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ACOUSTIC RADIATION GENERATED BY LOCAL
EXCITATION OF SUBMERGED BEAMS AND STRINGS
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Free and forced motions of submerged one-dimensional waveguides have been investi-
gated, Both the submerged beam and the submerged string can support a wave system
which includes a pure surface wave in the fluid adjoining the waveguide, provided that
certain conditions on the frequency (for the beam) or the physical parameters of the
system (for the string) are satisfied. Dispersion curves are presented for steel beams and
steel strings in water. Steady-state solutions have been derived for excitation by a concen-
trated time-harmeonic load. The displacement responses at the point of application of the
load and in the far field have been examined. Polar plots display the radiated far field in
the fluid. Atlow frequencies the polar plots are circular in planes containing the waveguide,
but the radiation pattern develops lobes as the frequency increases. Reflection, transmission
and scattering into the fluid of an incident wave system by an elastic support of stiffness
x and mass m have also been examined, and the possibility of resonance phenomena has
been investigated.

1. INTRODUCTION

The analysis of the structural response of a submerged solid body to local excitation by
a concentrated force, together with an investigation of the associated acoustic radiation
into the fluid, is central to studies of structure-fluid interaction. For the simplest geometry,
namely, a fluid-loaded infinite elastic plate, the elastic response and the radiated acoustic
field due to line-load or point-load excitation, has been discussed by several authors (see
references [1-11]). It appears, however, that the corresponding problem for a slender
body, such as a string or a beam, which is totally submerged in a fluid has not been
treated in as much detail. Free waves in a submerged string have been discussed in
reference [2], while approximate results for a beam have been presented in references
[12} and [13].

In the present paper we augment the literature on wave motion in submerged strings
and beams with results for (1) free waves, (2) response to local excitation, (3) acoustic
radiation due to local excitation, and (4) scatlering by an elastic support with mass.
Where significant differences exist we contrast the results for the string with those for the
beam. Both a solid beam and a hollow one (a pipe) are considered.

For free time-harmonic waves the submerged beam can support a wave system consisting
of a flexural wave in the beam and a pure surface wave in the fluid adjoining the beam,
provided that the frequency is smaller than a cut-off frequency. Above the cut-off frequency
the surface wave becomes leaky, since part of its energy propagates radially from the
beam. A similar wave system can be supported by the string, but only if a certain condition
on the physical parameters of the string and the fluid is satisfied.
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When the condition for the existence of pure surface waves is satisfied, these wavem
can be generated by concentrated force excitation. At very low frequencies virtually all =
the input energy is, however, converted into wave motion of the string or the beams. Still
at low frequencies some of the input energy is carried away by surface waves. A substantial
percentage of the input energy is, however, converted into spherically radiating wave
motion as the cut-off frequency is approached. Polar plots are presented for the radiation
function. At low frequencies the polar plots are circular, but the radiation pattern develops
lobes as the frequency increases.

The results for the concentrated-load response can be used to investigate the reflection,
transmission and scattering of an incident wave system by an elastic support of stiffness
« and mass m. It is shown that an incident wave of frequency w =(x/m)"? passes
unhindered by the support point of the mass-spring systems, since the interaction force
vanishes at the natural frequency of the support. There is, however, a (bounded) resonance
effect at frequencies slightly Iess than (x/m)"/2,

2. EQUATIONS OF MOTION
The transverse motion of a submerged string is governed by (see Figure 1)

pA Fw/ar~ T Fwjax? = P(x, t), (2.1}

Figure 1. Submerged string or beam of circular ¢ross.section.

where T is the tension foree. The corresponding equation for a submerged Bernoulli-Euler
beam is
pA Fw/at*+ EI 3*w/ax*= P(x, 1), (2.2)

where FI is the bending stifiness. In both equations p denotes the mass density/unit
volume and A is the cross-sectional area, while P(x, ) denotes the transverse force per
unit length. For a string or 2 beam of circular cross-section, the fluid pressure p(r, 8, x, {),
r =g, gives rise to a transverse force of the form

