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Abstract—Scattering bf plane elastic waves by a spherical inclusion is considered. A unified method
of solution is presented which treats compressional and shear incidence on a similar basis. Explicit
results are given for Rayleigh scattering. We apply the results of the single scattering problem to the
propagation of low frequency waves in a composite containing a dilute concentration of spherical
inclusions. Explicit formulae are given for the effective wave speeds and attenuations when the in-
clusions are voids. Both the compressional and shear wave speeds decrease initially as a function of
frequency.

1. INTRODUCTION

THE PROBLEM of elastic wave scattering from a spherical inclusion has been previously
considered by many people. Foremost among the treatments have been those of Ying and
Truell [1] for compressional plane wave incidence and Einspruch et af. [2} for shear plane
wave incidence. Numerical calculations of the scattering cross-sections are given in Ref. [3]
for compressional incidence and Ref. [4] for shear incidence. Corrections to these papers
may be found in Ref. [5]. The general procedure for solving this problem and generalizations
of it are given in reference books, e.g. {6] and [7]. However, apart from Ref. [2], most
treatments [6, 7, 8] just consider the case of compressional incidence. This may be because
the problem of shear incidence is considered to be much more difficult. Such an attitude
may be justified if one compares the analysis of Ref. [2] with that of Ref, [1}. Also, the
analyses in Refs. [1] and [2] are quite different. It is desirable to have a method of solution
that considers both types of incidence simultaneously.

In this paper we present a unified treatment for both compressional and shear incidence.,
Our method of solution uses the set of vector spherical harmonic functions defined, for
example, in Ref. [9]. These functions were also adopted in Ref. {2], but the authors did not
use the orthogonality of the functions to full advantage. We show that the solution for shear
incidence is basically no harder to compute than that for compressional incidence. We use
the procedure to compute the scattered fields in the Rayleigh or low frequency limit. We
note that elegant techniques exist for treating Rayleigh scattering from arbitrary ellipsoidal
inclusions [10, 11]. However, these procedures give only the first terms in the low frequency
asymptotic expansions of the scattered fields. The exact method discussed here allows one
to calculate higher order terms. In particular, we calcuiate the forward scattering amplitudes
from spherical cavities correct to the fifth power in frequency.

The results for the single scattering problem are then used to consider the propagation
of elastic waves in composites containing dilute concentrations of spherical inclusions. The
effective complex wave numbers follow from the coherent wave equations [12, 13] which
depend only upon the forward scattering amplitude of the single scattering problem. This
approximation implicitly neglects multiple scattering effects, and is therefore best suited to
dilute concentrations of inclusions. We derive relations for the dispersive wave speeds and
attenuations at low frequency when the inclusions are empty, or voids, These relations
include previous ones found by Sayers [14] for the compressional wave. The results for the
shear wave are new.

2. FORMULATION AND SOLUTION OF THE SINGLE SCATTERING PROBLEM

The matrix has Lamé constants A, and y,, and density p;. We will also use the bulk
modulus K; = A + 3y, The corresponding constants for the spherical inclusion of radius
aare Ay, gz, prand Ky = Ay + Iy,
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We consider a compressional {C) or shear (S) plane wave of radial frequency w. Thus,
) azer'(klz-mr)’ a=C
u™(r, f) = { {2.1)

a e ltazman a=5

where « denotes the type of incident wave, a = C, Sand ay, a, are unit orthogonal vectors.
We define the wave numbers &; and «;, j = |, 2

i 172 i

= J (2.2

k; w(kj_i_ 2#1_) (2.2a)
N2

k= w(&) _ (2.2b)
#y

We will omit the term exp{—iw?) in subsequent egns.
We express the total field, incident plus scattered, as

u'™ + u®, r>a
e = { @.3)

u™ r<da.
Solution
In the following, we adopt the notation of Morse and Feshbach [9]. From Ref. [9], eqn
(13.3.7) (see also Ref. [2]), we have

oD

> (2n+ D™ ek, w=C
inG n=0 (24)
R B N
Ut D e ot _
ngl nn+ 1) [Mgin(t1) ~ Nein(x1)]; a = 5

where L, M and N are vector spherical harmonics, defined in Ref. [9], eqns (13.3.67)-
(13.3.69), and also in Ref. [2], eqns (8), (9) and (10). We have taken the argument of L, M
and N as the wave numbers k; and «;, j = 1, 2, rather than the position vector r, as in Ref.
9, in order to distinguish between the two types of waves.

