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Two different effective-medium theories for two-phase dielectric composites are considered. They
are the effective medium approximation (EMA) and the differential effective medium
approximation (PEM). Both theories correspond to realizable microgeometries in which the
composite is built up incrementally through a process of homogenization. The grains are assumed
to be similar ellipsoids randomly oriented, for which the microgeometry of EMA is symmetric.
The microgeometry of DEM is always unsymmetric in that one phase acts as a backbone. It is
shown that both EMA and DEM give effective dielectric constants that satisfy the Hashin—
Shtrikman bounds. A new realization of the Hashin-Shtrikman bounds is presented in terms of
DEM. The general solution to the DEM equation is obtained and the percolation properties of
both theories are considered. EMA always has a percolation threshold, unless the grains are
needle shaped. In contrast, DEM with the conductor as backbone always percolates. However,
the threshold in EMA can be avoided by allowing the grain shape to vary with volume fraction.
The grains must become needielike as the conducting phase vanishes in order to maintain a finite
conductivity. Specifically, the grain-shape history for which EMA reproduces DEM is found.
The grain shapes are oblate for low-volume fractions of insulator. As the volume fraction
increases, the shape does not vary much, until at some critical volume fraction there is a
discontinuous transition in grain shape from oblate to prolate. In general, it is not aiways possible
to map DEM onto an equivalent EMA, and even when it is, the mapping is not preserved under
the interchange of the two phases. This is because DEM is inherently unsymmetric between the

two phases.

i. INTRODUCTION

We discuss the effective-medium problem in the con-
text of a two-phase dielectric medium. The emphasis will be
on comparing two widely used but apparently dissimilar the-
ories, the effective-medium approximation and the differen-
tial-effective-medium theory. Recently,'? it has been shown
that both theories are realizable in terms of homogenization
processes. The homogenization is defined by building up the
final material incrementally from some starting material. In
this paper, we discuss the similarities and differences of the
two theories, with emphasis on percolation properties and
bounds. We show in another paper that both theories are
special cases of a wider class of homogenization processes.’

The effective-medium approximation (EMAJ}*® is also
known as the self-consistent approximation, the coherent-
potential approximation (CPA), and Bruggeman’s theory,
among various other names. The idea in EMA is to embed an
isolated inclusion of material 1 in a homogeneous medium
with dielectric constant €. The depolarization field due to the
inclusion in the presence of an external field is calculated.
The depolarization field due to a similar inclusion of materi-
al 2 is also calculated and € is determined by requiring that
the average depolarization field of the two inclusions equal
zero. EMA may also be defined dynamically by requiring the
average forward-scattering amplitudes of the inclusions to
cance! in the low-frequency limit.>'°

It is possible to define a class of realizable microgeome-
tries for which EMA gives the exact solution.! These media
are defined by a specific homogenization process. Basically,
the idea is to start with a medium having permittivity €.
With this as a host, grains of materials 1 and 2 are embedded
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so that they are well separated and occupy a very-small-
volume fraction of the new medium. The relative volume
fractions of the dilute suspension are f; and f;. In the next
step, grains large relative to the previous grains are embed-
ded. The process is repeated such that at each step the new
grain sizes are large relative to the previous ones and the
relative volume fractions f, and f, are always adhered to. A
limiting process is defined such that the ratio of the relative
sizes at each step become infinite, while the number of steps
tend to infinity. The resultant material has effective proper-
ties defined by EMA. A rigorous proof of this identity has
been given by Milton.!' The above process may be thought of
as one of continuous homogenization. At each step we are
replacing an infinitesimal amount of material by the same
amount of materials €, and €,. The new material is then ho-
mogenized and the process is repeated until all of the original
material is replaced. Thus, it is irrelevant what the initial
properties €, are.

Differential-effective-medium theory (DEM)*'*' is
also defined by homogenization. Other names for DEM in-
clude: the self-similar effective-medium approximation, the
granular-effective-medium approximation, and the iterated-
dilute approximation. Beginning with pure matenal 1, an
infinitesimal amount of material 2 is added, such that each
grain of material 2 is a similarly shaped ellipsoid with arbi-
trary orientation. The mixture is then homogenized and the
process repeated until the volume fraction of material 2 in
the composite equals f,. Thus, unlike EMA, the starting
material is not completely replaced.

Both EMA and DEM have been used in estimating the
effective properties of two-phase composites. EMA is gener-
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ally used for symmetric configurations,® while DEM is used
for materials in which one phase always percolates, e.g., wa-
ter in rock with the water always connected.>'?

