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The classical optical theorem for scattering by compact obstacles is a forward ‘scau‘ering
theorem. That is, the total cross section of the obstacle is proportional to the imaginary
part of the far field directivity factor evaluated in the forward scattering direction. An
analogous theorem is derived in this paper for the scattering of acoustic waves by b.afﬁcd
membranes and plates. In this “optical” theorem the directivity factor is ‘evaluated in the
direction of the specularly reflected wave, so that it is a reflected scattering theorem.

1. INTRODUCTION

A compact flexible surface, such as a membrane or plate, is set into an infinite, rigid
baffle that coincides with the plane z =0. The plane separates an acoustic fluid (z>0)
from a vacuum (z <0). A time-harmonic plane wave in the acoustic field is incident on
the plane z =0. The resulting acoustic pressure P(x) can be expressed as the sum of an
incident wave, the specularly reflected plane wave (corresponding to a completely rigid
plane), and a scattered pressure g(x) due to the fiexible surface. Here x 15 the co-ordinate
vector with components {x, ¥, z).
In the far field the scattered wave is spherical and is given by

g(x)= Ale, )™ /r)+0(1/r. (t.1}

Here the directivity factor A depends on the unit vectors e; and t=x/r, where r=|x|,
which are in the propagation direction of the incident plane wave and in the observation
direction, respectively. In addition, the dimensionless wave number k is defined by

k= wl/c, (1.2}

where w is the radian frequency of the incident wave, [ is a characteristic length of the
flexible surface. such as its maximum diameter, and ¢, is the acoustic sound speed. The
differential scatering cross section o4 and the total scattering cross section or for the

baffled flexibiz surface are then defined by

2w w3
o =|A(e, D)7, or= I J g sin ¢ do d4.

0 0

{1.3,1.4)
In equatior. .4) the components of f in spherical co-ordinates are empioyed.

t This resea—= was supported by the National Science Foundation under Grant No. MSC 8300578, the Air
Force Office of Smentific Research under Grant No. AFOSR 80-0016A, and the Office of Naval Research under
Grant No. NOus! 2. 76-C.0063.
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302 G. A. KRIEGSMANN ET AL
In this note an “optical” theorem for baffied membranes and plates is derived. For
lossless membranes and plates the result is essentially an energy balance statement,

G'T=(41T/k) Im [A(e,,e,q)]. A (1.5)

L]

Here eg is a unit vector in the propagation direction of the specularly reflected wave,
The result is analogous to the classical optical theorem for acoustic or optical scattering
from rigid, soft or transparent scatterers {1, 2]. However, in the classical optical theorem
the vector ey is replaced by e; so that it is then a forward scattering theorem. In addition,
a more general scattering theorem is derived which is valid for membranes and plates
with dissipation. The significance of the result (1.5) is that o7 can be determined
experimentally for each e; from one measurement {or evaluation) of A in the specularly
reflected direction. A similar optical theorem can be derived for more general flexible
surfaces, but these results are not presented here.

2. FORMULATION

The acoustic pressure and the flexible surface’s motion are assumed to be proportional
to exp (—iwt). This time factor is omitted in the subsequent analysis. Dimensionless space
variables x = (x, y, z) are defined by dividing the dimensional variables by a characteristic
length [ of the flexible surface. Then the acoustic pressure P(x) satisfies the Helmholtz
equation

AP+ K*P =0, (2.1)

in the upper half space z > 0. Here, k is defined in equation (1.2) and A, is the Laplacian
in x.

