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ABSTRACT

A GENERALIZATION of the Diflerential Effective Medium approximation (DEM}is discussed. The new scheme
is applied 10 the estimation of the effective permiltivity of a two phase dielectric composite. Ordinary DEM
corresponds 10 a realizable microgeometry in which the composite is built up incrementally through a
process of homogenization, with one phase always in dilute suspension and the other phase associated with
the percolating backbone. The generalization of DEM assumes a third phase which acts as a backbone. The
other 1wo phases are progressively added to the backbone such that each addition is in an effectively
homogencous medium, A canonicat ordinary differential equation is derived which describes the change in
material propertics as a function of the volume concentration ¢ of the added phases in the composite. As
@ -1, the Lffective Medium Approximation (EMA) is obtained. For ¢ < 1, the result depends upon
the backbone and the mixture path that is foflowed. The approach to EMA for ¢ & 1 is analysed
and a generalization of Archie’s law for conductor-insulator composites is described. The conductivity
mimics EMA above the percolation threshold and DEM as the conducting phase vanishes,

I INTRODUCTION

THERE are essentially three different ways of approaching the effective medium problem
for a composite made up of several materials. The first is to define a particular
microgeometry and then proceed to solve the field equations in this geometry, The
second approach is to obtain bounds on the possible range of the effective properties.
The Hashin-Shtrikman bounds {(HasHIN, 1962 ; HASHIN AND SHTRIKMAN, 1963) are the
most general that depend only upon the volume fractions of each material. More
restrictive bounds require knowledge of correlation functions in addition to the volume
fractions (Mirron, 1981). The third approach estimates the effective properties by
means of some sort of self-consistent scheme (HasHIN, 1968), or effective medium
“theory”. Among the latter are the Effective Medium Approximation (EMA} of
BRUGGEMAN (1935) (.. LANDAUER, 1952; STROUD, 1975; MENDELSON and CoHEn,
1982), the Differential Effective Medium Approximation (DEM) also due to
BRUGGEMAN (e.g. ROSCOE, 1952 McGLAUGRLIN, 1977; SeN, Scara and CoHen, 1981 ;
YonEzAwA and COHEN, 1983; SHENG and CALLEGARI, 1984) and the cumulant
approximation of Hori (Hory and YONEZAWA, 1975). We note that EMA is also known
as the Coherent Potential Approximation (CPA) (STrOUD, 1977) and DEM as the
Iterated Dilute Approximation (IDA). Aninformative historical account of the various
effective medium theories is given by LANDAUER (1978).
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The above approaches can be put into three categories. This is by no means
exhaustive, but is useful in order to define the way one attacks the effective medium
problem. The approach of this paper will be different from the three above, but will
most closely resemble the third. We start by considering the inverse problem. Thus,
- instead of asking what are the effective properties of a givent sample of composite, we
construct a class of composites with known effective properties. The original question
can then be answered by selecting from the class of composites the onc whose
microstructure most resembles the given sample. Recently, MiLton (1984) has shown
that EMA gives the exact solution for a class of realizable microgeometries. It is also
known (SEN et al., 1981) that DEM gives the correct solution for a different class of
microgeometrics. The common characteristic in both these realizations is the idea of
incremental homogenization. Starting with a given homogeneous material, one
successively adds small amounts of inhomogeneity. At each addition of inhomogeneity,
the incremental changes in the effective properties are calculated using the known
dilute concentration results,

In this paper we generalize the idea of incremental homogenization lo define a
generalized version of DEM. The theory is developed for the effective dielectric
permittivity of the medium. The generalization contains a certain amount of non-
uniqueness in that the effective permittivity depends upon the way in which we
construct the final material from an initially homogeneous material. This path-
dependent aspect of the theory is novel. In particular, the effective permittivity
estimates of EMA and DEM correspond to special limiting cases of paths and
endpoints, respectively. Each different path corresponds to a definite type of underlying
structure for the “random composite”. The answer to the forward problem of
predicting the properties of a given composite can thus be solved by finding which
particular microgeometry or path best fits the given microgeometry.

We begin by defining a specific construction process in section 2. The homogeniz-
ation process is introduced in section 3 and an ordinary differential equation for the
homogenization process is derived. It is shown in section 4 that the differential equation
is canonical in the sense that it is independent of the specific construction process. The
equation is integrated and several example media are discussed in section 5. The case of
spherical grains is considered in section 6. In section 7 the percolation properties of the
generalized theory are analyzed. Numerical results are presented in section & The
analogous cquations for the bulk and shear moduli of a composite elastic medium will
be presented in a forthcoming paper (NORRIS, 1985).