The question about the accuracy of the various effec-
tive-medium theories has often been raised. This is particu-
larly the case when different EM theories produce differing
predictions about the physical characteristics of a “random
composite.” In the past several years, it has become increas-
ingly clear that while the microstructure i.e., the topological
arrangements and shapes of the grains, is usually not expli-
citly considered in the derivation of EM theories, each EM
theory nevertheless implies a definite type of underlying
structure for the random composite. Therefore, the real
question should be, “How accurate is the EM theory in de-
scribing the physical properties of its implied structure?”
While a complete answer to this question is difficult, in cer-
tain cases we see that an EM theory is associated with an
exactly realizable microgeometry. In these cases, the EM
theories are, of course, exact {for the particular structure).
Yet the same thecry would be in error when considered in
respect to a different microstructure. It would be meaning-
ful, therefore, to turn the question around and ask, “How
accurate is the microstructure in describing the effective me-
dium theory?”

Il. EFFECTIVE-MEDIUM APPROXIMATION

Let €, and €, be the complex dielectric constants of the
two constituents and let f, and f, = | — £, be their respec-
tive volume fractions. Let € be the effective permittivity of
the composite mixture. The two components are distributed
in space with definite distributions of geometrical shapes and
sizes of the particles. In EMA, the size of the particles is not
important, provided that they are small compared with the
wavelength of the probing wave; all we need to specify are
the distributions of shapes. We take the shapes to be ellip-
soids which are randomly oriented in space. In addition, we
assume that each component has only one particular shape,
and that the shape is the same for both materials. In other
words, the shape distribution is a delta function. The ellip-
soids are described by the depolarization coefficients L,,
i =1, 2, and 3 for the 3 major axes of the ellipsoid {see Lan-
dau and Lifshitz'®). The L ’s are all positive and satisfy

Ly+L,+L,=1. (1)

For spheres, L,=L,=L,=1/3 and for circles,
L,=L,=1/2and L, =0. A spheroid has two L ’sequal. As
L—0, the associated major axis becomes infiritely long and
as L—1 the major axis shrinks to zero relative to the other
major axes. A needle corresponds to the limit L,—0, L,—1/
2, Ly = 1/2; a plate or disk corresponds to L,—0, L,—0,
L,—1. The general relationship between the L ’s and the as-
pect ratios of the ellipsoid are given, for example, in Landau
and Lifshitz'® or Mendelson and Cohen.!” The EMA then
predicts €, where ¢ solves the following equation,

( fl(€ — El) fz(e — 62) ) =0 (2)
Aa\1—=L)e+Le, {(1—L)e+Le, ’

which can be rewritten

1891 J. Appl. Phys., Vol. 57, No. 6, 15 March 1985

1 fi S 1
i;Ju—Ly(e+Ag+e+D@)=mm1—Lﬁ
‘ (3)
where
D, =L;/(1—-L,). ‘ (4)

In general, the EMA equation has 6 roots. It is clear
from Eq. (3) that if €, and ¢, are real, then all the roots are
real. There are five negative roots interlaced between the 6
points — €,D; and — €,D;, i = 1,3. The remaining root is
positive and is the EMA root. If we generalize to the case
where the two materials have different shaped grains, then
the depolarization coefficients are different for each material
and this must be included in the EMA equation. However,
the basic properties are unchanged, and there is still only one
positive root. We show in Appendix A that this root always
lies within the Hashin-Shtrikman bounds. However, since
keeping the shapes the same results in a symmetric theory,
and also reduces the algebra, we focus our attention on the
symmetric EMA defined by Eq. (2).

When ¢€,—0, three of the roots coliapse onto zero.
Whether or not the physical root is one of these zerces de-
pends upon f,=¢. There is a critical value of ¢ at ¢, called
the percolation threshold, below which the physical root is
greater than zero. However, when ¢ > ¢, there is no positive
root and so € = 0. For ¢ < ¢, we have € = y¢,, where y is the
positive root of the cubic equation

1— ¢c

1 1—¢
i-———EI,S 1 _Li (Ll +7’(1 _Lt)

and
4. = /L,

*TSVL +21/(1-L)
It may be shown that 2/3<¢.<1, and the minimum is
achieved when L, = L, = L, = 1/3,i.e., when the grains are
spheres. the maximum is achieved if one of the L, —0, which
corresponds to needles. Therefore, there is no percolation
threshold for needle-shaped particles.