The fiexible surface is assumed to lie in the compact region M of the plane z =0. The
boundary of M is denoted by B. When the flexible surface is a membrane, its lateral
deflection w(x, y) satisfies

Lyw=Aw+ Kk clw=(*/T)P(x, y,0), for(x,yleM, w=0, for(x, v)onB.
(2.2a)

Here, 4 is the Laplacian in x and y, ¢ = ¢2/ ¢, ¢ = (T/pm)}'’?, pm is the density per unit
area of the membrane and T is the tension applied to the membrane. The acoustic pressure
P{x, y,0) acts as a driving force on the membrane. When the flexible surface is a clamped
plate, then its lateral deflection satisfies

Low= A*w —k*b*w=-1*P(x,¥,0)/ D,

for{x, y)e M, w=n-VYw=0, for(x y)on B, (2.2b)
In equations (2.2b) n is the unit outward normal to B in the plane z=0, b= c}/c},
ci=D/p,hl*, D= ER*/12(1 - %), k is the thickness of the plate, v is Poisson's ratio, E
is Young's modulus, and p, is the density of the plate. Optical theorems for more general
plate equations, such as the Timoshenko-Mindlin theory, can alsc be obtained by the

techniques used in this paper,
Since the plane z =0 is acoustically rigid outside of M,

P.x,y,0)=0, (x,v)g M (2.3a)

Here, the subscript denotes partial differentiation. In addition, the acoustic and fiexible
surface motions are coupled by the requirement that their vertical velocities are continuous

; £ 15 ? o e 2
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on M. This gives
Px, 5, 0)=lw’pwix, ¥), {(x,y)eM. (2.3b}

The incident acoustic field is given by the planc wave
P'(x, y, z)=exp [ik(y sin &; — z cos ¢})]. (2.4)

The unit vector in the propagation direction of the plane wave (2.4) is defined by
e, = (0, sin ¢;, —cos ¢;). Without loss of generality, the x, y plane is oriented so that e,
is orthogonal to the x axis. The wave given by (2.4) is a solution of equation (2.1). The
total acoustic pressure in z >0 is expressed as

P(x) = Po(x}+ g(x), (2.5)
where P, is defined by
Py(x)=P'(x)+ P'(x, y, —2}, (2.6)
R Y
P’(x, y, —z) is the specularly refiected wave from the rigid plane z =0, and q is the field

scattered by the flexible surface. Thus, g satisfies equations (2.1) and {2.3) and it must
satisfy the radiation condition as r—cc. In addition, P, satisfies equation (2.1) and

(8P,/32)(x, ¥, 00=0, forall (x,y). (2.7)

3. FUNDAMENTAL IDENTITIES
Any solution ¢(x, y, z) of equation (2.1) satisfies

V- (6V§— V) =0, (3.1)

where the overbar denotes complex conjugation. Integrating this identity over the region
S, which is bounded by the hemisphere r= R, 2> 0 and the circle x+y?=R? z=0,and
applying the divergence theorem to this integral yields the “energy flux" balance,

Zm w/2 T T
R? lmH J‘ tpa—wsinqbdd) de}zlm{ ” wi_}ildx dy}. (3.2)
0o Jo ar iz

S *tayis RE

=0

Setting ¢ = P in (3.2) and using equations (2.3a), (2.5) and (2.6) yields

Qe /2
R*Im {J. J‘ [POISOA,+ qq, + Pg, + qPy,}sin ¢ dé d&}

0 0
r=R

=Im{JJ’ P(x, 3 0)4.(x, »,0) dx dy}. {3.3)

M

In deriving equation (3.3) it has been assumed that R is sufficiently large so that M is
contained in the circle x4 y*= R®, Then, applying equations (2.7) and (3.2) with ¢y = P,
and using the result on the left side of equation (3.3), it can be shown that the integral
involving PyP,, is identically zero. This gives

24 "/ ‘
R? Im{J I (4G, + Pog, + gPy,)sin ¢ do dﬁ} =ImJJ Pix, ¥, 0)3.(x, y,0) dx dy.
0 o
M

(3.4
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Insérting the far field approximation (1.1} in equation (3.4}, and then, recalling that g
satisfies equation {2.3b), gives A

2w w2 . 1
—koy+1m§ R? [Pog, +qP,,]sinp dd do i+ O (E)
0 4]
= wllp, Im P(x, 3, 0)w(x, y)dxdy, (3.5}
M

where oy is defined in equation (1.4).

