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A differential scheme to compute the effective moduli of composites is presented. The method is based on the idea of
realizability, i.e. the composite is constructed explicitly from an initial material through a series of incremental additions. The
construction process is uniquely specified by parametrizing the volume fractions of the included phases. The properties of the
final composite depend upon the construction path taken and nof just on the final velume fractions. Assuming the grain shapes
are ellipsoidal, a system of ordinary differential equations for the maoduli is obtained which is integrated along the path. The
present method includes as special cases of paths or endpoints the differential scheme of Roscoe—Boucher and the
self-consistentt scheme of Kroner—Hill, respectively. The method includes a realization of the Hashin-Shirikman bounds for a
two-phase composite with (k; — k3 X, — 5} = 0. For example. the upper bounds are achieved by imbedding disks of the

stiffer material in a matrix of the more compliant material,

1. Introduction

The subject of this paper is the mechanical
properties of composites. The composites are as-
sumed to consist of discrete homogeneous ‘grains’
which are perfectly bonded together. The grain
structure can be such that one phase is suspended
in a matrix of another phase, or the two phases
can be distributed in a symmetric fashion. The
grains can be aligned, leading to anisotropy, or
randomly oriented, to give an isotropic composite.
In general, any number of distinct phases can be
considered. A similar method for estimating the
electrostatic properties of composites has been dis-
" cussed by Norris, Callegari and Sheng (1984).

Various methods have been proposed over the
years for compuating the macroscopic effective
moduli of multi-phase elastic composites. Rigor-
ous procedures exist for composites with periodic
microstructure (Nemat-Nasser and Taya, 1981;
Nemat-Nasser et al,, 1982; Tao and Sheng, 1984;
Nunan and Keller, 1984). However, exact solu-
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tions are of little use when the underlying structure
is random. In this case it is common to use one of
several ‘effective medium theories’. Foremost
among these methods has been the symmetric
self-consistent scheme of Kroner (1958). This
method is analogous to the effective medium ap-
proximation (EMA) used in electrostatics and due
originally to Bruggeman (1935). Hill (1965b) ex-
amined the Kroner scheme for spherical grains
and found it 1o bé consistent with the Hashin-
Shtrikman bounds for two-phase isotropic com-
posites. However, another class of ‘self-consistent’
theories proposed by Wu (1966), Walpole (1969)
and Boucher (1974) differ from Hill's formulation
in that the two phases are not treated on a sym-
metric basis in the final equations. Both of these
schemes are identical for spherical grains, a fact
which has led to some confusion in distinguishing
between them. The distinctions between these the-
ories and others are discussed in detail by Kor-
ringa et al. (1979) and by Berryman (1980). Good
reviews of the relevant literature can be found in
Watt, Davies and O'Connell (1976), Cleary, Chen
and Lee (1980), Christensen (1979) and Hashin
(1983); see also Budiansky (1970). In this paper we
consider only the self-consistent scheme of Kroner
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and Hill, which we refer to as EMA 1o avoid
ambiguity. The EMA has also been derived in the
context of scattering theory by Korringa (1973},
Gubernatis and Krumhansi (1975), and by Berry-
man (1980). The key in all the scattering theory
approaches is to imbed typical grains of either
phase in a homogeneous matrix with unknown
elastic moduli. The moduli are then obtained by
requiring the averaged forward scattered field for
the ensemble .of grains to equal zero. In the low
frequency or quasistatic limit this is equivalent to
the EMA.

The second class of effective medium theories
considered here is due originally to Roscoe (1954)
and Boucher (1975). This is the differential effec-
tive medium theory (DEM), which unlike the EMA,
does not treat the phases on an equal footing. In a
two-phase composite one phase is taken as the
matrix and the other is added incrementally in
such a way that the newly added material is always
in dilute concentration with respect to the current
effective medium. The microgeometry correspond-
ing to DEM has been described by Sen, Scala and
Cohen (1981) and also by Sheng and Callegari
{1984). McLaughlin (1977) has shown that the
DEM theory for spherical grains gives moduli that
satisfy the Hashin-Shtrikman bounds. A good
review of the elastic DEM theory is contained in
the article by Cleary, Chen and Lee (1980). DEM
has received attention recently because it predicts
the empirical Archie's law for the effective conduc-
tivity of rocks (Sen, Scala and Cohen, 1981; Sheng
and Callegari, 1984). Other differential schemes
based on the idea of iterating the dilute approxi-
mation have been proposed by Henyey and
Pomphrey (1982) for cracked solids and by
Zimmerman (1984a and b) with spherical pores.
The method of Zimmerman predicts moduli that
are inconsistent with the Hashin-Shtrikman
bounds and so.cannot correspond to a physically
realizable solid. ,

The purpose of this paper is to develop a theory
which contains both DEM and EMA as special
cases. The key to our approach is the idea of
realization. An effective medium theory is called
realizable if we can describe a construction process
to make a cé')mposile material with effective mod-
uli predicted by the theory. Thus, the Hashin

~.Shtrikman bounds for the bulk modulus of a
two-phase randomly disordered solid can be real-
ized through the well known packed-spheres geom-
etry (e.g. (Hashin, 1983)). There were very few
other realizable geometries known until recently.
A major breakthrough came when Milton (1984a
and b) showed that EMA corresponds to a class of
aggregates with well defined microgeometries. For
a two phase composite these aggregates are con-
structed briefly as follows: one starts with an
arbitrary homogeneous matrix material with mod-
uli L, Then grains of the two phases_are imbe-
dded in the matrix such that: (1) the grains are in
a dilute suspension, and (2) the relative volume
fractions of the two phases are the same as in the
final material. This results in an effective medium
with moduli L. The process is repeated with
material L' as the matrix and with grains which
are an order of magnitude larger in size than the
previous grains. This results in an effective medium
with moduli L*®. The iteration is continued such
that at each stage J the imbedded grains are in

- dilute concentration and the required volume frac-

tions are satisfied. The imbedded grains at stage J
are much larger in size than those of stage J 1
and the imbedded grains are sufficiently separated
so that grain-grain interactions are negligible. Mil-
ton {1984b) showed that the EMA result is ob-
tained by letting J — ¢ and taking certain other
limits. We refer to the original paper for more
details.