The above results simplify when the grain shape re-
duces to a spheroid. Let L, =L, L, =L, ={1 — L)/2, then
we have
_(1+L)1+3L) )

¢ 1+9L
We note that L < 1/3 for prolate spheroids, and L > 1/3 for
oblate spheroids, respectively. The EMA solution fore, =0
is given by € =0 for ¢ = f,>¢. and is € = y¢, for p < .,
where y is the positive root of the quadratic equation

(6)

1 4
+¢f:i€=°- ‘ o

We have plotted ¥{¢ ) in Figs. 1 and 2 for prolate and obiate
spheroids, respectively. We note the range of y for ¢ < 4/9 is
much less for prolate spheroids than for oblate spheroids.
The range of attainable y is bounded above by the union of
the L =1/3 and L =0 curves. Thus, y<1 —(3/2)¢ for
0<¢ <4/9,andy< {4 —9¢ + [(4 — 9 )2 + 20{1 — ¢ )1"/?}/
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1: L =0.01(0.95)
2:  0.05(0.83)
3:  0.10(0.75)
4:  0.15(0.71)
5. 0.25(0.67)
6:  0.33(0.66)

L 5
4
32 4

0 ] I L
0 0.2 0.4 0.6 0.8 1.0

)

FIG. 1. Percolation properties of EMA for prolate spheroids, 0<L<1/3.
The percolation threshold ¢, is given in brackets for each value of L.

10 for 4/9 < ¢ < 1. As L—0, the percolation threshold goes
to unity. However, the maximum percolation threshold for
oblate spheroids is 0.8, which is attained by plates (L = 1),

[k, DIFFERENTIAL-EFFECTIVE-MEDIUM THEORY

The derivation of DEM is based upon the low-concen-
tration expansion of EM A, or of any theory which is correct
to first order in ¢ = f, as ¢—0. We have, from Eq. (2)

€ = €, — gl€,6;)0 + O 2)’ 9)
where
2 ele — &)
gle.ex) = ,_2,3__—__5(1 Li+Le (10)
Thus, at ¢ = 0 we have € = €, and
€= — g(fsfz)’ (l l)

where the prime denotes differentiation with respect to ¢.
We now view Eq. (12) as defining a differential process for all
values of ¢ between 0 and 1. However, it is necessary to
include a volume correction term for ¢ nonzero. We do this
by multiplying the right-hand side of Eq. (11) by a volume
correction factor 1/(1 — ¢ ). We then have the following ini-
tia} value problem for €(¢ ):

=22 H0)=¢, (12)

1: L=0.50(0.68)
2:  0.60(0.70)
3 0.70(0.72)
4 0.80(0.75)
5. 0.90(0.77)
6:  0.95(0.79)

0

0 0.2 0.4 0.6 0.8 1.0
FIG. 2. Percolation properties of EMA for oblate spheroids.
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which integrates to give the implicit solution
o= (922 ez
€ €, — 6/ \e—yE

—_ Rira
x (El 7265) . (13)

€ — 726,
Here y, and y, are the two negative roots of g(y,1) = 0. As-
suming that L,»L,>L,, then one of the roots is between
— D, and — D, and the other between — D, and ~ D,,
where D,, D,, and D, are defined in Eq. {4). The function R (y)
is defined as

-1

d,
RiN=—|[Z gn)] . (14
14
Therefore, R (y,), R (¥,)>0 and we have

R(O)=(232—i)_l. (15)

Thus,0<R (0)<1/3withR (0) = 1/3forspheresand R (0) =
for needles or piates. The following relation can be derived
using residue calculus;

—io(y—L V' (v 1)
Ri+Re) =1 - (Stg) —(25)
(16
Thus,
1>R (1)) + R (r2)>0, (17)

and the lower bound is achieved by spheres, the upper bound
by plates. We also note that ¥, and ¥, satisfy

(1 —4p)(1 —dy3)=9. (18)

This relation is indepenident of the values of L,, L,, and L,,
and implies that ¢, and y; lie on cither side of — 1/2. We
show in Appendix A that the solution to Eq. (13) always
satisfies the Hashin—Shtrikman bounds.