2. Fixep VoLuME Procrss

The Fixed Volume Process (FVP) begins with a volume vy of material 0. The
constitution of the material is then altered by incrementally taking out a small fraction
of the total volume and replacing it with an equivalent volume of new material. At each
step the total volume is kept fixed at vy. We consider the case that the new material that
replaces the removed material is composed of discrete volume elements of materials |
and 2 : define the volume fractions ¢y, ¢, and ¢, of the three censtituent materials such

e’
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FiG. 1, A possible homogenization path in the (¢, &) plane. The small triangle represents the range of further
possible points.

that o+ ¢y + ¢, = 1. Thus, ¢, and ¢ are two independent parameters which may be
used to describe the current configuration. To each FVP there is a corresponding path
inthe (¢, ¢,) plane (see Fig. 1). Introduce an arc length parameter ¢, so that on the path
we have ¢y = ¢ (1), ¢, = ¢,(t). Al cach ¢ the material is assumed to be homogeneous,
ie. any given volume v of the composite contains ¢ov of material 0, ¢¢v of materiat
and ¢, v of material 2.

We now examine the incremental replacement process. Let Au be the volume of
material removed at point ¢ in the FVP. The same volume is replaced with volume Au,
of material 1, and volume Au, of material 2 such that Auy + Au, = Au. The volume of
material 1 in the solid before the replacement was ¢ vy. After replacement, the volume
of material 1 is

ldhs +A¢) = v, (1~ ?)mul. -
o

This relates the increment in ¢, for the FVP to the corresponding increments in 1, and
. A similar relation follows for Ag,,. Note that uy and u, measure the total volumes of
materials 1 and 2, respectively, that have been added during the FVP up to the current
value of . Therefore u, and u, describe a path u; = u,(1), u, = u,(8) in the (14, u,) plane
as ¢ varies. Define the derivative ¢, as

. dé, '
b =0, o)

Similarly, we define the derivatives ¢, 4, and u, so that (1) becomes

Doty = (1 )ity — by (3)

and the corresponding relationship for the change in the volume of material 2 gives

b Doy = (1= o)y — ity ()
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These relationships can be inverted to give 4, and 1, as

33_1_ _ (1““‘.52)‘1"1”?*0516?’2_

Yy 1—¢ i G
i, _(1“451)‘5324"452‘?;71 |
O ©

where ¢ = ¢, + ¢,. Thus, the FVP can be described by a pathin the (¢, ¢,) plane or its
equivalent path in the (u4,, u,) plane. However, there are restrictions on the permissible
paths that may be considered. First, all paths are required to begin at the origin of both
planes. Without loss of generality, put ¢4(0) = ¢,(0) = 1, () = u,(0) =0 and ket 0 <
t < {, define the paths. Secondly, we require that materials 1 and 2 are added at each
stage. This implies that ¢, = 0 and 4, = 0. So the permissible range of u, and u, 1s the
quarter space u; = 0, u, 2 0. Thirdly, we must have ¢, = 0, ¢, = 0 while the sum
¢ = ¢, + ¢, must be less than unity, The permissible range of ¢, and ¢, is thus the
interior and edge of the triangle in the (¢, ¢,) plane with vertices at the points (0, 0),
(0, 1} and {1, 0). Now consider the identity:

(L= ¢2)ds +d1dy _ g[& 0
A=¢p  di[1-9]

Referring to (5)and(7), we see that the second and third conditions above imply that the
two quantitics ¢,/(1-¢} and ¢,/(1—¢) must both be monotonically increasing
functions of {. This result can be interpreted geometrically as follows: at stage ¢ in the
FVP when ¢, and ¢, are at ¢,(t) and ¢,(t), the direction vector (¢, ¢b,) can only point
from the current point (¢, ¢,) into the triangle with vertices at the points (1, 0}, (0, 1)
and (¢, ¢,) (sec Fig. 1). Thus, the triangle which defines the permissible range in the (¢,
¢,) plane decreases in size as ¢ increases. Similarly, the permissible range in the (1, u,)
plane at ¢ is the quarter plane u, = u(t), 4y 2 u,(t).

Note that (1}is not to be thought of as defining the partial derivatives d¢b, /1, and 3¢, /ou, of a
function ¢ ;{u,, u,). If this were so, then (1) would give

1
01/ ou, “—“U—O(1~d)1), (®)

1
O fQuy = ;}-{—cbl)' &)

However, a necessary and sufficient condition that ¢b, be a function of u; and u, is that the mixed
partial derivatives of second order be equal. Differentiating d¢b, /du, of (8) with respect to u; and
subtracting from this the derivative of d¢;/8u, of (9) with respect to u,, gives the quantity /g,
which is not zero. Therefore, ¢, and ¢, are not functionaily retated to u, and u,. They arc related
only along curves in the (¢, ¢,) and {u,, u,) planes. The relationship is defined by (3) and (4), or (5)
and (6). This means, for instance, that if two different curves in the (¢, ¢,) plane both go from (0,
0) to some point (¢, q, $,o) then the values of u, and u, at this point can be different for the two
curves. In other words, if (¢;, ¢b,) describe a path which is a closed curve {this is not permissible
physically, but there is nothing against il mathermatically) there is no reason why (i, 1,) must
also describe a closed curve.