2w

Pi(x, )= —J pla, 8, x,t) cos 6adé. (2.3}

(4]
Acoustic waves in an ideal fluid are governed by ]
Vi =(1/c})p, a=V¢ and p=-—p, (2.4a-c)

where ¢ is the sound speed, u is the particle velocity and p denotes the pressure, while

pr 1s the mass density of the fluid.
Interaction with the fluid takes place via continuity of the radial component of the
particle velocity and via the fluid pressure. The action of the fluid pressure is represented
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oy equation (2.3). Continuity of the radial particle velocity yields
W(x, 1) cos 6= (a¢/ar)| -0 (2.5)

We will also consider the case that the beam is actually a thin-walled pipe, whose
interior is filled with fluid. Equation {2.3) must then be replaced by

2
Px, 1)= J fpda, 6, x, t)—pla, 6, x, )] cos §a dé, (2.6)
. 0

where pi(7, 6, x, 1), r<a, is the fluid pressure inside the pipe.

The response of the string or the beam to a time-harmonic concentrated load of
magnitude F,, applied at x =0, will be considered in some detail. The transverse force
then is of the form

P(x, 1} = Pr(x, 1)+ F, 8(x) exp (~iwt), 2.7)

where 8(x) is the Dirac delta function.

3. FREE WAVES AND DISPERSION EQUATIONS

The propagation of free waves along a string immersed in a fluid has been investigated
in reference [2]. The analysis of free transverse waves propagating along a submerged
Bernoulli-Euler beam of circular cross-section proceeds along very similar lines. In this
section we briefly consider both cases, and indicate some differences in the dispersive
behaviors.

A time-harmonic transverse wave propagating along a string or a beam may be
represented by

w(x, )= C exp [i{kx — wt))], (3.1)

where C is a constant. Equations (2.5} and (3.1) suggest a corresponding expression for
the acoustic potential of the form

&(r, 9, x, t)=D(r) cos 8 exp[i(kx —~ wt)], (3.2}

Substitution of equation (3.2) into equation (2.4a} yields a Bessel equation for @(r): The
appropriate solution, which satisfies both the radiation condition and the interface
condition (2.5), is of the form

O(r) = ~iwCH{(gr)/qgH{" (qa), (3.3)
where H{"(gr) is the Hankel function of the first kind of order one. Also
@ =ki—k, ki=w?/ck (3.4a,b)

Substitution of equation (3.2) into equation (2.4¢), and then in equation (2.3), and
subsequent substitution of the result together with equation (3.1) into equation (2.1},
yields a relation between w and k In dimensionless form this dispersion equation may
be written as

D& 02)=0, whete D,(§ 2) =& — 2+ PHP(G)/ U (§).  (3.5,3.6)

In equation (3.6), 3
D=(wa/c,y, =T/pA,  ¢=ka, {3.72-¢}
a’=cl/c;, e=pi/p (3.8a,b)

-
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Here ¢, is the phase velocity of waves in the free string.

For given frequency (wavenumber}, equation (3.5) is a transcendental equation for the
wavenumber (frequency). It is of particular interest to consider the case that ¢ is real-
valued, and f

PP <0. (3.10)

In that case the Hanke! function H“)(q) converts to a modified Bessel function, and
instead of equation (3.3) one has

@(r) = —iwCaX,[|g|(r/ a)}/|1IKi(Iq]), (3.11)

where K,( ) denotes the modified Bessel function. The expression (3.11) for &(r), in
conjunction with expression (3.2), then corresponds to a wave motion of the fluid which
propagates in the x-direction, and whose amplitude decays in the r-direction. Energy
propagation occurs in the x-direction only. This wave motion is of the nature of a surface
wave. When condition (3.10) is satisfied, the terms in D(£ £2) become real valued, and
equation (3.5) takes the form

. £~ 0+ 2K ((13)/1§1K 1 (g) = 0. (3.12)
It can be shown that real-valued solutions of equation (3.12) exist for
a’< ol where al=1+e. {3.13a,b)
It may be verified that .
E=ad) for a’=al (314

No solutions with the property (3.10) exist when «®> a?, It is noted that the magnitude
of « is primarily controlled by the tension force in the string. A critical value T, follows
from equations (3.7b), (3.8a) and (3.13b) at T, =(1+¢)cjpA. When T <T, there is a
plane wave of the type (3.11) propagating in the x-direction in the fluid. For T= T, one
finds ®{r}={(a/r). When T=> T, ®(r) is of the form (3.3}, and energy propagates in the
r-direction as well as in the x-direction.