We also write the scattered fields of eqn (2.3) as (Ref. [9], p. 1866):

u¥ = E {AgnnLcsmm(ki) + B:rmMzmn(Kl) + CfnnNgmn(Kl)} (2.5a)

Mmia

U™ = 3 (R Ll tks) + S5Mun(ka) + TNt} } (2.5b)

mie

The summation in eqn (2.5) is over ¢ = e (even) and o (odd), n = 0, I, 2+ -+ and
m =0, 1,2 - «n. For each mna, there are six unknown scalars, 4, B, C, R, § and T. These
follow from the six boundary conditions at the interface r = a: continuity of displacements
(three) and continuity of the normal traction components (three).

The total displacements at » = @ are expressed via eqns (13.3.67)-(13.3.69) of Ref. [9]
in terms of the vector harmonics BS,,, PZ., and C5,,, defined on pp. 1898-9 of Ref, [9]. This
representation is desirable because of the orthonormality properties of P, B, and CP....
The normal traction at r = a can be expressed in terms of these vectors using eqns (13.3.78)
of Ref. [9]. However, we note a typographical error in the first of the three equations in
Ref. [9], eqn (13.3.78). The error is in the square bracket following B7,,. It should read

[Z,ud_

2u
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Using the orthonormality of By, P4, and C., the six boundary conditions give six
simultaneous equations for the six unknowns in eqn (2.5) for each mne.

The six equations decouple into a system of four for Apy, Cn, Ron and Ty, and a
system of two for B7,, and S7.,. The latter eqns give Bg,, and S5, both zero uynless a = S,
¢ = ¢ and m = |, in which case

o . @nt " cMkia)ynalkaa) — Cr’w(Kza)’Y}u(Kla)] Y
Bin n(n + 1) [C kga)y y(k:G) — CHx1@yYnalkaa) @72)

6 (2n + 1" [Crlx(xla)“r’rszl(xla) —~ c3x,@)ymKi4) ] { (2.7b)

T+ 1) Lelioaym(ng) = cilaa)yilka) 1 |

The functions ¢ and v/ are defined in Appendix A. o
The remaining four eqns for Amn, Cinny Riuns and T¢,, simplify in the case of n = 0. A
non-zero solution exists only for @ = C. Then all the constants are zero except Af, and

R§,, which are

Agy = 1{06(](2@)&31(]{10) — a(’,(k,a)aég(kza)] (2.82)

aé(kza)agl(k,a) - a%(kaa)ac’n(kza)

e _ ag(kla)a(‘n(kla) - aé(kla)aén(kxa)] 2.8b
Koo = {aé(kza)a&(kla) - a3l @b (ka) ] (2.80)

The various functions in eqn (2.8) are defined in Appendix A.
For n = 1, the four egns are

QX =Y, a=C S5 2.9)
where
X = [A%m, Counr Ry Tl (2.10)
(2n + DI al(ka), bikia), ahka), Bulaa) dobns, @ =C
Yo 4 @nt 1) i n 1 [ ; . @
W+ 1) [dixa), ehxia), Slkia), eul12)] 0oedm, o=S
and

adka) dixa) -a%(kza) —d ;‘.(Kza)

U bkie)  eda)  —bikaa)  —enlx:q)
Q=| Fika) Bina) —aalloa) —8aa) | 212

gl(kla) "-fu(":ﬂ) _13::2(k2a) _‘5312(-‘(20)