A similar type of hierarchy of aggregates can be
defined for.DEM. For a two-phase composite of
materials 1 and 2 we start with a matrix of phase
2, for example, and imbed grains of phase 1 in
dilute concentration. The next stage consists of
imbedding grains of phase 1 that are an order of
magnitude larger than the previous ones. and so
on. The DEM hierarchy of composites continues
until phase 1 occupies its correct volume fraction.
In this sense it is different from EMA, where the
original matrix material is completely replaced.
The DEM composite is unsymmetric in the two
phases by definition. If materiai 2 has no rigidity
(1, =0) then the DEM material has no ngidity
because the added phase, which has rigidity, is not
connected. However, the EMA result for the two
phase composite has rigidity when the volume
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fraction of the solid phase exceeds a certain value,
the rigidity threshold, which depends upon the
grain shapes considered (Hill, 1965b).

2. The construction process

In this section we describe a procedure whereby
the generalized theory can be realized. The process
considered here is just one of many that could be
envisaged. It is characterized by keeping the
volume -of the composite fixed at ¥ during the
entire process. An alternative process in which the
volume increases is described briefly in Section 3.
However, it turns out that the differential equa-
tions we obtain in Section 3 are independent of the
construction process.

Begin with volume ¥, of material 0, an aniso-
tropic, homogeous, linearly elastic solid with elas-
tic moduli tensor Ly, which we refer to as the
‘backbone’ material. Grains of materials 1 and 2,
are imbedded in material 0 in such a way that the
volume remains fixed at V. This involves re-
moving and replacing some of the original material,
-Materials 1 and 2 are also anisotropic, homoge-
neous, linearly elastic solids with moduli L, and
L, respectively. The composite now has a new
modulus tensor L, different from L.

The construction process continues by re-
moving the current material and replacing it with
grains of materials 1 and 2. Let ¢, ¢; and ¢, be
the current volume fractions of the materials, such
that

ot ¢yt py=1. ’ )

At each replacement, the removed material must
have the same volume fractions of materials 0, 1
and 2 as the total volume. Thus, at each stage the
material is assumed to be homogeneous, This can
be realized if the replacement grains are always an
order of magnitude greater in size than those at
the previous removal-replacement. In addition, the
grains must be dispersed at random and occupy an
infinitesimal volume fraction. A schematic of the
iterative process is shown in Fig. 1.

The construction process is uniquely defined by
a path in the (¢, ¢,) plane, see Fig. 2. Let the
path be parametrized by an arc length parameter
¢, which is analogous to time. so that on the path
we have ¢, = ¢,(1), ¢, = ¢,(¢). The origin of time
is conveniently chosen so that ¢,(0) = ¢,(0}= 0. It
then follows that for each r> 0 the material is
homogeneous, i.e. any given volume v of the com-
posite contains ¢,v of material 2.

REPLACE SMALL FRACTION
‘BY COMPS. 142

HOMOGENEOUS COMP. 0

NEW HOMOGENEOUS
MEDIUM

{TERATE

Fig. 1. The iterative construction process of the general theory,
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Fig. 2. A homogenization path in the ($,. ¢;) plane. The range
of further possible points is the small triangle.

We now examine the incremental removal-re-
placement at time 7. Let the volume of material
removed by Av, The same volume is replaced with
volume Av; of material 1 and volume Av, of
material 2 such that Av, + Ay, = Av. The volume
of material 1 in the solid before the replacement
was ¢,¥,. After replacement, the volume of
material 1 is

A
%(¢1+A¢1)=%¢1(1“”"L}2)+A01- (2)
0

This relates the increment in ¢, to the correspond-
ing increments in v; and p,. A similar relation
follows for A¢,. Note that v; and v, measure the
total volumes of materials 1 and 2, respectively,
that have been added during the construction pro-
cess up to the current value of ¢. Therefore v, and
v, describe a path in the (v,, v;) plane as ¢ varies,
We can parametrize this path by ¢ such that
vy = vy(t) and v, = vy(1) along the path, Define
the derivative ¢, as

é) (1) =de,/dr1. (3)

Similarly, we define the derivatives ¢,, b, and o,
so that (2) becomes :

Vo‘i’: =(1- ‘Pg)bl = 0.
This relation'and the corresponding one for ¢,(¢)

can be inverted to give #, and o, as
ﬁ= (1 - 4‘2)¢1 + ¢1‘i’2'

" e (4)
b (1~ ¢1)¢) + 19,
Va 1-¢

where ¢ = ¢, + ¢,. Thus, the construction process
can be described by a path in the (¢,, ¢,) plane or
its equivalent path in the (,, v,) plane.

Paths in either plane begin at the origin. The
range of v, and v, is the quarter space v, >0,
v; 2 0. It may seem paradoxical that v, and v, can
become as large as’we wish while the volume of
composite remains fixed at ¥;,. However, v;, j=1
or 2 does not represent the current volume of
material j in the composite, but the volume of
material j that has been used up in the
removal-replacement process. ~

The paths in the (¢,, ¢,) plane are restricted to
the triangle ¢; >0, ¢, >0 and ¢ < 1. A further
restriction follows from the physical requirement
that &, and 0, are both positive, meaning materi-
als 1 and 2 are always added, not taken out. This
implies, using (4) and the identity

(1—‘1’2)‘#14"?’1‘&’2:2_ b,
G-gp  @T-%
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that the two quantities ¢,,/(1 — ¢) and ¢,/(1 — ¢)
must both be monotonically increasing functions
of 1. Geometrically, this means that the direction
vector (&,, ¢,) can only point from the current
point (¢, ¢,) into the triangle with vertices at the
points (1, 0), (0, 1) and (¢,, ¢,), see Fig. 2. Thus,
the triangle which defines the permissible range in
the (¢, ¢,) plane decreases in size as ¢ increases.
Additional reiations between the variables (¢4, ¢,)
and (v,, v,) are discussed by Norris, Callegari and
Sheng (1984). It is shown there, and it will become
clear later, that (¢, ¢,) are the preferred set of
variables because they are independent of the par-
ticular construction process.