For the Bernoulli-Euler beam an equation of the form (3.5) can be derived in a
completely analogous manner. One finds

Dy(g,2)=0, where Dy(¢ 2)=¢'—0%+ep0*H"(7)/GH{V (3).

(3.15,3.16)
In equation (3.18)
N2=(wa/c,)?, ¢k = El/pAd’®, {3.17a,b)
and
a’=ci/ch, B = wa’/ A. (3.18a,b)

The constants & & and § are defined by equations (3.7¢}, (3.8b} and (3.9), respectively.
The constant 8 {8 = 1) is introduced to account for the possibility that the beam may be
holiow (a pipe).

When o’02° £ <0, the wave motion in the fluid is a surface wave, represented by
expression (3.11). The dispersion equation (3.15) then becomes

- 07+ eB7K, (1G] /161K (gD = 0. (3.19)

\(‘Z
g=gqga={(a’2* - £ (3.9, .
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For ¢ = a®(2?, equation (3.19) reduces to the form
af4(24~".|’22m£,8(22:0, (3.20)

with solutions
N=0,=1+eBY¥a?  ¢t=¢(=(1+ep) Y a (3.21a,b)

For £2 = {}, equation (3.19) has a pair of real roots, but for 2> {1, equation (3.19) has
no real roots. The solution for @{r) is then of the form (3.3). The cut-off frequency {2,
depends on g, 8 and a. In the limit case of vanishing fluid, £ >0, « = 0, one has {2, » 0,
£ =00,

The results that have been obtained in this section point to an interesting difference
between the dispersive behaviors of the submerged string and the submerged Bernoulli-
Euler beam. For both cases a necessary condition for pure surface waves is that o> %= ¢°.
For the beam the value of « is arbitrary, but for given ¢, 8 and « there is critical frequency
given by equation {3.21a), which provides the upper limit of frequencies for surface waves
in the fluid. For the string, in addition to ®£2%=<¢* one must require a’< a2, which
corresponds to a critical value of certain physical parameters (for example, the tension
force). However, when «”= a? there is always a surface wave in the domain o’Q2%= ¢%;
i.e., there is no cut-off frequency.

For 3> 1, the beam of circular cross section corresponds to a pipe. If the fluid also
fills the interior of the pipe, equation {2.7) should be used to represent the transverse
force on the beam. In addition to equation (3.3), or equation (3.11}, one now has, for
r < a, and real-valued ¢, 12,

~iwCly{(qr)/ 933(g}, §2<a292}
~iwC1L(lgr)/|qIli|g), > «* Q)

where J,( )} and 1,{ ) are the ordinary Bessel function and the modified Bessel function
of the first kinds. For real-valued £ (2, and for £ = &2?, substitution of equations (3.22b)
and (3.11) into equations (3.2) and (2.4¢), and subsequent substitution of the result into
equation (2.6}, vields P, The corresponding dispersion function then follows by substitu-
tion of P, and equation (3.1) into equation (2.2). By using the refation K,(z){i(z) -
1,{z)K{{z)=1/z one finds

(1) :{ (3.22a,b)

D,(& 2) = &'~ 07+ B0/ 1 gHK (g)). (3.23)
For all other cases one has
D, (& Q) = &' - 07 =2iep Q% ng I {(GIHV (7). (3.24)

Numerical results have been obtained for a steel string and a steel beam in water. The
ratio of the mass densities of water and steel is £ =0-128. For the string one finds from
equation (3.13b) that «?=1-128. For a steel beam of solid circular cross section g =1,
and I/A = a*/4. Equation (3.18a) then yields a*=2-957. It then follows from equations
(3.21a, b) that £2. =0-359, and £ =0-618. For a pipe one has [/A =14 and a®=35-913,
and we have chosen 8 =27 (which corresponds to a wall thickness i~ 0-08a). Then
£2,==0-227 and £, =0-552, When the interior of the pipe is also {illed with water, the latter
geometry gives {2, =0-273 and ¢, =0-664. Figure 2a shows dispersion curves for the
submerged string for the case of surface waves in the water (@ < «,). Dispersion curves
for the beam in the frequency range of surface waves in the water are shown in Figure
2b. These figures also show the relation & = af2 for comparison. For the beam the
intersection point of the curve of ¢ versus {2 and the line ¢ = af2 defines the cut-off
frequency for pure surface waves in the fluid.
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Figure 2. Curves relating dimensionless wavenumber, £= ka, to dimensiontess frequency, 2 =wa/e¢, or
2= wa/ ¢, (a) String: a®=0-5; (b) beam: B =1 (solid beam), &%= 2-957 and B =2 (pipe), a® = 5913,