The right side of expression (3.5} vanishes if w satisfies either equation (2.2a) or
equation (2.2b}. To show this first multiply the differential equations in equations (2.2)
by w, and then integrate these expressions over the region M. Applying the divergence
theor#m the necessary number of times, and using the boundary conditions in equations
(2.2), yields for the membrane and plate, respectively,

=7 [k*c?|w|*~ |V w|*]dx dy, (3.6a)

P(x! J’,‘O)W(xy y) dx d)’

M M

{3.6b)

ity

J P{x,y, 0)W(x, y)dx dy= J. [k?b3wi®—|Awl* 1 dx dy.
M M

Since the right sides of equations (3.6) are real, the right side of equation (3.5) vanishes
and it follows from equation (3.5) that

kor=Im J+ O(1/R}, (3N

where J is defined by

2 w/2

J=R? J [Pod, + gPy,Ysin ¢ do d6. (3.8)
0 0
r= R

If the sound speed ratios ¢ and b are complex numbers so that the membrane and
plate materials are dissipative, then a similar analysis applied to equations (3.6) and (3.5)
yields

Im P(x, v, 0)%{x, y}dx dy ¢ = Tw|?, (3.9)
M
N AT Ime? for the membrane
wil* = 1? dx dy, I=(k/1) ) R
Iwl wl” dx dy (k/1) (D/FFYIm b~ forthe plate
M
(3.10)

Then the equation for o7 corresponding to equation (3.7} is

kor=1mJ+wlp,lfw|*+ O(1/R). (3.11)

S’
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4. ASYMPTOTIC EVALUATION OF THE INTEGRAL J

The integral J is evaluated by first substituting equations (2.4}, (2.6), and (1.1) into
equation (3.8) to obtain

2 n!2 .
= —1kR J J {(E; . ?)A elthb, +(eR . ?)A Clde’R”*‘A-e”ika‘ +A' e—lkR«‘-“]
0 [ B

x[1+0(1/R)]sin ¢ dé d6, (4.1)

where e =(0, sin &), cos @, ) is the unit vector in the direction of the specularly reflected
plane wave. The phase functions y; and y are defined by

;=1 —sin ¢, sin 6 sin ¢ + cos ¢; cos ¢, Wr=1—sin ¢, sin 0 sin ¢ —cos ¢, cos ¢.
(4.2a,b)

Since R oo the method of stationary phase [3-5] is used to evaluate J asymptotically.
For the integrals in equation (4.1) which contain exp [*ikRyx] the major contributions
come from the stationary points of ¢g: i.e., from the roots of

au';m"r?d)=6¢l,q/8920 (43)

in the rectangle 2 ={(6, ¢)[0=< 0 <2n 0< ¢ < 7/2}, An analysis of equations (4.3) shows
that ¢ has three stationary points. The first is & =0, 6 =0, which lies on the boundary
of {2, and hence has a contribution [4] of O(1/R*?) as R-cc. The second point is
¢ =7~y 8=3m/2 which is exterior to 2. Its contribution is at most [4) O(1/R7) as
R 0. The third and most important point is § = 7/2, ¢ = ¢, which gives F=eg, The
contribution {3] of this point is O{1/ R} as R » < which dominates the efiects of the other
two stationary points. It follows from the two dimensional stationary phase formula that

J = ” [ler-F)A ™ ¥rt A e ™ %] 1+ O(1/R))sin ¢ do d8
n
~(4m/kR) Im {A(e, ex)}+ O(1/R*?). : (4.4)

A similar analysis holds for the integrals in equation (4.1} which contain exp [%ikR ¥, 1
Again, there are three stationary points with the same qualitative properties as described
above. The dominant interior point is at 8 =3mw/2, ¢ = ¢, This corresponds 10 T = —e;
or the backscattered direction. Thus, the stationary phase formula gives

JZEJ—[[(EJ'f)A Sin ¢ eiRR‘l',+A'5in ¢c—ikRV’r}[1_§_O(1/R)} Sin d) d(b de
n
= '_(411'1’/kR} Re {A(e,, w-e’) ezikR}+ O(]/RSJ’Z) (45)

By substituting expressions (4.4) and (4.5) into equation (4.1) an asvmptotic evaluation
is obtained for J as R - cc. Then by inserting this result into equations (3.7} and {3.11)
it follows that,

o7 =(4m/k) Im {Ale,, ex)} (4.6)
for the lossless membrane and plate and
or =(4n/k1im{Ale;, er)} + wpac,l | wi’ (4.7)

for the dissipative membrane and plate. These are the required optica} theorems.