3. Differential equations for the moduli

The current elastic modulus L is a function of ¢
through ¢, and ¢, and the path which these
variables follow from (0, 0) to the current point.
Consider the removal of volume Av = Av, + Ao,
from the current homogeneous composite and its
replacement by grains of materials 1 and 2. The
elastic modulus after the removal-replacement is
L + AL, defined by

G=(L+AL)E (5)

where & and £ are the stress and strain averaged
over the composite after the replacement. Thus,

(6)

where L = L, in Av, and L, in Ap,. Equations (5)
and (6) imply the exact result

N R
AL5=70]AU(L-—L)edv (7)

Now consider an isolated grain of material 1 or
2 in the otherwise homogeneous composite. As-
sume the grain size is small enough compared with
the sample size that we can define a homogeneous
strain gy at ‘infinity’. We make the further as-
sumption that the grain is ellipsoidal in shape.

This allows us to consider limiting cases of disk or
needle shaped grains later. The main reason for
specifying the inclusion to be an ellipsoid is the
remarkable result of Eshelby, that the resultant
strain in the inclusion is homogeneous. Specifi-
cally, in the inclusion,

e= T¢, (8)

where T is Wu's fourth order tensor (Wu, 1966;
Korringa et al., 1979; Berryman, 1980) which de-
pends upon the matrix moduli L, the inclusion
moduli L and the aspect ratios of the ellipsoid.
The dependence of T upon L can be made ex-
plicit by introducing Eshelby’s fourth order tensor
&8 (Eshelby, 1957; Mura, 1982)

T=[I+SL"(L-rL)]" T (9)
where [ is the symmetric unit fourth order tensor,
Iijki=%(8ik8ji+ 8i18jk)- (10)

The tensor § depends only upon L and the aspect
ratio$ of the ellipsoid. When L is isotropic it turns
out that S depends only on the Poisson’s ratio
{Mura, 1982).

The strain in a typical grain of material J,
J=1, 2 after the replacement is

e=Te, in Ay, (11)

where T is Wu's strain concentration tensor for a
material j inclusion in matrix L. Equation (11)
assumes the grains are sufficiently separated that
grain-grain interactions are negligible. This 15 true
in the limit Av -» 0, which we will consider shortly.

Averaging (11} over all grains of material J. gives

1 = . .
Ku—j'/;u-fedv—T}eo. j=1,2 (12)

where the overbar denotes the average over aspect
ratios and orientations. Note that the grain sizes
do not play a role in this theory. A random
orientation of grains results in an isotropic average
tensor. We adopt the concise notation L = (3k, 2p)
due to Hill (1965a) for the isotropic tensor L,

:258:/61;1‘) (13)
sothat L™= (I, $p)and L, L, = (9k,x,. 4y pt,).

Liji= "5:‘;‘3:.-: + a“(&'kaﬂ + 88y —
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The isotropic strain concentration tensor is then

{Berryman, 1980)

T=(pP,Q;), j=1,2 (14)
where
P=%T;'Ikk’ Q=%(T:‘kik_P)- (15)

The scalars P; and @, j=1, 2 depend upon the
inclusion material L;, the matrix material L and
the ellipsoid aspect ratios. In general, we can con-
sider a distribution of aspect ratios which can vary
with r, Explicit formulas for P and Q are given by
Berryman (1980) for grains which are spheroids of
arbitrary aspect ratio and when both matrix and
inclusion are isotropic.

The incremental change in the moduli, given by
(7 is now

= A = A
ALE= (L, ~L)Toeg— +(Ly — L)oo 2.
Vo Yo
(16)
In the limit as Av = Av, + Ap, — 0, we have

§=80

The strain g, is arbitrary, so that (16) implies

LA = A
AL=(L, - L)T, 52 +(L,- L), =2
0 0

or, in the limit,

. = 0 = b

L()=(Li~D)Tg +(L~ D)3, (17)
0 0

Eliminating &, and &, using (4) gives us the path-
dependent set of coupled differential equations

L(t)=(L,~L)Ty¢, +(Ly~ L)Ty9,
+{(L1 _L)T1¢1 +(L2_L)T2¢2]1—g;$
(18)

where ¢(r)=¢,(¢#)+ ¢,(¢). The initial conditions
are L(0)= L,.

Although (18) appears more cumbersome than
(17), it is the preferred or canonical form. Equa-
tion {17) is phrased in terms of variables (v,, v,)

which are particular to the construction process
considered. To see this more clearly, consider an
alternative construction process in which the
volume of composite material is allowed to in-
crease. Begin at ¢ = 0 with an initial volume vy. At
each step in the homogenization incremental
volumes Av, and Av, of materals I and 2 are
added to the current total volume V(1) = v, + v, +
v,. The volume fractions ¢, and ¢, of materials 1
and 2 are

dr=v/V, @ =0/ V. (19)

Note that (19) defines a one-to-one relation be-
tween points in the (v,, v,) plane and points in the
(¢,. ¢;) plane. This contrasts with the previous
construction process where there did not exist such
a functional relationship, but just a differential
relationship (4). The difference is trivially ap-
parent; we are now retaining all the added material
within the mixture. There is thus no indeterminacy
in how the new material is distributed in terms of

-volume fractions. We refer to Norris, Callegari

and Sheng (1984) for further discussion of either
process. The relevant homogenization equation for
the process under consideration may be derived in
a similar manner to the analysis preceeding (17).
We omit the details and just cite the result analo-
gous to (17), viz.