Define u(t) = t,{t}+ u,(f), the total volume of materials | and 2 at stage ¢ that have
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been used up in the FVP. Adding (3) and (4) giifes

vodp = (1 - )i (10)
which, with the initial conditions ¢(0) = u(0) = 0, integrates to
1 —('b - e"‘("l‘l’o)’ (I 1)

This result implies that if ¢ — 1, then u — oo, and vice versa. Dividing (6) by (5) gives

_15'_2 _ ¢zd’+(1—¢)‘}sz
iy $¢+(—P)g,

As ¢~ 1, (12) implies that u, and uz go to infinity such that du,/du, = bafcy.

Denote the points (0, 0), (0, 1) and (1, 0) in the (¢,, ¢,) plane by A, B and C,
respectively {see Fig. 1). The above results show that there is a one-to-one correspon-
dence between the points on the perimeter of the triangle ABC and the points on
the perimeter of the (u,, u,) quarter plane. Thus, between A and B we have ¢y =0
and 0< ¢, < 1. The corresponding point in the (u,, u,) plane is =0, u, =
—v5In(1—¢,). Along BC we have ¢; +¢, = 1 which corresponds to Uy, Uy — 0 such
that uy/u; = ¢, /¢h,.

It is clear from (3) and (4), or (5) and (6), that straight-line segments in the {d:. @2)
plane go over to straight-line segments in the {1y, u,) plane. For example, the line
¢y = fill—e™), ¢y = fo(1—¢”") becomes the line Uy = fitvg, uy = fitv,.

(12)

Forarbitrary curves, the exact integral of (11) reduces the system of two equations (3) and (4) to
a single ordinary differential equation aleng the path, This equation is found by subtracting (4)

from (3} and using (10} to get
dld,—d, r.

a [”“f‘_‘;i) - (1) = i J(ul —tiy). (13)
Integrating, and using the initial conditions, gives

‘il aals) | ”

ul(t}%u2(1)=(1_¢) (}W s

3. THE HOMOGENIZATION PROCESS

We begin with the basic result for a dilute concentration of inhomogeneitics in an
otherwise homogeneous medium, Let the permitiivity of the current medium be &. In
the context of the FVP, add a small volume Ay = Auy + Au, of two dissimilar materials
with permittivities ¢; and ¢,. Let E and [ be the averaged electric and displacement
fields, where the average is over all of vo after the incremental addition. The new
permittivity ¢+ Ae is defined by the averaged relation

D = (¢ +Ae)E. (15)

We have the exact relation (LANDAU and LirsHITZ, 1960),

- 1 I
EAg =—(g, —¢) E dvy _(azus)J E dup. (16}
Vo Arty Uy Any
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We now invoke the dilute concentration approximation to calculate the field in Au,
and Au,. Assume that the volumes Au, and Au, arc cach made up of similarly shaped
ellipsoids that are randomly oriented in space. It is known {POLDER and VAN SANTEN,
1946 ; Lanpau and Lipsuairz, 1960) that B

J E dv= Eyg{e)Au;, j=1or2, (17
Auj

where Ej is the average clectric field in the unperturbed volume and the quantity g {s) is
& r

g‘-:ZIISW%s J= lor2 (18)

g,{e) =

Here, the quantities L{?, i = 1, 2, 3 are the depolarization coefficients of the ¢llipsoids
associated with material j, where j = 1 or 2. The depolarization coefficients are real and
positive and satisfy

S L =1, j=10r2 (19)

i=1,3

The depolarization coefficients are all equal to 1/3 in the case that the ellipsoids are
spheres. The average electric ficld follows from (17) as

- Au Au Au
E=E, [(I - m)+ —Lg,(0)+ ——Egz(f:)]. (20)
Vo Ug Uy

The incremental change in ¢ follows from (16), (17) and (18) as

S e ves vcrs v e
where
Gj(ﬁ) = (C““Sj)gj(s)a J=12 (22)
The homogenization process is defined by (21). In the limit Au,, Ay, — 0, we get
Ag = —;—0—1 {Au, G {e) + Au,yGo(e)}. (23)

This equation must be interpreted as defining the increment in ¢ as v, and u, progress
incrementally along a path in the (u,,u,) plane. Let ¢ parametrize the path, then (23)
becomes

i) = o {G (8 (8) + Goleia (D)} (24)
9
This ordinary differential equation for g(z) reflects the change in g as u, and u, progress
along their path. We need to define an initial value to & At t = 0 we have ), = u, =0
and ¢ = g, where ¢, Is the permittivity of the original volume. Therefore, (24) with
&(0) = g, defines an initial value problem for e.
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We can rewrite (24) for £ in terms of the variables ¢ (1) and ¢,(t) by using (5) and (&)

: : : ) . ¢

Hiy = —(G iy + Gatho) (G ¢, +Grhy) s (25)
As we shall see in the next section (25}is the canonical equation for the homogenization
process. Equation (24} is not incorrect, but it is phrased in terms of variables that do not

have intrinsic significance to the current configuration.