The result in Eq. (13) simplifies considerably if the grain
shape reduces to a spheroid. Then one of R {y,} and R (y,) is
zero. Without loss of generality we take R (y,) = 0. Then

i= —(1+3L)/(5-3L), (19)
and R (y,) follows from Eq. (16). The genera! sofution simpli-

fies in the three limiting cases of spheres, needles, and plates.
For spheres, we have

- 173
1-g=(=2)(2)" (20)
fl - 62 €
while for needles,
1—¢ =(6_‘2)(5€' +‘2)m, 21)
€, — €/ \5¢ +¢€,
and for plates (disks),
1_¢=(6—€2)(€H+2€2)' 22)
€, —€,) \ €+ 2¢,

An explicit expression for € can be obtained only in the case
of plates. From Eq. (22), we find that € = k (€;), where the
function 4 is defined in Eq. (A1). Therefore, it follows from
the results of Appendix A, specifically Eqgs. (Al) and (A2),
that € for plates equals the lower Hashin—Shtrikman bound
if €,> €, and the upper bound otherwise. It is well known
that the Hashin—Shtrikman bounds both correspond to spe-
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cific packed coated-spheres microgeometries.!” Another re-
alization of these bounds is thus possible through DEM with
platelike grains.

We now consider the case when the added phase is insu-
lating. Putting €, = 0, we obtain from Egs. (13), (15), and (16)
the simple result

e=¢(l—¢)", (23)
where
m=t L (24)
3 i=13 1 —L,'

The form of Eq. (23) agrees with Archie’s law o = o, p™ for
the conductivity of porous rock, where o is the conductivity
of the rock, o, the conductivity of the pore fluid, p is the
porosity, and m==2 a constant. From Eq. (24), we see that
m»3/2, with equality for spheres, m—» o for plates, and for
an arbitrary sperhoid

_ 5-3L

T 31-Ly
However, Eq. (23) must be used with caution as m— w0, i.e.,
as the grains become platelike. Equation (23) was derived
after taking the limit €,—0. The further limit 77— co must be
handled carefully. For €, > 0, consider the limit of oblate
spheroidal grains that become platelike. As m— o, we have
L ~1 from Eq. (25), so that from Eq. (19) y,~ — 2. Also,
from Eqgs.(13)and (16)wehaveR (0)~ 1/(4m),R (y,)~1 -5/
(4m), so that

= [

€ €, — €/ \€+2¢,

(25)

Now as we let €,—0 we see two types of solution. The first is
valid for {1 — ¢ )">»¢€,/€, and is

e~e(l—¢)7,
which is the same as Eq. (23). Note thatif ¢ isnotnearOor 1,
the condition (1 — ¢ }"»€,/€, is equivalent to m<ln(e,/€,).
The second type of solution occurs when m»In(€,/¢,), in
which case we get

e~6(3—-24)/¢.
This is just the Hashin—Shtrikman lower bound given by Eq.
(22) with €,/€, <.

The Hashin~Shtrikman upper bound for a conductor-
insulator composite is

e=e21-¢)/2+ 4]l (27)
We claimed above that this is realizable through DEM with
the embedded phase in the shape of disks. Therefore, to
achieve the upper bound we must alter the roles of €, and ¢,.
Again, we must be careful in taking the dual limits e,—0,
m—co. A blind application of the DEM equations with an
insulating matrix would suggest a composite that is always
insulating. However, putting €, > 0, and letting m— o, we
derive in the same manner as Eq. (26) the result

¢~ (2)1/4”:(6 — 6] ) (62 + 261)“ —5/4"!).
€ €, — €,/ \ €+ 2¢,
As €,—0, the solution to this equation equals the Hashin—
Shtrikman upper bound if
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(e2/€,)*" ~1,
or alternatively, if
m>(1/4) in(e,/€,).

This relation tefls us how disklike the conducting grains
must be as €,—0.

The DEM equation (12) can be generalized to include
distributions of shapes'? and shapes which vary with con-
centration. As the latter possibility has not been discussed
previously, we consider it briefly here. For simplicity, as-
sume the inclusion shape to be spheroidal such that
L =L (¢ ). Inaddition, let €, = 0, then the variable-L version
of Eq. (12) becomes

€= —mdle/(1-¢), €0)=¢, (28)
where m = m(¢ ) follows from Eq. (25) with L as a function of
¢. Equation (28} gives the Archies-law result of Eq. (23) when
m is constant. Simple examples of m(¢ ) are presented in Ta-
ble I. We note that €(¢ ) behaves as (1 — ¢ )" Vasp—1if mis
bounded at ¢ = 1. A finite percolation threshold resuits
from an infinity of m(¢ ) for ¢ < 1. This happens because L—1
as m— o, which means the insulator becomes platelike, and
hence the effective conductivity goes to zero. The fourth ex-
ample of Table I gives the Hashin—Shtrikman upper bound
for a conductor-insulator composite. However, the m is un-
physical, since it is less than 3/2.