L()=(L=L)T 3 +(L-L)EE. ()

The difference between the two systems of equa-
tions is that. the constant ¥, in (17) is replaced in
(20) by ¥, which is a function of r. However, using
(19), or its inverse

AN s B . <
v, 1-¢° vy 1—¢’

we can eliminate o, and §, from (20) and once
again obtain the system (18).

4. General results
4.1, Ordinary differential scheme (DEM)

Various differential schemes have been pro-
posed over the years for the effective properties of
two-phase composites. The first such scheme was
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due to Roscoe (1952) who considered spherical
grains. The same concept was also proposed by
Boucher (1976) who considered arbitrary el-
lipsoidal grains. A concise formulation of the
scheme is given by McLaughlin (1977). A good
review of the differential effective medium or DEM
approach is given by Cleary, Chen and Lee (1980).
This paper also has an exhaustive list of relevant
pre-1980 literature. Since then the method has
been discussed by Sen, Scala and Cohen (1980),
Norris, Sheng and Callegari (1984) in the context
of the dielectric problem, and by Sheng and Cal-
legari (1984) for the elastic problem.
Briefly, the idea behind DEM is {o begin with
one phase, say material 2, as the starting matrix or
-‘backbone’. Then material 1 grains are added such
that their concentration increases incrementally
from zero to the final value. The additional inclu-
sions are imagined at each increment to be imbe-
dded in a homogeneous-composite material, made
up of the matrix phase and the previously added
inciusions. Thus, the ordinary DEM corresponds
to a homogenization path along the ¢,-axis, see
Fig. 2. Put ¢, = ¢, = 0 in (18) to obtain
L 1 -
%h=l_—%(L1—L)T1 (21)
with initial condition L=L, at ¢, =0. This is
precisely the system of ordinary differential equa-
tions derived by McLaughlin (1977, equation (4)).
Ordinary DEM, or any differential scheme devel-
oped previously, corresponds to paths along the ¢,
or ¢,-axis. This result is to be expected, since
previous schemes only considered imbedding one
phase within the other. The present generalized
scheme allows both phases to be imbedded simul-
taneously. There is thus a great deal more freedom
in the generalized scheme. The freedom is reflected
in the infinitely wide choice of paths in the (¢, ¢,)
plane from which- we choose. This novel path
dependent aspect is discussed in more detail later.
Finally, we note that the ‘new self-consistent
method” proposed by Zimmerman (1984a and b) is
given by (21} with the volume normalization term
1/(1 ~ ¢,) omitted, The results of this method are
known to violate the Hashin—Shtrikman bounds
{Zimmerman, 1984a) and so we do not consider it
further.

4,2. Effective medium approximation (EMA)

We now show here the EMA results from the
generalized differential scheme. The EMA equa-
tions for a two-phase composite are

_ i —
C!(LX_L)T1+C2(L2;""L)T2=0. (22)

Here ¢, and ¢, are the concentrations of materials
1 and 2, such that ¢, 4+ ¢, = 1. Equation (22) is a
set of equations in the unknown moduli L. The
tensors TJ Jj=1, 2 are the averaged strain con-
centration tensors for inclusions of material j in
the homogeneous composite with moduii L. The
present formulation of EMA is consistent with the
self consistent imbedding method (SCI) of Kor-
ringa (1973) and Korringa et al. (1979), or the self
consistent method of Berryman (1980). Both Kor-
ringa (1973) and Berryman (1980) arrive at similar
equations by setting averaged forward scattering
amplitudes to zero in the low frequency limit of
wave propagation. The EMA of (22) is also equiv-
alent to the self consistent scheme of Hill (1965).
However, later self-consistent methods due to Wu
(1966), Walpole (1969) and Boucher (1974) among
others, are not the same as (22). The latter theories
do not treat the two phases in a symmetric fash-
ion, whereas (22) gives no preference to one phase
or the other. The difference between the two classes
of self-consistent methods is discussed in detail by
Berryman (1980).

In order to see how the EMA results from the
generalized scherme, consider an arbitrary homeo-
genization path which ends at ¢, = ¢, ¢, = ¢5. As
(@1, #3) (), ¢3), we have 1—¢—0. In this
limit, it is clear from (18) that the only way L can
remain finite is if L satisfies (22) at (¢, ¢,) =
{¢y, ¢9). Thus, any path which ends on ¢ =1 re-
sults in a composite with moduli determined by
the EMA, .

Recently, Milton (1984a and b) has shown the
EMA moduli to be realized through a hierarchical
process analogous to the construction process of
Section 2. Milton’s procedure amounts to taking
any permissible homogenization path in the
(¢:. ¢,) plane from (0, 0) to (¢,. ¢,). Note that the
EMA moduli are independent of the backbone L,,.
This is because all the original material has been
replaced at ¢ =1, or ¢, =90.
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4.3. Isotropic constituents with random orientation

In this case the tensors T, and 7, are isotropic,
given by (14) and (15). Let the current moduli
L(1) be L=_3x, 2u). The system (18) becomes
two coupled equations for x and p

k(r)ﬂ(xl-x)Pl(ciH%--i?:l-‘iL)

¢
+(x2.—x)P2(q'52+ 1¢i¢¢), (23a)
ﬂ(t)=(#1—u)Qx(én+ f_‘i)
"*'(Pcz‘#)Qz(‘i’z'*‘ “1"22:%) (23b)

with initial conditions x(0)= ks, p(0)=py. The
scalars 7; and Q;, j=1, 2 depend upon «, g, k;
and p;, j=1, 2 and on the aspect ratios of the
" inclusions. We cite the following results from
Berryman (1980) for later use: for spheres,

okt x* _optp*
JPj_Kj-!_K*Q Q'rmpj‘_i_‘u*! (24)

and for disks (or plates)

rc+rc}' _p-{*-,u;-‘

1’}=m, Qj—m, (25)
where

% + 8
K* = 3n, #*ﬂ%#(x+2:),
G mte arei 9x,+3pj) (26)
el § LTS P e TR .
J J J N+ 2p

We note that the two ordinary differential equa-
tions (23) are coupled when the inclusions are
spheres. However, the equations decouple for
disk-shaped inclusions. This fact is used to ad-
vantage in Section 5.