The various functions in eqns (2.11) and (2.12) are defined in Appendix A.
The limiting cases of rigid and empty spheres are easily obtained from eqns (2.9)-(2.12}
as follows. Let

X = [X;, X7 (2.13)
YDI = [.Ylau YZG(]T’ o= C} S (2.14)

where X, X3, etc., are vectors with two elements. Also,

°-[on o @19

where Q,; are 2 X 2 matrices. The rigid limit follows by letting ps, Az, p2 — oo insuch a
way that k; and & remain finite. Then, det(Q) ~ det(Qy;)det(Qz). From Cramer’s Rule, it
is clear that the system (2.9) thus reduces to
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Qllxl Yla: x = .C, A . (216)

for a rigid sphere.
The limit of a spherical cavity follows by letting A;, g2, p2 — 0, but again keeping k,
and «; finite. Then det(Q) ~ det(Q;2)det(Q;,), and the system of eqns reduces to

Q21X[ = YZas o= C, S. (217)

3. LOW FREQUENCY RESULTS
The low frequency or Rayleigh regime is defined by x,a < 1. Thus, the incident waveiength
is much longer than a. In this regime the inclusion is essentially subjected to quasi-static
loading. The system of eqns (2.9) may then be solved by performing regular perturbation
expansions in the various terms. Similar perturbation expansions have been considered in
Refs. [1] and [2]. We omit the relevant details, and refer to these papers for further dlscussmn
of the procedure,

Compressional incidence

We now present the scattering amplitudes for the scattered field defined in eqn (2.5).
For compressional incidence, the only non-zero terms are, to highest order,

Afo = %(F)UC!G)S + O(kld)s {3.1a)
A = i (BE - 'l)(k,a)3 + Otka)’ {3.1b)
3I\p

A = [2%‘ T[ ~2n(n — 1)(4n? = 1)z — 1) ]
- @] L2n(n — Dpy — wy) + [2(0* — Dz + 20 + Duglei/kcd
X (k@' + Ol ay™', n=2 (3.1¢)
R+l
ce, = (ﬂ) A+ Oka)Y, n= L (3.1d)
n k; !

We note that A8, A5, A, C§ and C§, are all O((k;a)’) and the rest are O((k,a)’) and
smaller. Therefore, the scattered field, to highest order, depends only on these five terms.
The scattered farfield for compressional incidence follows by expanding L},..(k;} and
N3,..{x)) in powers of r~!, and retaining only highest order terms. We obtain,

rqu 1k1r
~ AC(H) e, + 4 (9) {3.2)
where
AS = Ao — id§icos § — Ag(1 — 3 sin?6) (3.3a)
A§ = iC§sin 0 + § C§sin’f. (3.3b)

We note that this expansion of the farfield in terms of monopole {(n = 0), dipole (n = 1)
and quadrupole (#» = 2) terms is only valid in the Rayleigh regime. At finite frequencies,
all the spherical harmonics, n = 0, I, 2, - - are relevant in the farfield.

Shear incidence
For shear wave incidence, the only non-zero terms are, for n = 1

n—i
g =1 (ﬂ) A f1 + O] (3.42)
n\k
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280+l
cs, = 35 (i‘—‘) A1 + Okia)] (3.4b)
n k]

where 4%,, n = 1 are given in eqns (3.1). Also, we have from eqn (2.7)

o o L (B2 )(53)2 s ; ‘
Bii =35 (m 1 v k1@ + Oxia) (3.52)
2 _ 1 {
o in—l(zn + 1) [Znn! ]2 123 pIN; 243
" am+ Den+ D leal | & Ltz ki)™ + Okia™*,  n=z2. (3.5b)
' poon—1

Therefore, the only terms of significance in the farfield are Af,, A%;, C5, and C%, which are
all O((x,a)*). The farfield is

ikyr ixyr

uC ~ 43(0) S sin ge, + AS(@, ¢) (3.6)

k;r Kr

where

1 P2y . S(ua — pidxy/kysin 26
Asz[—(l————) 8+ ]ka3 3.7a
T T T T s+ Ornei ) (3.72)
AS = —iC$,V2B5,(8, ¢) — C5,V6B %6, 6) (3.7b)

and B, and B, are vector spherical harmonic functions as defined in Ref. [9].