4. FORCED MOTION

A steady-state solution for loading by a concentrated time-harmonic force can easily
be obtained by the use of Fourier integral methods. Since the Dirac delta function has
the integral representation

o

3(x) = 8(x/a) :ﬁj e/ g @.1)

—00

the steady-state solution to equation (2.1), or equation (2.2), with P(x, {) defined by
equation (2.7}, can be written as

o0 i(x/a)¢
wix, £)= W(x)e ™ where W(x)=5‘f-ﬁof ;—(aﬂdg (4.2,4.3)
m =0 1]

In equation (4.3)
Fy=F,/T D(¢ 2)= D& £2) for the string, see equation (3.6), (4.4)
Fy= Fya®/ EI D(g )= D,(£ ) forthe beam, see equation (3.16).  (4.5)
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The corresponding expression for the acoustic potential is

H(r, 8, x,1)=D(r, x) cos 6 7', (4.6)

where

iwa’ r’ HS”[(r/amei(xwdf. (4.7)

e TN BT Y T¥e)

In both equations (4.3} and (4.7), the branch cuts are chosen such that Im [(a 2% — £3)'/?] >

0.
The displacement amplitude under the applied load follows from equation (4.3) as

- «© d

W(0) = Foaf(2), where f(2) =$ J:m F;Qm). (4.8, 4.9)
The integral in equation (4.9} is complex valued. It can be reduced to a sum of real-valued
integrals by using contour deformation and the residue theorem. In the present paper we
have, however, opted for a direct numerical integration of equation (4.9). For both the
string and the beam, the analysis of the dispersion equations has revealed that for a*= o?
(string) and £2 = {2, (beam) two real zeros of D(§ {2) exist on the real axis, say at £ = &,
Hence one has to compute the Cauchy principal value of the integral, and add «ri times
the residue at £= & and —i times the residue at £= —4£,. [t is easy to show that D(£, (2)
is an even function of & while d2(¢, £2)/d¢ is an odd function. As before, equation (4.9)
is valid for the string and the beam by using D (£ 2} and D, (£ 12}, respectively. Numerical
results for the dimensionless displacement under the load, namely, the modulus of f{12),
| ()] = (1/Foa)| W(0)|, and its phase, are shown in Figures 3 and 4. For both the
- ~submerged string and the submerged beam, the magnitude of the displacement under the
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Figure 3. Displacement response of the string at the point of application of the concentrated load, o®=0-8.
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Figure 4. Displacement response of the beam and the pipe at the point of application of the concentrated
load. 1, £=0; 2, e =0:128, B =1, o= 2-957 (solid beam); 3, £ = 0128, § =27, a®=35-913 (pipc).

load decreases with increasing frequency. The curve for & =0 represents the response in
vacuum. The presence of water (& =0-128) reduces the displacement magnitude.

For sufficiently large values of lx|/a, the principal contributions to the integral in
equation (4.3) come from the poles on the real axis. One finds

=1
W(x)—viﬁoa[iD(f, 0) ] gitolixl/a), (4.10)
dé: {={p

As before, this result is valid for the string as well as for the beam by appropriate
substitution of F, and D(¢, £2) from either equation (4.4) or equation (4.5). Only for the
submerged beam is the far field displacement noticeably different from the one under the
load. Numerical results for (1/ Fya)| W(x)| are shown in Figure 5. In the regions of interest,
defined by a’< ol (string) and 2 <2, {(beam), the surface-wave motion in the fluid
which accompanies the string or beam wave (4.10) follows from equations (3.2) and
{(3.11) by substituting £ = &,.