4.4. Exact solution for equal phase rigidities
When the constituents have equal shear moduli,

By = B2 = po =, but different bulk moduli, then
the exact solution is known for any isotropic

geometry. This result, due to Hill (1963), states
that for an isotropic composite of materials I, 2
and 0 (the backbone) the effective bulk modulus «
is given by

1 P n ¢14 + ¢24
Kytap Kyt oIp

We now show that (27) follows from (23).

First, we have identically that g=20, so that
(23) is just a single ordinary differential equation
for x(t). The key to our proof is the result of Hill
(1963) that P, and P, in (23), are independent of
the inclusion shapes for equal phase rigidities. This
result is easily checked for spheroids by inspection
of the formulas in Berryman (1980). Substituting
for Py and P, from (24) into (23) and rearranging,
gives

L+ -
- ol -9

+o[(k+x%)(1—¢)] 7).
Integrating, and using ¢+ ¢; +¢; =1 and the
initial condition «(0) = k,, we obtain (27). Finally,
we note the trivial result that (23) gives the correct
bulk modulus When x,=1x, =k, and the shear
moduli differ. However, in this case there is no
universal formula for u.

= 27
K+3p Ko+ Fp @)

5. Realization of the Hashin-Shtrikman bounds
5.1, Proof of result

The Hashin—Shtrikman bounds on « and p for
an isotropic two-phase composite (Walpole, 1966)
with (k) — ko g — po) = 0, are
KKy + kT (0yKy + CKy)

KT 4+ oKy oKy

KL

Kiky F k3 Cyiy + €K,) (28)

K -
G kY + 0Ky + 0Ky

gy + pf{ oy + ey
BT+ oyt Cpy

ity + ph (e + copty)
Y PRr1

My =

Hg =
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where suffices L and G indicate lower and upper
bounds and «}, k} are the lesser and greater of «f,
k%, and pf, n} are the lesser and greater of p¥, u3.
We consider the case (K, = k,)(#; — i) > 0, and
show that the lower bounds are achieved by DEM
with phase g as matrix and phase / imbedded as
disk-shaped inclusions. Similarly, the upper bounds
are achieved by DEM with phase / as matrix and
phase g imbedded as disks. A similar result has
previously been derived by Boucher (1976).

It has been known for a long time that the
Hashin~Shtrikman bounds on the bulk modulus,
but not the shear modulus, can be realized by a
packed-sphere microgeometry (Hashin, 1962; Mil-
ton, 1981). The present DEM-disk geometry
achieves the bounds on « and p simultaneously.
The upper bounds in particular are very interest-
- ing because they correspond to the stiffest com-
posite obtainable with given concentrations of
materials 1 and 2. Another realization of the
bounds has been given by Lurie and Cherkaev
(1984). They use the fact that the packed-sphere
microgeometry realizes the bounds on the shear
modulus asymptotically, i.e. at dilute concentra-
tions of one phase or another. A composite is then
formed by iterating the dilute packed-sphere mi-
crogeometry infinitely many times. The procedure
is very analogous to the construction process of
the present paper. In fact, Lurie and Cherkaev end
up with a différential equation which they inte-
grate up to get the Hashin-Shtrikman bound for

13

Milton (1984c) has independently deduced that
the Hashin—Shtrikman bounds are realizable.
Expanding on an idea due to Schulgasser (1977),
" Milton defines a rank N laminate through a
hierarchical procedure on N length scales. As N
— o0, the scheme is analogous to the construction
process of Section 2 with laminar or disc-shaped
inclusions. Milton’s result is that the Hashin-
Shtrikman bounds are attained by an infinite rank
laminate. Also independently, Murat and Tartar
(1984) have shown that the bounds in the conduc-
tivity and on the bulk modulus are attained by
rank N laminates, where N is the dimensionality
of the space. They have also found laminate geom-
etries of finite rank that attain the shear modulus
bounds.

We now prove our assertion. Consider the lower
bound &, on the bulk modulus. Differentiating
(28) with respect to either ¢; or ¢; and using
¢;+ ¢, =1, we find after a bit of rearrangement
that |

k- For
dK"=(’ KL)(K" K’), j=1r02. (29

— *
de, 1-¢ K;+ K]

Now choose j =/ in (29), then it follows that x| is
given by «(c,) where «(¢,) satisfies the initial
value problem

de(¢,) _(K,-—x)( K+ Kk}
d¢, 1= /\ &+ xf

Referring to (23) and (25), we note by inspection
that (30) corresponds to (23) with ¢, = ég =0 and
the phase ! inclusions' as disks. Also, we require
the backbone to be phase g. Thus, {30) is equiv-
alent to the ordinary DEM equation (21) with
phase g as matrix and phase / as disk inclusions,
as we claimed above. The proof for kg, 1y and pg
is now apparent from the similarity between the P,
and @, in (25) and between «,, kg and gy, pg in
(28).