153‘1’1 = €0s 0 cos $e; — sin de, {3.8a)
VEB‘fz = 3 c0os 26 cos ge, — 3. cos 8 sin ge,. (3.8b)

We note that the amplitude A% equals the amplitude A4S, in accordance with known reci-
procity relations between scattered elastodynamic waves [15].

4. SCATTERED ENERGY

Consider a sphere of radius r concentric with the scattering sphere. The flux of energy
out of this sphere due to the scattered field u* defined in eqn (2.3} is

Flux at r = Average over a period of f —(Reu®) « (Rer ©)r?dn, (4.1)
Here 7}° is the stress in the radial direction due to u*, the dot denotes the time derivative,
and 4Q is the incremental solid angle. The integral in eqn (4.1) is the power (force times

velocity) expended over the surface of the sphere. In the limit as r — o0, we obtain the flux
at infinity as

Za = 2 { Gl NPol? + gl Counl? 1B 12} (4.2)

where & = C or S, and

3
o= =i %3 ,liﬁl [aatki ey (kiryr?] = %‘ % (;2) (4.3a)

gn = —i = lim [eXane(cr)r?] = g (1 + Dygw/x, (4.3b)
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Also, )
|XP? = XX

where the bars denote complex conjugate. The norm || Pl is defined by
Ix  (w
25l = [ [ P50, 6)- Pakt, sin 0 o dp (4.4)
. 1] 0
where Pg,, is the vector spherical harmonic defined in Ref. [9], pp. 1898-9, and also iin Ref.

[2]. The norm | BS,,|l is defined similarly. From Ref. [9], p. 1900

4 (n+ m)!

en(2n + 1) (n — m) 4.5)

IPrali® = BRI =

where ¢,, = 1 for m = 0, 2 for m > 0, is the Neumann factor. We note that the constants
BZ,, of eqn (2.5) do not contribute to the flux at infinity. We also note that m = 0 for
a=C,and m = | for o = 5. Thus,

2mapy [ = (5_,)3 () gl | G arminntl), Ez]
SNkJ m—m) 2n+ ) Se—mi@et 1) T

m=20 for a=C
m=1 for a = S (4.6)

The scattering cross-section v,, « = C, S is defined by dividing the scattered flux by the
flux of the incident wave per unit area:

. ’ %wﬂlfc?/kl, a=C
Flux of incident wave per unit area = 4.7}

WiL1Ky, o =

v = A (&)“m[ o (ﬂ)-” (n+m (45 N % (n + mt n{n + 1) IC;HIZ:',

€kt \Ky ki) (n—mp@2n+1) Sn—mi@2n+1)

m=10 for a=C

m=] for o =S (4.8)

Low frequency results

The flux of the scattered field in the Rayleigh regime follows from eqn (4.6) by including
only the terms n = 0, | and 2. The remaining terms give contributions of higher order in
(x;@). The scattering cross-section for compressional incidence then follows as

4
Ye = 75 gckia®{1 + Olkay’} 4.9)
where g¢ is the same quantity that appears in eqns (27) and (28) of Ref. [1].
K, - Kz) ! [ (Kl)a](l)z )2
= (2 o+ 2t ) (2R
8¢ (Kz + % 3 ky £
s 2
Ky 10(p; ~ o) ]
+ 202+ 3{— . (4.10
[ (kl) ][4(#2 — ) + (6pg + G dxisk: (4.10)