Referring to (23), we note that this relation does not define an exact differential Ae. I it did, we
would have

Je/du, = ;—1 G, (z), (26}
o

OefOu, = =! G,(e). 27)

Vo

Taking the mixed partial second derivatives of (26) and (27), we see that in general they do not
agree. Thus, & is not simply a function of w, and u,. This is similar to the relationship we found
between the variables (u,, u,) and (¢, $,). Mathematically, it means thal given ¢ at one point in
the (uy, u,) plane, there does not exist a unique integral surface that defines ¢ at every other point.
Physically, it means that if we follow two different paths in the (1, u,) plane from an initial point
to a final point, such that ¢ is the same at the initial point, then in general the two paths will give
diflerent values of ¢ at the final point. Similarly, ¢ is not functionally refated to ¢, and ¢4, so that
different paths in the (¢, ¢,) plane also give different results. In general, the homogenization
cquations (24) and (25) should be thought of as defining a path-dependent process.

4. VARIABLE VOLUME PROCESS

The FVP process is characterized by taking a piece of the current material out and
replacing it with materials 1 and 2 so that the total volume is kept constant. Now
consider the case where no material is taken out, but only put in. The volume will thus
increase at each step in the process, so we call it a Variable Volume Process (VVP).

Begin with an initial volume, v, At each step in the homogenization, incre-
mental volumes Av; and Av, of materials 1 and 2 are added to the current total
volume V= vy + v, +v,. Define the current volume fractions ¢, ¢, and ¢, such that

Potd;+d,=1as

Uy

br=gh b= (28)

Thus, ¢, is the volume fraction of the original material and ¢, and ¢, are the volume
fractions of the added materials. At each stage the material is assumed to be
homogeneous, in that arbitrary volumes have volume fractions ¢, of material 0, ¢, of
material 1 and ¢, of material 2. Note that (28) defines a one-toc-one relationship
between points in the (v, v,) plane and points in the (¢, ¢,) plane. This contrasts with
the situation for the FVP where there did not exist such a functional relationship. The
difference is trivially apparent, since in the VVP we are retaining all the added material
within the mixture. THere is thus no indeterminacy in how the new material is
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distributed in terms of volume fractions. The inverse of {28} is

by Py V2 _ ¢z ' (29)

vg 1=¢" vy, 1—¢ \

In particular, note that ¢ can only approach unity if v, and/oi* v, go to infinity. This is
obvious since the volume fraction of the original material, ¢,, can go to zero only if the
added material occupies a volume much greater than v,. The VVP is inefficient in this
sense compared with the FVP, From (11) we see that for the original material to achieve
a volume fraction of ¢, = 1—¢, the FVP requires adding a volume u = vo In |yl
With the same starting volume v, the VVP requires adding a volume of
v = vo(1 —¢o)/ho. Thus, v always exceeds u and the ratio v/u becomes infinite as
¢ — 1.

The relevant homogenization equation for the VVP is now briefly derived. Let & be
the current permittivity at the point (¢,,$,) in the process. The current volume is
V' =uvo+v, +v,. After the addition of the incremental volumes Ap, and Av, the
permittivity becomes &+ Ag, where in analogy with (16) we now have

. 1
. TAL = g E S ;
. EAg A (6, —¢&) Lu' dv+ Y {e,—2) JAUZ E do, (30}

where Av = Ay, + Av,. Using the dilute concentration approximation,

J E dv = Eogfe)Av, j=1o0r2, (31)
Avy

where E, is the average electric field in the material exterior to Av, and Av,, and g;are
defined in (18). The average field E is then

. E
B = oS (Ve Avyga(e) + Ava05(6)}. (32)

The increment in permittivity follows from (31), (32) as

As _—li Av G (&) + Av, G o(s) )]’ (33)

V4 Av g (&) + Av,yg,(e
where G; are defined in (22). In the limit as Av, and Av, — 0, (33) becomes

85 = {80, 6) + Ay 6ol (34)

Now consider an homogenization path ¢, = ¢,(f), ¢, = ¢,(1). Thisis equivalent to a
pathin the (v, »,) plane defined by the relations in (29). So we have vy (1) and v,(2), with
initial conditions v,{Q) = v,(0) == 0. The incremental relationship (34) then defines the
process & = £(t), where

&t} = 7 {Gie), (1) + G (e (1)}, (35)

with initial condition &(0) = &,. Note that (35) is similar to (24). but not quite the same.
The difference lies with the variables (v, ;) and (u,, u,) which have different physical
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interpretations. However, eliminating v, and v, from (35) using (29) gives an ordinary
differential equation for &(¢) identical in form to (25). This happens because the variables
¢ and ¢, have the same physical meaning in both the FVP and the VVP. Thus,{(25)isa
canonical equation for this type of homogenization, independent of the specific
matferial replacement process.