), k(0) = x,. (30)

5.2, Discussion

The above results must be used with caution
when the bulk modulus or rigidity of either phase
tends to zero. For instance, suppose one phase is a
vacuum. Then, the Hashin-Shtrikman lower
bounds on x and p are both zero. The upper
bounds are non-zero, but according to our results
they correspond to disks of the solid phase imbe-
dded in the vacuum, which is apparently nonsense.
Similarly, according to our results the lower bounds
are realized by voids in the shape of disks imbe-
dded in the solid phase. Looking at F; and @, of
(25) for disks, we see there is a singularity when
k;=p;=0 unless k= p= 0, and hence the lower
bounds follow. However, in arriving at (25), we
have used the results for a spheroid of vanishingly
small aspect ratio with non-vacuous included
material (x, # 0, p; # 0). The additional fimnits of
k; =0, p;— 0 must be handled with care. If we
first let the moduli vanish and subsequently take
the limit of zero aspect ratio we obtain singular P,
and Q,, but the integrals of P, and O, over the



10 A.N. Norris / Effective moduli of composites

vanishingly small void-volume remain finite. In
this case we obtain a theory for a cracked solid.
There are several conflicting available theories on
the moduli of cracked solids, some based upon
differential schemes {Bruner, 1976; Henyey and
Pomphrey, 1982), others on self-consistent schemes
(Budiansky and O'Connell, 1976; Horii and
Nemat-Nasser, 1983) and others on low-frequency
scattering (Piau, 1980). It is not the goal of this
paper to discuss the mechanical properties of
cracked solids. We will show in another paper how
a differential scheme for cracked solids follows
from the general equations (18).

We note that the Hashin-Shtrikman bounds
are predicted in certain limiting cases of other
effective medium theories. Boucher (1974) was ap-
parently the first to notice this. Boucher consid-
ered an unsymmetric self-consistent scheme (SCS)
identical to the scheme of Wu (1966) and Walpole
(1969), but unlike the symmetric EMA of Kor-
ringa et al. (1979), Berryman (1980) and the pre-
sent paper. A major conclusion of Boucher’s paper
is that when (k; — ky)(py = py) = 0, the
Hashin-Shtrikman bounds are equivalent to the
estimated moduli of the SCS with disk-shaped
inclusions. Specifically, the upper (lower) bound is
given by the SCS moduli for phase g (phase /)
inclusions imbedded in a matrix of phase / (phase
£). The shape effect of the inclusions on the over-
all module has been examined by Wu (1966) and

Walpole (1969). Both authors surmise that disk:

shape inclusions are best for strengthening
{weakening) the matrix material when the included
phase is stiffer (more compliant) than the matrix
phase. Wu (1966) based his conclusion on numern-
cal comparisons for different shapes and Walpole
(1969) based his on an analytic ‘comparison of
results for needle shapes and disk shapes. How-
ever, both authors had closed-form results for disc
shaped inclusions (Wu, 1966, equations (23) and
{24); Walpole, 1969, equation (61}) but failed to
observe that these were the same as the Hashin-
Shtrikman bounds. The Hashin—Shtrikman bounds
are also predicted by the theory of Kuster and
Toksoz (1974), as noted by Cheng (1978). In this
case the required inclusion shape is spherical and
{ky — K3) (i ~ p,) > 0 again assumed. The upper
{lower) bounds correspond to inclusions of phase /

{phase g) imbedded in a matrix of phase g {phase
1). However, unlike EMA, DEM and the gener-
alized theory of this paper, it is not known whether
the above theories actually correspond to realiz-
able microgeometrics, Berryman (1980} has shown
that the Kuster-Toksoz estimates for disc inclu-
sions violate the Hashin-Shtrikman bounds. There-
fore, the Kuster—Toksoz theory is not always reai-
izable. Whether it and the theory of Wu, Walpole
and Boucher are ever realizable remains an open
question,

Another theory, due to Weng (1984), also gives
the Hashin-Shtrikman bounds. The equation for
the effective moduli is given by (Bé) (see Appendix
B) with § = ¢, S, where § is the Eshelby tensor for
the inclusions. When (x, — k,)(pt; —2;)>0and §
is taken as that for an isolated spherical inclusion,
the upper (lower) bounds as x and p are achieved
simuitaneously for p, > pu, (g, <u,). It can also
be checked that the upper (lower) bounds are
attained for u, <p, (g, >p,) if § for an arbi-
trarily oriented disk-like inclusion is used.

Finally, on the theme of the Hashin--Shtrikman
bounds, we note that the bounds are also predic-
ted for periodic composites when a certain ap-
proximation is made. The exact formulation for
the effective moduli of periodic composites has
been presented by Nemat-Nasser and Taya (1981}
and Nemat-Nasser et al. (1982). The simplest ap-

proach to approximating the solution of the rele-

vant equations is to assume the transformation
strain in each inclusion to be constant. Using this
approximation, Nemat-Nasser et al. (1982) consid-
ered periodically distributed spherical voids and
found the estimated bulk modulus for the com-
posite to be the Hashin-Shtrikman upper bound.
Their result relied upon a certain relation which
they did not prove. This relation is proved in
Appendix B, where we also generalize their result
to the case of solid inclusions. A similar result for
the shear modulus is also derived in Appendix B.

6. Path dependence of the homogenization process
6.1. Example of different paths ro the same endpoint

The coupled system of ordinary differential
equations (18) depends critically upon the path we
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Fig. 3. Three paths to the same endpoint P{¢), §;).

. choose to consider in the (¢,, ¢,) plane, In fact,

two different paths from (0, 0) to the same end-
point will, in general, not give the same result at
the endpoint.

For example, consider the three paths in Fig. 3
with the backbone material 0 the same as material
1. Thus, the ‘composite’ is pure material 1 at 0. As
we move along path 1 to the point R, the imbe-
dded inclusions are also pure material 1. No matter
what shapes the grains are, there is no change in
material properties along OR. The process be-
tween R and P is defined by ¢, = constant. How-
ever, ¢, the volume fraction of material 1 associ-
ated with the starting material decreases between
R and P as ¢, increases. The removal-replace-
ment process does not distinguish between the ¢,
and ¢, domains of material 1, with the result that
some ‘¢; material' is always removed. Hence
material 1 must be put back into the composite in
the replacement process in addition to material 2.
The relative injection rates of phases 1 and 2 along
RP follows from (4) with ¢, = 0 as

do,/dv, =¢,/(1 — ¢y).

The relative injection rate is constant on the whole
of path II, and equals

dvy/doy = ¢1/9;.