This agrees with eqn (28) of Ref. [1] if (x5/«,) in the second term in that equation is replaced
by (xa/x1)%.
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The scattering cross-section for shear incidence is

vo = 4 ggktal{1 + O @in
where
ki (1 X1 3](;:2 )2 3 i [ ()’}
5T o {um + —— —_— ——— — —-—
&s kl{s[l (k.) PR BT Y1 R P ;
10(u; — uy) ﬂ

. {4.12
[4(.0-2 = 1) + (6pz + O )xdik3 ( )

This result agrees with a similar result of Ref. [5]. The result of Ref, [2] for vg is known to
contain errors [5]. Plots of ge and gs are shown in Fig. 1 for empty inclusions or cavities.
The ordinate is x,/k; = V¢/Vs, where Ve and Vs are the compressional and shear wave
speeds of the matrix. We note that (Ve/Vs)® = 1 + (1 — 2»)7!, where v is Poisson’s ratio,
and therefore V/Vs > V.

5. LOW FREQUENCY FORWARD SCATTERING AMPLITUDES

At low frequencies, the amplitudes of the scattered fields in the forward direction
(8 = 0) foliow from eqns (3.2) and (3.6). It is clear from these equations and also from
symmetry considerations, that the forward scattered field consists only of a wave of the
same type as the incident ficld. The forward compressional amplitude is 4$(0), which follows
from eqn (3.3a). The forward shear amplitude is polarized in the same direction as the
incident wave, and has amplitude 43(0) = A$(0, 0)- ¢, which follows from eqns (3.70)
and (3.8).

Now, the above forward amplitudes are necessarily real quantities, by virtue of the Ray-
leigh approximation which makes both A5(0) and 43(0) of order (k\a)’. The imaginary
parts of the amplitudes are of higher order and could be calculated by extending the per-
turbation scheme. However, the latter course is not necessary, since we can invoke the
optical theorem [16] to compute the imaginary parts of the forward scattering amplitudes.
The optical theorem is a general result which, in the present circumstances, yields

150

100+

50

0 : T T 1 1
1 1.5 2 25 K} x5
/vs

Fig. 1. The dimensioniess, normalized low frequency scattering cross-sections for compressional and
shear waves incident on a spherical cavity,

ES 24:8-C
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k2
ImAE(0) = 213; Yo (5.1a)

v
ImA$(0) = - ¥s. (5.1b)

These relations follow from eqns (2.6) and (2.7) of Ref. [16]. However, we note that the
scattering amplitudes of Ref. [16] have dimensions of length, whereas ours are dimensionless.

Combining the above findings, we may write the forward scattering amplitudes, correct
to first order in their real and imaginary parts. In the following formulae we have dropped
the subscript | on parameters associated with the matrix. Also, we have found it useful to
define K* and u* as

K* =ty (5.2a)

* o M _._._9K+ 8'“) 5.2b
H 6(K+2,u ’ ( )

biaad

Then,

(kay} {( B )_(Kz—K)mi(#z—n)(u+ﬂ*)_ 5, . (ka)
AE(0) = P 1y oaix) i\kie e e Blka)* + i 3

. [(;..;..;%)2 SRR N RO R IR O e I RN

{5.3)
0 (1) - ()2 o) - mtvor S 3 142
Ay = — =~ 1) —f——=— Dikay + i 142
5(0) 3 . 1 | (ka) 3 13 %
b RE H1ERE Gl s RN
X|[=-1) +—= 2+ 3l- ———— = = ] . (54
(p ) 15( k' Npp + p*J\p (5.4)
Here, B and D are real constants that depend upon the higher order terms in the asymptotic
expansions of 4%, and C%,. We have not computed them here because of the excessive
algebra required. We note, however, that B has been computed for the special case of a

cavity by Sayers [14, eqn (6)]. We have verified his result and also calculated D fora cavity.
Thus, defining 7 = x/k,

B= _[ - i2 >+ } 15[1 127?2] b— [5 - 2 2][1 - %712]~2 (5.5)
= @+ &0+ §n { 3@ -+ = § 7+ =BT (5.6)

The three separate terms in (5.6) correspond to the O(ka)’ contributions for Cf,, C{, and
C%4, respectively.