It remains to consider the spherical wave motion in the fluid, which radiates from the
point of application of the concentrated force. A far field expression can be obtained
from equation (4.7). One starts by introducing the asymptotic approximation to the Hankel
function for large values of r/q,

H{"[(r/ a)d]= (2a/ mgr)"/? elr/a)d—3m/4] (4.11)
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Figure 5. Far field deflection for concentrated load excitation of the beam. 1, Beam in vacuum; 2, solid beam
in water; 3, pipe in water.

in equation (4.7). Next one introduces the polar angle ¢ and the spherical radius R by
the relations

t= R sin i, x= R cos i (4.12a,b)
A subsequent change of variables in equation {4.7), defined by
£=aflcos y, § = afl sin x, (4.13a,b)

puts the integral in a form which for large values of R/a is suitable for approximate
evaluation by the method of steepest descent. The result may be written in the form

B(R, ) ~ (i/ m)wa® FyR () (6" / kR), (4.14)
where R (4} is the radiation function
R () =[sin YyH (ad? sin ) D(¢, ) et cos ) . {4.15)

Again, the results of equations (4.14) and (4.15) are valid for the string and the beam by
" using F, and D(¢, £2) as defined by equations (4.4) and (4.5), respectively.
Equation (4.15) may be compared with the corresponding radiation function for a
concentrated force in an unbounded Auid {see reference [14], p. 167):

D(R, ¢) = (Fow/dmpch) sin yle™?/ kR). (4.16)

A polar plot of (constant) Xsin ¢ is a perfect circle. For the pipe, polar plots of |92 ()]
are shown in Figure 6 for several values of {2. The corresponding plots for the string are
shown in Figure 7. At Jow frequencies the polar plots for the pipe are almost circular,
As £2 increases, the radiation patterns develop lobes. Some interesting differences between
the patterns for the pipe and the string are noted, particularly at higher frequencies.

A valuable check on the computations is obtained by the balance of time-averaged
energy fluxes. A time-averaged energy flux is of the general form of one-half times the
product of a “force” term and the complex conjugate of a “velocity” term, integrated
over an appropriate surface. For the fluid, the force and velocity components are the
pressure and the particle velocity component normal to the surface. For the beam they
are the bending moment and the rate of change of the slope, and for the string they are

()
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Figure 6. Radiation pattern in water for point-force excitation of a submerged steel pipe (#=2) for
1 =0-025, 0-125, 0-175, 0-2, and £2=0-225.
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Figure 7. Radiation pattern in water for point-force excitation of a submerged steel string, «®=0-8, for
f1=0-11-1 16 and £2 =21,

the vertical component of the tensile force and the rate of change of the slope. The force
applied at the origin on the string or the beam pumps energy into the system. The energy
input averaged over a period of vibration is denoted by (). The time-averaged energy
fluxes in the string and the beam are denoted by (®,) and (®,), respectively. In the fiuid
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we have time averaged energy flux due to surface waves (%), and due to radial radiation
of body waves (Pg). The balance of rates of energies for the string requires

(P =PI+ (P )+ (Pr). (4.17)

An analogous equation holds for the beams. The pertinent expressions are

ol 4 RN Im [D(¢& 2)]d¢
(g’:)WQ{l:de(é;ﬂ)ié“fo] TTJ‘O Rez[D(f,Q)}'i'Imz{I)(aﬁ, Q)}}’ (4'18)

d -2 d -2
(‘@v>:2Q§0[—d—§D(§$ 0”5—%} L (gpb)z4ogg[-&g‘p(§sn)1§-—én] s
(4.19,4.20)
G = _d_ ﬁzs—ﬂm__‘ m 2
' (Powd = foo[ng(f, Q),€=§o:l q(z)[K;(qo)]z J" [Ki(gov)] v dy, (4.21)
(Pr)= Qs‘fnf [R()I sin ¢ dy, (4.22)
¥ wo 4]

where

Q_{Féwaﬂ?“ for the string

o f2 2212
Fiwa®/2El forthe beam } 9o (fo= o MV) % (4.23a,b)

For the string 8 = 1, while for a pipe one has g =1.

TaBLe 1

Distribution of time-averaged energy input over flexural wave motion in the
beam, (P}, surface wave motion in the water, {2 ...}, and spherically radiated
wave motion, (Pg), in percentage points

Solid beam: 8 =1 Empty pipe: 8 =27
1, =0-359 n.=0227

£ (D) (P (Pr} {(Py) (P, {Pr)

, 0:01 99-89 011 0-00 99-46 0:53 0-1

0-05 99-61 0:35 0-04 97:94 1-65 0-41

0-11 99-09 060 0-31 94-07 3-00 2-93

015 8948 4-11 6-41

017 98-20 (-85 0-95 86-28 4-86 8-86

0-19 8211 5.89 12-00

0-21 75-96 762 16-42
0-23 9673 1-18 2:09
0-26 95-69 1:41 2:9¢
0:29 94-35 1-74 391
0-32 92-46 2.27 5:27
0-35 88:65 3-65 7-69

