetiong• ) is smooth for O•,r and is identical- 
ly zero for •'>r and •<0. By inserting {33} into {27) and using 
(26) we find that the membrane's displacement is 

= 1 , 
: 

(34) 

•e •raction of the pul• with the m•br•e •u• in the 
time inte•al [0,t] where it is d•fi• by the •nvolution 
inte• in (34}. •e de•ls of the tr•sient-re•n• ot the 
m•brane during this inte•al de•nds on the s•ific 
ot•e pul• and its •nvolution integral. •s is demonstrat- 
• • S•. IV for a no•ly incident, plane, •mpact pulse 
on a circular membrane. However, when t•r the up•r limit 
otthe integ• in (34) c• • repla• by t. Then w is •ven by 

n- I l'n 

x[,L sin(r.t)-z. cos(r.t)] + 
(35a) 

where 

B. = fg}sin {35c) 

Thus, after the pulse interacts with the membrane, to is again 
the superposition of modes which slowly decay in time and 
oscillate at roughly the in oacuo eigenfrequency 

The scattering acoustic pressure is obtained by inserting 
(34} into {10}. This gives 

lx,t,l 

= + --I 

x f f,.,H (t - q} ½,{x',y')g(t -- q)dx' 

(36) 

where the function J(t) is defined by 

J(t)=lm•otg•)e•'½'-•}d•). 
In the farfield, (36) is simplified to 

(37) 

(381 

where g = (x'y',0). 
Thus, a fixed observation point in the farfield is first 

insonified by the reflected pulse P • (z,t) = g(t -- z) for t in the 
intervalzß t < z + r. This reflected pulse is O { 1), and the scat- 
tered pressure (38) is O(e). The first term of the scattered 
pressure is a spherical pulse that insonifies the observation 
point for t in the interval r•t•r + r. Thus, it arrives at and 
leaves the observation point after the reflected pulse, and 
during the overlap time it is small compared to the reflected 
pulse. However, after the tail of the reflected pulse passes the 
observation point, the total pressure is given by (38) and it is 
O (e). Moreover, when t>r + r, so that the tail of the spheri- 
cal wave, which is given by the first term in (38), passes the 
observation pohit, the scattered, and hence the total pres- 
sure, is given by the second term in (38}. 

When t>r + r, i.e., for sufficiently large values oft, the 
second term is simplified to 

P = •H(t- r)• kn(•.,l)q.(t-- r,•,e)+ 0(•}, 
ß n--I 

t - r>r, (39a) 
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where 

ll I Flk.,11 

X sin [ I'• (t - r} - 0, + X• ] (39b} 
and X• is the phase orgy(S1}. Once again, the farfield scat- 
tered pressure is the superposition of outgoing spherical 
pulses that decay slowly as functions of t -- r. It represents 
the pressure due to the "decayed tinging" of the membrane. 

C. The obliquely incident, plane, compact pulse 

This pulse is given by 

Pt(x,y,z,t ) = g(a,(x -- x*) + a•z q- t ), (40) 

where g• ) is the same smooth, compact function as in Sec. 
III B. The constants a I and a 3 satisfy a• + a• = 1, a• <0, 
and a3 > 0. The last inequality insures that the pulse is inci- 
dent on the membrane from above while the first indicates 

that the pulse travels from left to tight in the x-y plane. 
Without loss of generality we have chosen the orientation of 
the x-y plane for this to occur. We assume that at t = 0 the 
incident pulse has just struck the membrane at the point 
(x*•v*,0} on B where the linex = x* is tangent to B {see Fig. 
1 ). As t increases, the leading edge of the_pulse a•(x* -- x) = t 
propagates further across M until t = t, when this line is 
tangent to the "last" point (•,0) in M (see Fig. 1). A similar 
sequence orevents occurs for the trailing edge of the pulse. In 
particular, when t = r the trailing edge strikes (x*,y*,0), and 

when t = 7 + r it passes through {•,0). Consequently, the 
membrane is insonified only for 0<t<• + •'. 

By inserting (40) into (27), interchanging the order of 
summation and integration, and introducing the change of 
variables, tr = • -- a•(x* -- or), we find that w is given by 
w(x,y,t;e) 

= - 2•,•,,(x,.v)ffp.(a,l•) 
M 

where 

z=a•(x* -- at). (4lb) 
In deriving this result we have replaced the lower limit by 
zero because g vanishes for negative arguments. The integra- 
tion in (41a) is over the three-dimensional region D {t ), which 
is defined as the set of points {a•,cr) that lic below the plane 
• = t + at(ct -- x*) and within the cylinder 
0 < tr < •, (or •/• )•14' }. As t increases from zero the region_D (t) 
expands to incorporate more of the cylinder until t = t q- r. 
After this instant the plane is above the cylinder D• and thus 
D (t)=D,. 

It is difficult to derive lhe detailed qualitative features of 
the membrane's motion from (41), during its insonification 
period and for an arbitrary g(•), other than by a numerical 

leading 
edge t = 0 

(x*,y*,O) 

leading edge 
t • o 

FIG. l. An arbitrary membrane and the 
intersection of the pulse's leading edge 
with the plane z = 0 for two times. 
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evaluation of the integrals and sums in (4 la). However, when 
t>•-t- r, i.e., when the incident pulse "lifts" from the mem- 
brane, the upper ty limit in (41 } can be replaced by r. Then by 
interchanging the order of integration in (41) and using (26a) 
we obtain 