5. INTEGRATING THE HOMOGENIZATION EquaTtion

In general the homogenization cquation (25) cannot be integrated directly. However,
it may be integrated along straight-line segments. Consider the straight-line in the
(¢4, $2) plane between the two points (¢4, ¢,,) and (¢ 15, #25). Define the following
quantities

Ady = ¢13—d1a {36)
Ady = Gop—Pra, (37)
Ad = A, + Ay, (38)
and
Pr= {Ap (1~ ya)+ 82, 4}/ AD, (39)
P2 = {Bda(l—dia) + A hra}/AD. {40)

Thus, p; +p, = 1. Note that Ad,, Ag, and A¢ are not infinitesimal quantities. Let g,
and g be the permittivities at the two endpoints of the line segment. Then by any
parametrization of the line segment, (25) can be reduced to

i de _ 1—¢y
L PRAC I XA ‘“[1 %m]’ (40

where ¢, = ¢4+ ¢ys and ¢y = ¢z +d,p For any p, (and p, = I —p,), define the
indefinite integral F(¢, ¢, &,, p,) by

£ d‘}’ o
Fle,e),85,p1) = ex : 42
(21, 22:p0) p{f 56+ P2Go0) } “2)
Then {41) becomes
F(Ezsaspﬁzypx) _ 1_¢B (43)

F(sAsslssz’pl) B 1W¢A
Consider the function F(g,¢y,¢,,p,) of (42). For simplicity, we assume that the
complex numbers &, and &, have the same phase. Then, without loss of generality, we
can take that phase as zero. The case of different phases follows by analytic
continuation. First, we define &, i = 1,6 to be the six non-zero roots of Gle) = 0, where

Gle) = p1G,{e)+ p,Gafe)
g

L= Y o Y L8] (44)

! 3 j=12 i=1,3
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Since ¢, and &, are both real and positive, it follows from the form of G(g) through (44)
that five of the roots are negative and one is positive. The positive root lies between g,
and ¢, and we denote it as ex(p,) since it is the permittivity predicted by EMA (STROUD,
1975 ; MenNDELSON and COHEN, 1982) at volume fraction p; of material 1 and volume
fraction p, = 1 —p, of material 2. The five negative roots are located between the six
points —g;LP/{1— L}, i = 1,3, j = 1,2 on the negative real axis.

The function Fle, ), &,, p;) can now be evaluated by the method of partial fractions.
We obtain in a straightforward manner,

Fle, 81,62, 1) ! H (e—£) (45)
i=1.6

where
. 1 .
R; = Residue [EE] s i=16 (46)

and
b1 Pz
The six residues, R; satisfy the constraint
Y Ri=(1-L)+], (48)
121,6
where L is defined by

1 P2
-1_»:— a Z l:l WL(” + l—ng’]' (49)

Note that | and L depend upon both the inclusion shapes and on p,, but are
independent of p, if the shapes are the same for materials 1 and 2. In general, fand Lare
bounded as follows,

O<i<-<L<l {50}

| s

We have ! = 0 when either material is shaped as needles or plates; ] == [/3and L = 1/3
when both are spheres, and L = 1 when either or both are plates.

It can be shown quite easily that the R, are all negative except for the one
corresponding to gg(p,), which we denote Rg. Then it follows from the bounds on ! and
L and (48) that

0<(1-L}+! < Ry (51)

Consider the process that follows a straight line in the (¢, ¢,) plane from (0,0) to
some point (¢, ¢,)such that ¢ = ¢, + ¢, < 1. Let & = g, at (0, 0). Referring to (39) and
{40), we have

P = $1/P, (52)

e
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P2 = $a/P. (53)
Then, from (43) the value of € at (¢, ¢b,) is given by

k};‘(‘;:El)SZ’ ¢1/¢) o
F(g{)'AEl) 82’ qsl/qS)

[t is instructive to rewrite this equation for ¢ using (45), as

1— . (54)

1R
&—sp(dh /@) = [(] ~ $)F (8, &4, €9, ¢1/¢')81 n (ﬁ—gi)*m:' > (55)

i=1,8

irE
where the product excludes &;. Based on the fact that R > 0, while the other R; are
negative, {55) shows that ¢ —» ex(¢p,) as ¢ — 1. This result is independent of the initial
value, &o. It is not surprising that & approaches a value independent ofegas ¢ — 1, since
according to either FVP or VVP, the volume fraction of the initial material tends to
zero as ¢ — 1. Thus, all properties associated with the starting material are forgotten.
Also, it is not really surprising that the value of ¢ attained is always that of EMA. This is
to be expected from the result of MiLTON (1984). In his paper, Milton shows that EMA
can be realized through a process akin to the present homogenization. Milton’s
procedure, translated into the present terminology, amounts to the straight-line
process from (0, 0) to (¢,, ¢,), where ¢ = 1.