6. LOW FREQUENCY WAVES IN A DILUTE CONCENTRATION
OF INCLUSIONS
Consider a random distribution of identical spherical inclusions of materials in a uniform
matrix of material 1. We wish to calculate the effective wave speed and attenuation of the
coherent waves propagating through the composite. At low concentrations of inclusion we
can use the following dispersion relations {12, 13, 14, 17}

K = i + D0 450) (6.12)

=kl + %4—“ A3(0). (6.1b)
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Here k and « are the effective wavenumbers for the composite, Thei are related to the
effective wave speeds V. and Vs by

Ve = wlk (6.22)

Vs = wjk. _ (6.2b)

The effective attenuations are determined from the imaginary parts of Ve and V. The
number N in eqn (6.1) is the number of spheres per volume V. The forward scattering
amplitudes A£(0) and A45(0) are defined for a sphere of material 2 in the effective medium
with elastic moduli A, u and K = ) + %u, and density p = p, + d(py — py), where ¢ is the
volume fraction of material 2. The effective wave speeds may also be written

1/2 '
Ve = (?\ :2#) {6.3a)
1/2
Ve = (’ﬁ) . ~ (6.3b)

The coherent wave equations from which eqn {6.1) follows, is a weak scattering theory
in that all multiple scattering effects are smoothed out. It also assumes that the single scattering
is “small.” Therefore we will only use eqn (6.1) in the low frequency or Rayleigh regime,
leal < 1. Equation (6.1) is also valid only for dilute concentrations, ¢ < 1. At higher con-
centrations, there remains some controversy over the correct form of the eqns analogous
to (6.1} [18]. We therefore limit the application of (6.1} to dilute concentrations. We note,
also, that the effective inertia of the composite is just the spatial average of the density. In
this respect, we agree with McCoy [19] but not with Datta [20], who obtains a different
effective inertia.

Since we are restricted to ¢ < I, we will just compute the derivatives dK/d¢ and du/d¢
at ¢ = 0. The values of Kand u at ¢ > 0 but ¢ < | then follow by linear extrapolation, e.g.

du

W) = uy + aﬁ(a,¢ ) + O(¢?) (6.4)

$=0

We first obtain the initial slope of the shear modulus. Differentiating eqn. (6.1b) with
respect to ¢, using ¢ = $7a’N/V, and putting ¢ = 0, gives

i dp 1 du 3 s
Yapr _law S0, |
pddlyo pdply, (ka)y s(0) (6.5)

Then, using eqn (5.4) for 4§(0) and the fact that dp/dp = py ~ py, we get
) A )
= — J— .+. —_ pAV
i = (B ngart — i BT o 2
B e + 3]~ 2% ez .
"3 M(K) [2 S(k) :’(#2 + u*) (# 1) } (6.6)

where p* is defined in eqn (5.2b). A similar eqn for the bulk modulus initial slope follows
from differentiating eqn (6.1a) and using egn (6.6):

du
do

@=0
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aK e Sl “B — z_-(f‘“_)’{ (ﬁﬂ
.~ & K)( K2+K*)+[KB+K (B — Di(ka)* ~ i = K[i +247
2 2 5 2 2 2
s e O R ) (%))
x(p 1) tu (K)[zm o w5 1) vk k(g

(6.7)

where K™* is defined in eqn (5.2a).

The first terms on the right-hand sides of eqns (6.6) and (6.7) are the well-known [21]
results for the static moduli of a composite. Therefore, the effective real wave speeds are
given by the effective static elastic moduli [19). The density variation does not enter into
these moduli, as one would expect since inertial effects are zero in the static limit. The low
frequency attenuation depends upon the imaginary parts of the complex moduli X(¢) and
#(¢). From eqns (6.6) and (6.7) it is clear that the density variation plays a role in the
attenuation. Finally, we note that the initial slopes of X and u for composites containing
spherical cavities or pores follow from eqns (6.6) and (6.7) by setting K, x2 and p, to zero.