Thus, the material properties are always changing
on path II. Similarly, the properties change all
along path III. Between O and Q, only grains of
material Il are added. This particular process (O
— Q) corresponds to the previously studied dif-
ferential scheme, or ordinary DEM of Boucher
(1976), McLaughlin (1977) and Cleary et al. (1980).
The solution to the ordinary DEM equations is
unambiguous because there is no arbitrariness in
the choice of path.

The three paths in Fig. 3 are composed of
piecewise straight segments. Consider the system
of ordinary differential equations (18) along a
straight segment between the points (4. $2,)
and (¢;5. $25) in the (¢;, ¢;) plane. Define the
line segment by ¢; =, +1A¢;, j=1, 2 where
0<r<1 and

A¢j=¢j8_¢j.4’ f=172.

Substituting into (18) and eliminating the artificial
variable ¢ in favor of ¢, we deduce the following
autonomous system of ordinary differential equa-
tions for the straight line segment,

d

IS =p{L—L)T+p (L~ Ly)T,

(31)
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where

- (1 — ) B0y + by ,48¢

& B, + Oy ’ 32)
_ (1= 14} A, + by (A
#2 Ay + Dby :

Thus, p, + p, =1 and we note that A¢, and A¢;
are not infinitesimal quantities. The system of
equations (31) reduce to two coupled equations for
x and p-when all the phases are isotropic. These
two equations decouple in the particular case that
the inclusions of phases 1 and 2 are disks. When
the inclusions are spheres, the equations are

dk _ Py + P
diIn(l—¢) K+ Kk* Ky R*
- e ) (23a)
du - P P2
dIn(l1—¢) |#+u*  pptpt
2
eyl (R (33b)

where k* and p* are defined in (26). The EMA
equations for ¥ and p when both phases are
spherical grains follows from (33) by setting the
two right hand sides to zero with p,=¢, and
p, = ¢;. These equations have been discussed in
detail by Hill (1965b).

6.2. Numerical examples for voids

In the following numerical examples we have
taken K, = u, = 0. The ratios k/x, and p/p, de-
pend on the material properties of phase 1 through
the Poisson’s ratio »,, or alternatively through the
ratio R, = k¥/x, =4p,/3x; =2(1 — 2»,) /(1 + »,}.
Results are shown in Figs. 4 and 5§ for spherical
grains and R, = 0.5 (¥, = 1). The DEM and EMA
estimates are also plotted for comparison. The
DEM results were found by integrating as far as Q
in Fig. 3. Explicit and implicit solutions to the
EMA and DEM equations, respectively, are given
in Appendix A. The curves for paths I, II and III
in Figs. 4 and 5 were calculated for ¢, = 0.2. The

=

Pl

0.5+

EMA
DEM

T
0 0.5
@z
Fig. 4. Plots of « /x, for a solid-void composite with spherical
grains and v, = . The top curve is the usual DEM. The next 3

curves are for paths [, 11 and III with ¢, =0.2. The bottom
curve is the EMA result.

range of ¢, is thus 0 < ¢, <0.8. We note the
different results for each path. At the upper limit,
¢, = 0.8, all three paths reduce to the EMA result
as expected from Section 4.2 since ¢ — 1 as ¢, —
0.8. We note from Fig. 5 that R=«*/x -+ 1 at the
rigidity threshold for all curves. In Appendix A we
show that R — 1 independently of »,. Recent
numerical calculations by Tao and Sheng (1984)

1_

K
K
0.8 ~
0.6 ~
0.4 T :
0 0.5 i
2]

Fig. 5. Same as Fig. 4. for R = 4u /3. The ordering of the
curves is, from top to bottom, EMA, paths 111, I1 and I, DEM,
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for periodic composites of fused solid spheres in a
porous frame show that R =} at the threshold
and is material dependent. The discrepancy be-
tween the two results highlights the critical effect
of microgeometry on the macroscopic moduli,

Finally, we illustrate how the results of the
general method approach those of EMA as the
backborie disappears. For a given value of ¢, =1
— ¢, we have integrated the equations along path
I1 of Fig. 3 from (0, 0) to (¢, ¢, ), where ¢; =1 —
¢g — ¢;. The range of ¢, is thus 0 to 1 — ¢,. The
ratio k/«, is shown in Fig. 6 for several values of
¢5. We note the significant deviation from the
EMA result (¢, = 0) even when ¢, = 107>, A simi-
far situation exists for the electrical conductivity of
a conductor~insulator composite. The EMA gives
a conductivity threshold at 1 for spherical grains.
The approach to EMA as ¢, — 0 has been dis-
cussed in detail by Norris, Callegari and Sheng
(1984). They show that the conductivity right at
threshold is O(|log ¢0|_1) as ¢, — 0. A compari-
son of Fig. 6 with the results of Norris, Callegari
and Sheng (1984) suggests a similar behavior for &
at the rigidity threshoid.

_Ri=

0.5+

@e
Fig. 6. Curves illustrating the approach to the EMA result for
x/k, as the volume fraction of the backbone vanishes. The
curves are, from the top down, ¢y =107, 1072, 1077, 1674,
10~% and the bottom curve is EMA, or ¢ = 0.

v !
o - 0.5 1

Appendix A, Results for voids

Specific solutions to the EMA and DEM equa-
tions are presented for spherical grains when one
phase is vacuum (voids). The EMA equations,
which follow from (33), are the same as those
considered by Hill (1965b) and Budiansky (19635).
The DEM equations also follow from (33) and one
considered by McLaughlin (1977). The EMA solu-
tion has been given by Nemat-Nasser et al. (1982), .
but the DEM solution, to our knowledge, has not
appeared previously. .