Note from (55) that as ¢ — [, we have e—cg(h,) ~ (1 —$)V®®, apart from a multiplicative
constant. In the case of spheres, the “critical exponent™, {I/R) equals 1/(1+a) € 1, where a is
defined in (59).

6. SpHeriCAL GRAINS

The particular case in which both material shapes are spheres is of special interest,
Then! = L = 1/3 and instead of six roots, there are now onlytwo. Theyare g, » 0 2 &,
the roots of

26 +e(ey + 8, — 3e,)—£y85 = 0, ~{(56)
where
8, = P& + P18y (57
Thus, ex(p,) = £,. The function F(e,¢,,¢,, p,) becomes
Fle, 81,85, p)) = ¢ 71— g —5,) "4, (58)
wherea = Qs
&, —&
a = Z%fi""g_: (59)

We now specialize further to the case that p, becomes zero. This happens, for
example, if the process only involves putting in material 2. As Py — 0, we have ¢,
€y — &3, &, = —¢,/2 and a — 0, and (58) simplifies to

b Fle,8,0) = £ 1B(E—gy). (60)
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Suppose the homogenization begins at ¢, = ¢, = 0 with ¢ = g,. Then as the volume
fraction ¢, of material 2 is increased, the current ¢ is determined from (43) and (60) as

the solution to
(e—g,) [eg M *
woele] =170 “

This is just the usual Differential Effective Medium theory (DEM) result originally due
to Bruggeman (LANDAUER, 1978 ; see also Laws and WALPOLE, 1979 ; SEN et al., 1981).
DEM starts with all of &, and material 2 is added incrementally until it has achieved its
correct volume fraction.

7. CONDUCTOR-INSULATOR COMPOSITES

The case of ¢, = 01s of special inierest, as it corresponds to the situation that one of
the added materials is insulating, The above general analysis becomes singular as
gy — 0. Of the six roots £, i = 1, 6, three of them become zero. The remaining roots, say
&, 1= 1, 3 are determined by the cubic equation:

pile—s,) P
= 2
DI ey v s e ©)

where

1

1
e S ) (63)
1—19 3,454,110 7

Equation (62) has three real roots, Two of them are always negative; the third root is
positive or negative, depending as p; is greater or less than p, , respectively, where the
percolation threshold p,, is

1
e
Pro = (64)
[y c2
and

1 ! 1
— == -, Jj=1lor2 (65)
[U) 3i=§3L§J)

For spheres we have p,, = 1/3; if the material 2 shapes are plate-like while the material
I shapes are not plate-like then p,, = 1, which means that material 1 never percolates in
EMA; conversely, if material 1 is ncedle-like, then 1 always percolates according to
EMA. In general, if the material shapes are the same, then p, . is bounded between 0 and
1/3.

The function Fe,¢,,0, p,) follows from the Appendix as:

Fle,€,,0,p) = Mo H (e—&x®, (66)

i=1,3




A generalized DIIM theory 537

where the R, are defined by (46) and

L
pipy) = 2t LT (©7)
Pre—Dy

Instead of (48), we now have
2. Ri={(1-1)—B(p,) (68)
1=1,3

Note that (p,) is negative for p, > p,_and positive for p, < p,.. Also, the result of the
process depends upon the shape of material 2 only through the parameter £, When
Py < Py, (66) further simplifies to (see Appendix)

Fle,g,,0,p) ~ 759 p 0. (69)

We shall use this result later.
When both materials are spheres, the cubic equation (62) becomes linear with root

£y = 6,(3ps —1)/2, (76}
which is zero at p; = p,. = 1/3. The function F(g, £,,0, p,) becomes
Fle,1,0,p1) = [efe—o,(3p, — 1)/2) 727200 -3, (7)

Now consider the straigh{-line process of section 5. Start at (0, 0) with ¢ == ¢, and go
to (¢by, o) along a straight line. At(¢,, ¢,) we have from (54) and (71)

ef;[gf e ](BW = [1= /20 =300, (72
13 H

It is clear that the solution to this equation behaves quite differently for ¢, /¢ < 1/3
than for ¢, /¢p > 1/3, especially as ¢ - 1. Exactly at ¢,/d = 1/3, (72) becomes

ey & fo paz )
2(5 80) +ln(—g—<,b0 w0, N5

In the limit as ¢ — 1, ¢, and ¢, become the volume fractions of materials 1 and 2,
respectively. The convergence of ¢ to the solution at ¢ = I can be analysed by taking
o = 1 —¢ « 1 and solving (72) asymptotically in ¢,. As ¢y — 0, the “backbone” of
original material s, disappears and the solid contains only materials 1 and 2. The
asymptotic solution of (72) changes character at ¢,/ ~ ¢; = 1/3. For ¢, < 1/3 we
have