Lo
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Since the acoustic fluid and flexible surface are coupled, the scattering problem cannot
be solved in a closed analytic form, even for simple geometries. For example, solving the
coupled problem by the method of normal modes [6, 7] yields an infinite system of linear
algebraic equations which in general cannot be solved explicitly without truncation. Thus,
an explicit expression for the directivity factor, A, cannot be obtained. This makes the
results (4.6)-(4.7) particularly useful since o7 can be evaluated for each e, from one
measurement of A in the direction of ep.

Numerical, variationat [7], and asymptotic [8] methods can be employed to solve the
scattering problem approximately. In particular, we have recently developed an asymptotic
technique for “heavy” membranes of arbitrary shape using the method of matched
asymptotic expansions [8]. Specifically, we have obtained asymptotic approximations for
the directivity factor and the total cross section which are uniformly valid in the frequency
of the incident wave. For frequencies near simple eigenfrequencies, k,, of the membrane
in vacuo, these approximations are reduced to

Alg, 0)= A F(¢,8), or=[Al1/k, (4.8,4.9)
where the amplitude A, and the “shape factor” F(&, 6) are defined by

28, -l J'J ~ik, (F %)

e YT = Halrex {4, 4.11

AcGar e Ted=gt]]e da(x, yhdx dy. (4.10,4.11)
M

Here R is a positive quantity that is defined in reference [8], and 8, and J are defined by

Bn= J‘j Pl(x,3,0)¢,(x,¥)dxdy,  I=k, H |F(&, 8)sin ¢ do do.

M M

(4.12a,b)

In equation (4.11) the notation x = (x, ¥, 0) and f = (cos € sin ¢, sin 6 sin ¢, cos &) 1s used.
The parameter o used in equation {4.10) is defined by

a=(k—-k,)/ ek, (4.13)

where ¢ = lp,/ p., and k, = .1/ ¢, The function .. (x, ¥) is the eigenmode of the membranc
in vacuo which corresponds to the frequency w,.

The results stated in equations (4.8)-(4.13) are valid when £ « I, which corresponds
to a “heavy” membrane, and « = O(1), which implies that k is near k, The optical
theorem (4.6) can be verified for this physical situation. By applving equations (4.8}-(4.13)
and observing that F(¢,, 7/2)= ~B,/2=, an asymptotic expression for oy is obtained.
It is equal to the value of o given by the optical theorem evaluated for £ « 1 and k near
k,, as is expected. In addition, similar agreement is obtained by using our asymptotic
results [8] that are valid for k bounded away from k, and £« 1, We omit all the details
of these calculations.

5. EXTENSIONS

We have extended the present analysis to other scattering problems where the fiexible
surface is no longer backed by a vacuum. For example, if a membrane or plate is backed
by a rigid cavity filled with an acoustic fluid, then the optical theorems (4.6)-(4.7) remain
valid. Now, however, A is the directivity factor of the flexible surface-cavity-baffie system.
If the entire half space z < 0 is filled with an acoustic fluid of density p, and sound speed
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s, the optical theorems (4.6) and (4.7) are again valid when oy is replaced by &1, which
is defined by

) &sz- J iAFV(dJ)SindedJ d6. - {5.1)
o Jo
i

Here the function v(¢) is defined by 'y

1, 0s¢p<nw/2 }

2
Capul CoPer  W/2< DS T (5.2)

V(cb)ﬁ{
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