The effect of porosity on the wave speeds at low values of porosity may be written out
more explicitly. At porosity ¢, where ¢ < 1, let the complex wave speeds be Vi — jacVEi o
and Vs — iasV%/w, where V, and ¥; are the values at ¢ = 0 and w is the frequency. Thus,
ac and ag are the compressonal and shear attenuation. From eqns (6.1), we have

Ye_ 1+ ¢(A + Blkay®) (6.8)
Ve
Nye . 4418
ac =75 = pictar & (6.9)
V 2
=1+= (E+D(ka)) (6.10)
Vs
N .
as=l—/32§= ¢k4a3%s. 6.11)
E
] --6...
a8 A
wd
....2.—
0 T T Y T -
1 15 2 25 3 35
V. /Y

Fig. 2. The constants pertaining to low frequency dispersion of a compressional wave in a dilute
suspension of spherical cavities,
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Fig. 3. Same as Fig. 2, but for the effective shear wave speed.

Here,

. Kz—K) ﬁ(uz—u)(u+n*)

'4_(I p)+(Kz+K* HEAVEY T e €12
+ *

(2o e

The constants g and g5 are defined in eqns (4.10) and (4.12) and B and D are defined in
eqns (5.5) and {5.6) for cavitics,

Equations similar to eqns (6.8) and (6.9) have been given by Sayers [ 14] for the particular
case of cavities. We have checked that our eqns agree with his in this case. Equations (6.10)
and (6.11) are new. Plots of 4, B, E and D are shown in Figs. 2 and 3 for cavities. The
ordinate in these figs, is x/k = V¢/ Vs, which must exceed V2. We note that A, B,Eand D
are all negative, Thus, the speeds decrease with increasing porosity and increasing frequency
at low values of each. For example, in aluminum, V¢/Vs = 2, which is typical of many
metals, we have A = —13/8, B = —883/360, E = —7/8, D = —1739/720, so that the wave
speeds are

Ye. 1 - ¢[0.81 + 1.23(ka)?] (6.14)

7/3 =1 — ¢[0.44 + 1.21(ka)?]. | (6.15)

5

These eqns predict the dispersion of both wave speeds at low frequencies. From Ref. [22]
we can expect them to be reasonable for ka less than approximately 0.4, At higher frequencies,
alternate theories are to be preferred [22, 23, 24}
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APPENDIX A: SOME FUNCTIONS
The following functions are the coefficients of PJ,,, BJ, and C§,, in eqns (13.3.67)-(13.3.69) of Ref. [9].

ayx) = julx) (A1)
Blx) = Vnln + l)% (A2)
ca(x) = xbi{x) (A3)
dix) = Vn(n + 1)bYX) (Ad)
eMx) = Vn(n + Dal(x) + bXx). (AS)

The functions aj, . . ., e} are given by eqns (A1)~{AS) with j,(x) replaced by the spherical Hankel functions #,(x).
The following functions are the coefficients of P7.., Bf. and C3,, in eqns (13.3.78) of Ref. [9]. There is an error
in the first of these eqns. The correction is noted in eqn (2.6).

aylher) = k2, j30kry — Njolkn)] (A6)
B 0kr) = 2ukNnln + 1krY ke jothr) — jo(kr) (A7)
vithe) = 5 i) (a8)
ahytkr) = Vln + DBl kr) (A9)
elylkr) = Vi + Ljakn) + (2 + 1 — 2) jullryitkr?]. (AL10)

The functions a;,---¢); are given by eqns (A6)-{A10) by replacing the spherical Bessel functions j(kr} by the
spherical Hankel functions A,(kr).