£ ~ gol[ho] 3120 ~ 300 =3¢ P (74)
oL 1-3¢, +2e0fe, |~

while for ¢, > 1/3 the solution is

e o AR
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At ¢, = 1/3 we have from (73)

"~ Sintg (76)
" 3in(g)’
The limiting solution at ¢ = 0 follows from (74) and (75) as
0 ¢, < 1/3}
£ : 77
[81(3451—1)/2, ) = 1/3 (77)

This is the well known Effective Medium Approximation (EMA) solution, or
Bruggeman’s solution, among various other names (BRUGGEMAN, 1935; LANDAUER,
1952). The physical significance of a zero solution for ¢¢, < 1/3 is that malterial 1 ceases
to percolate a{ this volume {raction. This phenomenon of a percolation threshold at a
volume fraction greater than zero is characteristic of EMA. In contrast, DEM is known
to have a percolation threshold at zero (Yongzawa and CoHen, 1983; SHENG and
CALLEGARIL, [984). The asymptotic solution (74}76) has a zero percolation threshold
for ¢ # 0. The solution for ¢; < 1/3 is similar to Archies” law (Sen et al., 1981),
which predicts that ¢ ~ gopf where m is typically of the order of 2 in rocks. We
have m ~ (3/2)(1 —3¢,), which is less than 3/2, but approaches 3/2 as ¢, — 0. For
¢ 7> 1/3, (75) shows the solution to be slightly above the EMA solution. Therefore,
the sofution overall is very close to the EMA solution, but remains non-zero until
¢, = 0 and approaches this threshold in an Archie’s law fashion.

The above analysis for spheres may be generalized 10 the case that the materials are ellipsoids.
Now the percolation threshold is at p,  defined in (64). For ¢, < p,. it follows from the Appendix
that £ behaves asymptotically like

£~ ﬁ'{)[(ﬁ‘)](llﬁwnl! ql)o — 0, [78}

where &; is a function of ¢, that tends to g, as ¢, — 0. The latter result follows from {69} and the
Appendix. Also, from (07) we sce that the exponent in (78) is

L el ST/ 2T
[TV B
which increases from 0 to 1/{1 — I{*'], as ¢, decreases from the percotation threshold to zero. As
¢, — 0, we have the doubly asymptetic result from (78) and (79) that
£~ elgho] T, g =0, by =0, {80)

This agrees with Archie’s law if the shapes are selected such that I{*' of (62) equals 1/2. Note that
{80)is independent of the value of £, and the shape of the material § inclusions. The result depends
only on the permittivity of the vanishing backbone, gy, and on the shape of the material 2
inclusions.

When ¢, > p,,, the sotution for small ¢, lies close to, but slightly above, the corresponding
EMA sotution. The difference is determined by the exact relation {55) which implies that

€~ CE{(!‘“)'l"O[(J{)(OHRE)]: ‘!60 ks 0’ q’)l > Pl {81)

(79

8 NUMERICAL ExaMPLES OF CONDUCTOR—INSULATOR COMPOSITES

Two examples are considered in which the starting material is pure conductor, i.c.
g9 = &, and ¢y = 1 at t = (. The homogenizations are achicved using spherical grains
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165, 2. Three possible paths to the same endpoint Pld,, ¢,

for both phases, so that the results of the previous section are relevant. Both of the
examples illustrate for given volume fractions of conductor and insulator that different
effective conductivities can be realized depending upon the microstructure involved,

The first example considers paths in the (¢, ¢,) plane such that ¢, is specified. The
free parameter is ¢, which satisfles 0 < ¢, < [ —¢,. Three different paths I, II and 111
from (0,0) to the point (¢, ¢,) are considered (see Fig. 2). The homogenization
represented by OQ in Fig. 2 is the usual DEM considered by SEN et al. (1981) in which
the added material is insulator only. This solution foltows from (61) with g, = &, and
g, = 0 as

&= eyl )" (82)

The first path, I, goes from O to R and then to P. There is no change in ¢ along OR
because the same material (conductor) is put back in as it is taken out. From RtoP
there is a change in & because insulator is added. However, conductor is also added
between R and P in order to keep the volume fraction ¢, fixed. Note that the total
volume fraction of conductor is ¢h, + ¢, but that ¢, and ¢, represent distinct regions,
In the FVP, as u, increases along RP, u; must also increase according to (1.3) with
(f)l = (). If we defined & (P, 1) as the value of ¢ at P due to path I, then we do not expect ¢
(P, 1) to equal & (Q,II1). In fact, we expect ¢ (P, 1) < & (Q, lII) because along RP the
conductor is thrown back in with the insulator and so some conductor may be entirely
surrounded by insulator. The volume fraction of the percolating conductoris 1 — ¢, for
¢ (Q, I11}, but is less than this for & (P, ).