Material 1 is defined by the moduli &, and
k¥ = 3p,. Define the ratio R, = x}{/&;. The EMA
solution is

i
o* = K1Y, <1,
0; CZB‘}H

xmx*{[cz+

where

(A1)
l1-0¢,

- = o w1
1+(R1y)“_"J }

4y=2-5¢,-(3—-¢;)/R,
+{[2=5¢,~(3~¢;)/R]?
+24(1 - 2ey) /R,)

The DEM solution is defined implicitly by

. 5/3
R -1
K*=K’1"(Rl__1) ,. k=k*/R {A.2)

where R satisfies

R—1\ /R +1 © 6
(Rl—l) ( R+1 )_(1"62) '
Thus, as c¢,~ 1, we have «*/k—1 and «x=
O((1 — ¢,)?). This should be compared with the
analogous result for the effective conductivity o of
a conductor-insulator composite. As ¢, = 1, the
conducting phase disappears and DEM with

spherical grains predicts o = O((1 —¢,;)*?) (Sen,
Scala and Cohen, 1981).




14 A.N. Norris / Effective moduli of composites

Appendix B. Composites with periodic microstrue-
ture

Following Nemat-Nasser et al. (1982) we con-
sider a matrix of material 1 containing periodically
distributed inclusions of material 2. The unit cell is
a parallelopiped with dimensions A,, .1, and A,
along the coordinate axes and volume V==
A,AL A, The inclusion £ occupies volume V, in
the unit cell and the volume fraction of phase 2 is
ey =Vo/V=1-2¢,

Let an overall strain &” be prescribed in the
composite. The transformation strain e*(x)in £ is
the solution to

1

'5?,= i€k Z‘n?.,u v, '£3 '€ "d¢

% fsffr( x')e e rdx (B1}
where _
A=(L -L,)" 'L, (B2)
E*m——!— e*{x) dx. (B3)

@i
g ui(§) %[é( (6 + 8,8+ E(8,4 +5,1.£.')]

gé ,/{1—1,)*?*3“&51),(1 )

{B4)
E=t/84.

£, =2un,/A, (no sum}.

and where a prime on L indicates the nn,=01s
excluded in the summation. Also, », is the Pois-
son’'s ratio for material 1, assumed 1o be isotropic.
Define the pseudo-Eshelby tensor S by

e°=(A7$)5*, (BS)

then the effective moduli of the composite are L
were '

L=t [I-c(a-$)""]. (B6)

This equation for L follows directly fromﬁ(‘?). (8)
and (9), correct to first order in ¢,, with $=5. A
more precisé analysis by Weng (1984) also gives
(B6) but with $=c,S.

The difficult step in the above procedure is
solving the system of integral equations (B1). The
simplest approximation is to replace €*(x) in (B1)
with its average &*. defined in (B3). This is the
approach adopted by Iwakuma and Nemat-Nasser
{1983), see also Nemat-Nasser and Taya (1981)
and Nemat-Nasser et al. (1982). In the following
we assume that phase 2 is also isotropic. Consider
first Case-1 of Nemat-Nasser et al. (1982), where
the prescribed strain is ¢;; = 1e%,; ; and the trans-
formation strain is assumed to be g (x)=F]

= 38*8,,. The effective bulk modulus & is from
(B6),

k=K _3C2"1/(An;j""-§'ujj) (B7)
where, from (B2}

u,l_,' 3"1/("] K )' (BS)
Following Nemat-Nasser et al. (1982), we have -
. 1 4+p ) b=
S = ( = ) T P(§) (B9)

i 1/, =0
’ .
where
1 ? -
- 15-:

P(E)=c, ng dx (B10)

Now.,

t o + oo
2P = L P

r:r,aO Lon,=0

—= dxfdx Z gt txm_ ¢,

n,=0

¢, , on
—Ej;?dxj;?dxi/s(x x')—c,

—1-c. (B11)

This result was assumed but not proven by
Nemat-Nasser et al. (1982), see equation (7.7) of
their paper. The result is independent of the inclu-
sion shape. Combining (B7), (B8}, (B9) and (B11)
we obtain

KKy + k(oK + oaKa)

o k¥ + ks + 03Ky (B12)
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From (28), we see that (B12) is the upper (lower)
bound on the bulk modulus if p; > u, (g <ptq)
Nemat-Nasser et al. (1982) obtained (B12) for the
special case of voids, k= u,=0.

Next, we consider Case 2 of Nemat-Nasser et
al. (1982) where &), = €3; # 0 and the rest of ¢}, are
zero, We again take the simplest approximation,
assuming ef,{(x) =5 (x)=% = &% # 0, with the

rest = 0. The additional assumption that L and §

are isotropic, implies from (B6} that the effective
shear modulus is

p=pgy %Czﬂl/(Auu - Sn'uu) (313)
where

-1
Ayn = %.U'I(P'l - .“2) . (BM)

$1512 follows from equations (3.8) and (3.9) and
Appendix A of Nemat-Nasser et al. (1982), as

+oo
5'12:2 = Z' P(f)[%(§%+f§) _g‘lzg%/(l - ”1)]-
nP—O

(B15)

This expression cannot be simplified in general.

- Computed numerical values of the various series in

(B15) are given by Nemat-Nasser and Taya {1981),
Nemat-Nasser et al. (1982) and Iwakuma and
Nemat-Nasser (1983) for different inclusion
geometries. However, an interesting resuit is ob-
tained if we replace the three terms, {7, {7 and
{32 in the square brackets in (B15) by their
respective averages over the surface of the unit
sphere. Thus,

8- & =1,
G- &3y=1,
S = (P =1
where

1 2= - .
(g)= Efo d% dﬂg(o, $) sin 8,

and = (cos 6, 'sin 8 cos $, sin @ sin ¢). ‘ Then
{B15) becomes using (B11),

A 1
Sizlz"':clll}! - m}
1

_Y_am

2 AT (316)

where put is defined in (26). Combining (B13),
(B14) and (B16),

_ s+ ptle toaps) (B17)
Bl toapatep

A
Comparison with (28) shows that (B17) is the

_upper (lower) bound on the shear modulus if
g > py () < pty), assuming (& — K3} (py — p£3) >
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