= -- 2e e- 
n- i kn 

X [(C.A• --EaBn)sin F•t --(E•A. + C•B•} 

X cos r,t ] + O(e•), ?>t + r, (42a) 
c, =- (•,,cos k,z), (42b) 
E, •(p,,sin k,Z), {42c) 
and A, and B, are defined by {35b} and {35c). Thus, as in the 
previous two examples, after the pulse interacts with the 
membrane, to is the superposition of modes that decay slowly 
in time and oscillate roughly at the eigenfrequencies 

The scattered pressure is obtained from {41a)and {10a}. 
After the pulse Efts from the membrane, i.e., t>t + r, the 
scattering pressure in the farfield is again the sum of decay- 
ing, outgoing, spherical pulses given by 

•,{x,t;e) = - •c •(t - r) •, •.u.(t- r.•.e) + O(•). 
r 

for t - r>? + r, (43a) 
where the u, are given by 

u, (t -- 

=IF• I I {C•& - E•)sin [ r,(t - r) - 0, ] 

- (E,& + c.•S,)cos[r,{t - r) - •, ] } 

X e - ,r•{t - ,• (43b} 
and 0, is the argument ofF, (k,,g}. 

! 

• 0.5 

0 
0 0.5 

L 

FIG. 2. The incident pulse profile for r = 1.0. 

The convolution integral in (34} and the function J, which is 
defined in (36b}, are computed numerically for the function g 
given in (44}. The results of a numerical evaluation of the 
membrane's motion from (34} for • = 0.1, c = 0.5, •'---- 1, 
and x = y = 0 are shown in Fig. 3(a}. For 0gtg 1, the motion 
is nearly sinusoidal in response to the incident pulse. For 

0'101 
0.05 - 

O• 0.00 

-0.05 - 
IV. SCATTERING OF A NORMALLY INCIDENT, PLANE, 
COMPACT PULSE FROM A BAFFLED CIRCULAR 
MEMBRAHE 

The specific pulse is given by -O.lO 0 

•( 10 -- 15 cos o,• + 6 cos •o• -- cos ab_• ), 
• O<•<r, o.,o- 

g[½): [o, •>•, (•) 
lO, •<0, o.os- 

and •o,,,=2n'm/r, rn: 1,2,3. This pulse has a maximum of 
one at •: r/2. In addition, g(• } and its first five derivatives 
vanish at • = 0 and • = r. Thus, it is a good approximation • 
to a smooth compact pulse. The graph ofg(g ) is shown in Fig. o. 
2. The unit circular membrane is centered at x =y = 0. • -o.os- 
Since the incident pulse is independent ofx and y, only the 
radially symmetric modes are excited. They are given by 

-0.1o - 

tp.: f•Jo(•ap)/J;(I.Z,,), n = 1,2 ..... (45} 
where/•. is the nth zero OfJo(•} = 0. The eigenvalues/•. are 
simple, so that formulas {34)-{39} are valid. 

The inner product (•p.,1) is evaluated directly from the 
properties of the Bessel function and is given by 

(•b., 1): -- 2,•//•.. {•) 

t 

-0.15 
o ,o to a'o ;o •'o 

FIO. 3. {i} Membrane displar•mcnt at x :.p: 0 for t -- 0.1, c: 0.5, and 
r: 1.0. (b) Backscattering amplitude rp as a function oft -- r. Same param- 
eters as (a). 
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T = 2.61 

c) 

0'101 
0.05 - 

0.00 

-0.05 - 

'7- ---- .4 

-0.10 

0 10 2•0 

FIG. 4. Same as Fig. 3(b), except ½ = 2.61. 

3•0 4•0 5•0 -0.10 

0 5 10 

f--r 

FIG. 6. Same as Fig. 4, except •' = 0.4. 

1•5 2•0 2•5 

t•', the membrane "tings" and its displacement slowly de- 
cays to zero, as predicted by {35a). 

In Fig. 3(b) the corresponding farfield backscattering 
amplitude rp is graphed from (39a) as a function oft - r. The 
response in Fig. 3(a) and (b) is oscillatory with a slowly decay- 
ing amplitude. The additional quasiperiodicity is caused by 
the superposition of modes as described by (39). The domi- 
nant period is that of the fundamental mode, T• = 2frc/ 
/z • • 1.31. Its dominance is due to the proximity of•- to T•. As 
½ approaches T• or some integral multiple of T, the coupling 
to the fundamental mode will become stronger. This is evi- 
dent in Fig. 4 where •- = 2.61. Figure 4 illustrates the typical 
"ringing" and exponential decay of an isolated mode. Also, 
for a given pulse shape g(• ), as •- increases the broader pulse 
has more of its energy located in the low-frequency portion 
of the spectrum. Thus, the broader pulse will not significant- 
ly excite any particular mode in the superposition. This is 
confirmed by the results presented in Fig. 5 where the back- 
scattered amplitude is shown for the same values of E and c as 
in Fig. 3(a) and (b), but for r = 5.0. The additional modula- 
tion is not present. 

On the other hand, for a fixed pulse shape g(• ), decreas- 
ing ½ puts more energy into the high-frequency portion of the 

pulse's spectrum. Thus, the sharper pulse will excite more of 
the membrane's modes and make the response more quasi- 
periodic in character. This is illustrated by the results pre- 
sented in Fig. 6 where the backscattered amplitude is shown 
for the same values ofe and c as in Fig. 4, but for •- ---- 0.4. The 
jagged, almost random response indicates the presence of 
many frequencies in the waveform. However, we observe 
that as •--+0 the pulse width vanishes but the maximum val- 
ue of the pulse, which is independent of•-, equals 1. Thus, the 
limiting pulse as r--,0 does not correspond to a delta func- 
tion. Hence, the small r. response shown in Fig. 6 does not 
necessarily give the qualitative features of the response to a 
delta function given by (32). 
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FIG. 5. Same as Fig. 4, except r = 5.0. 
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