Path 1T is the straight-line process from O to P. Path 11 is ordinary DEM (O - Q)
followed by the straight-line process Q — P. Note that on all of IX and on I between
R and P and IIf between Q and P, both conductor and insulator are added
simultaneously,

The results are shown in Fig. 3. The usual DEM resuit, corresponding to g (Q, III) and
the EMA result (77), corrdsponding to & (E) (sec Fig. 2) are also plotted for comparison.
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Y o5k

DEM
EMA

|
o] Q5 1

P2

F1G. 3. Plots of y (¢} == ¢fe, for a conduetor-insulator composite, The top curve is the usual DEM. The next
three curves are for paths 1, 1T and III of Fig. 2 for ¢, = 0.2. The bottom curve is the EMA result.

IR

We note that ¢ (E} is independent of how the point E (¢,, ¢,) is achieved. The results in
Fig.3for paths I, [1and Il are for ¢, = 0.2. Therefore, the range of ¢, for these pathsis
0-0.8. At the upper limit all three paths reduce to the EMA result because as ¢, — 0.8,
#o — 0. However, for ¢, < 1—¢, the results of paths I, 11 and Il are evidently
different.

The second example illustrates the approach to EMA as ¢, — 0. We fix ¢o and
compute ¢ by the straight-line processes from (0,0) to (¢4, ¢,) shown in Fig. 4. The
values of y = &/, is found by solving (72). Results are shown in Fig. 5 for six values of
¢q, ranging from 0.3 {top) to 0 (bottom). Note that the range of P 180 < ¢y < 1—¢g

i

I, 4. Straight-line paths to points (¢,, ¢2) such that ¢, is constant.
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voosl

]
o] 0.5

o

F16. 5. Results of the straight-line processes of Fig, 4 for different values of ¢hg. From the top down, the curves
are ¢rg = 0.3, 0.1, 0.01, 0.001, 8.0001 and the bottom curve is EMA or o =0,

(see Fig. 4). The two distinct forms of solution, (74) and (75), are evident in Fig. 5 for
small ¢ It is noteworthy that the curves remain continuous and non-zero at ¢, = 1/3
even as ¢, gets very small. This is because the approach to EMA at ¢, = 1/3isgiven by
(76) which depends upon ¢, only through In (¢,). The endpoints of the curves in Fig. 5
are at ¢, = 1--@,, or equivalently, ¢, = 0. The solution at the endpoints folfows from
(72) as

e=6dy% ¢ =0, (83)

which is the same as the ordinary DEM result of (82) at the same value of ¢,.
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APPENDIX

Some results for g, = 0
Iri this Appendix the function Fle, £, 2;, p;) 0f (42),(22) and (18) is derived for the special case of
8, = 0. First we let g, == §, where J = o(g, ), then we will take the limit of § — 0. With § > 0, the six
non-zero roots of G = 0, where G is defined in (44), split up into two sets of three, First there are
three O(1) roots determined by {62). Denote these as £, 7 = 1, 3. Next there are three o{1) roots, &,
i =4,06, given by ¢ = ¢, where ¢ solves the cubic,
— P 1 palc—1}

ol A LA Al
AR IR oy 2l D

and IV is defined in (65), The aigebraic equations (62) and (A.1) arise from the different behavior
of Glg) in the O(1), or “outer” region, and the O(8), or “inner” region.
Now consider the general result of (45). As & —» 0, this reduces to

Fle, 61,0, pp) = g®eF BT Reml) H (s—&)*. {A.2)

i=1,3

Therefore it 1s not necessary to know the O(8) roots explicitly. The only thing required is the
quantity (R, + R+ Rz —1). The latter follows from the “inner” expansion of G{g), i.e. (A.1), and
Cauchy’s residue theorem. We readily obtain

1
e = ) A3
PR iy Blpy (A.3)

1—I® 7

Ry+ R+ Ro—1 =

where f(p,) is defined in (67), and (68) follows as a result of (48) and (A.3).
We now examine the limit of (66) as p, -+ 0. From (62) it follows that the threc roots £, i = 1,3
are

—g Lt .

(1)
b= T TP [‘f:@:l +0@}), (A4)

where Lis defined in (49). Using (A.4) to compute the residues R;, i = 1,3 of (46), we readily find
that

R; = 3p(1— Ly /& + O(p}), i= 13 {A.5)
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Therefore, (66) reduces to

Fle,2;,0,p,) ~ o= (A6)

when p, <« p;,, which is the same as (69).
The general resuit for straight-line processes becomes for &; = 0, using (66),

{118 g & |RAlPD)
& = gl ho ]t PP H foth . “
i=1,3[ €&

Now consider this exact result in the limit as ¢y — 0. For ¢, <p, thethreeroots £,i= 1,3 of
(62) are all non-zero and negative. The solution to (A.7) is then given approximately as

&~ Bl PO g s, {A.8)
where
Lifte}
Bo=to| I1 (1—eo/B)™ : (A.9)
i=131,3

If we consider the additional limit of ¢, — 0, then the results of (A.5) and (A.6) show that
£y —r &g, ¢ 0. (A.10)