Table 1 shows the distribution of the time-averaged energy input of the force, {(#;), over
fiexural wave motion in thel beam, surface wave motion in the water, and spherically
radiated wave motion in the water. At very low frequencies, more than 99% of the input
energy is converted into beam waves. This proportion decreases, however, as the frequency
increases. Still at low frequencies, some energy is carried away by surface waves. At

“‘ 3
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frequencies quite close to the cut-off frequency, a substantial percentage of the inpu{--
energy is converted into spherically radiating wave motion. The conversion of input
energy into wave motion in the fluid is more pronounced for an empty pipe than for a

solid beam.
{

5. REFLECTION AND TRANSMISSION AT SUPPORTS

The results of the preceding sections can be used to investigate the effects of an elastic
support {with mass) on a time-harmonic wave which is propagating along the submerged
string or the submerged beam. In the frequency range that is being considered, an incident
wave involves surface-wave motion in the fluid. The wave motion will be reflected by the
support, and transmitted beyond it. In addition spherically radiating scattered waves in
the fluid will be generated at the support point. As a model of the elastic support with
mass m, we consider a concentrated mass, which is fixed to the string or the beam, and
which is also supported by a spring of constant « (see Figure &).

Foli)
Q)

rwf (O}

Fol2)

Figure 8. Spring-mass support point.

The system of incident time-harmonic waves is defined by equation (3.1), and equations
(3.2) and (3.11). The total flelds are expressed as sums of incident and scattered fields,

Wix)= Wilx)+ W(x),  @'(r,x)="(rx)+ (1, x), (5.1,5.2)

where exp (—iwt) has been omitted from both equations (5.1) and (5.2} and the term
cos § has been left out in equation (5.2), In the present idealization the effect of the
mass-spring system is equivalent to a point load on the string. Hence W?(x) and &°(r, x)
are of the general forms given by equations (4.3} and (4.7). For the present problem F,
depends, however, on the frequency, and F,({2) must be determined from the interaction
between the string {or the beam) and the mass-spring system.

The equation of motion of the mass m may be written as

—mw W (0) = —x W'(0) — Fy(42), (5.3)

where we have used the fact that the displacement of the mass equals the displacement
of the string or the beam at the support point. By combining equations {5.1), (3.1) and
(4.8), one finds

Wi (0) = C + Fy(Q2)vf(2), (5.4)
where C is the amplitude of the incident wave, and

y=a/T forthe string, y=a’/El forthe beam. (5.5, 5.6)
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substitution of equation (5.4) into equation (5.3) yields

Fo(2) = —(1~ 0%/ 0}k C/[1+ky(1 - w*/ wi)f(12)]. (5.7)
Here w, is the natural frequency of the supporting mass-spring system
wi = i/ m. (5.8)

Far away the scattered wave W’(x) is given by equation (4.10), and equations (4.4) and
(4.5}, with F; defined by equation (5.7). The spherical radiation in the fluid is given by
equations (4.14), (4.15), (4.4) and (4.5) and (5.7). The amplitude and the phase of the
interaction force Fo{{2} have been plotted in Figure 9. It is of interest to note that Fu{£2)
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Figure 9. Amplitude and phase of the interaction force Fo(w/w,) for a solid steel beam and mass-spring
support in water; ky=1, pAa/m =0-01.

vanishes when the frequency of the incident wave equals the natural frequency of the
mass-spring system. Hence an incident wave of frequency w = w, passes unhindered by
the support point of the mass-spring system.

The total displacement at the support point follows from equations (5.1}, (4.8) and
(5.7) as

WHOY WH(0) = 1/[1+ ky(1— ¥/ wl)f(12)] (5.9)
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Figure 10. Response at support poing, | W'(0)/ W(0)], for a wave incident on a mass-spring support in water;
ky=1, pAa/m=001.1,6=0,2, ¢=0128, =273, £6=0128, B=1.

where vy is defined by either equation (5.5} or equation (5.6). For the beam |W'(0)/ W*(0)|
has been plotted versus w/w, in Figure 10. It is noted that there is a resonance effect for
frequencies slightly less than w,. The shift of the resenance frequency is due to the effect
of the fluid on the system.
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