IV. INTERPRETATION OF DEM IN TERMS OF EMA

Consider the percolation problem for ¢, = 0.We saw
that EMA has a finite percolation threshold for fixed grain
shape, while DEM always has a zero percolation threshoid.
However, it is possible to avoid the percolation threshold in
EMA by allowing the grain shape to vary as a function of ¢.
In this section, we consider EMA for spheroids where the
depolarization L is allowed to vary with volume fraction. In
particular, we consider the set of L (¢ ) which map EMA onto
the DEM solution of Eq. (23) for fixed m. The object of the
exercise is to compare one realizable effective-medium the-
ory with another. The associated microgeometry of DEM is
characterized by a “backbone” of material, in our case mate-
rial 1, the conductor. The EMA microgeometry consists of
similarly shaped grains of either material. There is no back-
bone in EMA; the geometry is symmetric in both phases.
Therefore, we are mapping an asymmetric theory (DEM)
onto a symmetric theory (EMA).

We begin by choosing a fixed m which defines €(¢)
through the DEM solution € = ye¢,, where y = (1 — ¢ )™

TABLE 1. Four examples of variable 7 and the corresponding DEM solu-
tions for €, = 0 and ¢ = f;.

mig)
my/(l —¢)

my + {m; — mo)é

Vmg'+imy'—mg ']
3

€l¢ /e,

expl — mgp /(1 - 4]

(1 — @)™ expl(m, —mo)é |

E ml—¢) }"“
mog + my(1 —¢)]

A:79)

2+

-
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Thespheroidal L (¢ ) of EMA is then found by substituting for
y in Eq. (8). The equation for L is then

1—¢)l(1—¢)"—1] ((1_L)(11—¢)"‘+L

4 ) 5—3L

+ ¢
(1+L)l—@)"+(1~L) 1—-L%
Equation (29) is a quartic in L. However, we can make some

general conclusions about its solution. First, by expanding
Eq. (29) about ¢ = 0 we obtain

1+ [(2m — 3)(2m — 1/3)]/?
2m '
The permissible range of m is m »3/2, which means that L (0)

increases monotonically from 1/3 to 1 as m increases from
3/2 t0 =. Similarly, as ¢— 1, Eq. (29) yields

L~(1—¢)/5 ¢l

Thus, the EMA grains are oblate for small values of ¢ but
become prolate as ¢—1. The latter result is obvious from
Figs. 1 and 2, since oblate grains have a maximum percola-
tion threshold at 0.8, while prolate grains can have percola-
tion at unity (needles). Thus, for ¢ > 0.8 the grains must be
prolate and L (¢ )<L (¢), where L_{¢) is the value of L
which gives a percolation threshold at 4. It follows from Eq.
(7) as

L. = (98 —4)— [(9¢ — 48" — 12(1 — ¢ )}'/2}/6, (31)

andasg—1, L. = (1 —¢)/540[(1 — ¢ ).

We have analyzed the solution to Eq. (29) for ¢ almost
zero and almost unity. For arbitrary ¢ and m»3/2, there
does not always exist a solution, see Figs. 1-3. This happens
if the curve y = {1 — ¢ )™ goes above the maximum possible
y of EMA, which was discussed in Sec. II. There is thus a
minimum value of m below which Eq. (29) does not have a
solution for all ¢. We note that for m = log{3)/log(9/5), the
DEM curve intersects and crosses the L = 0 EMA curve at
¢ = 4/9. Therefore, the minimum m is greater than [.87.
Numerical computation shows the minimum value of m to
be 1.89957... . We have plotted L (¢ ) in Fig. 4 for several val-
ues of m greater than the minimum. The striking feature of
each L (¢ ) is that it suffers a jump from oblate to prolate at
some value of ¢ which increases with m. The strength of the

=0.(29)

Lig=0= (30)

m=2.5

Y 1.5

0 ! L 1
0 0.2 0.4 0.6 0.8 1.0

¢
FIG. 3. DEM solution for conductor-insulator composite, €, = 0, € = y¢,,
for 3 values of m from Eq. (25).
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FIG. 4. The DEM solution and the corresponding L of EMA for the con-
ductor-insulator composite, y = €/€,.

discontinuity or jump also increases with m. An understand-
ing of the discontinuity follows from Figs. 1-4. Consider for
example the m = 2.5 curve in Fig. 3. As ¢ increases from
zero, this curve first stays close to the L =0.8 curve of Fig. 2.
However, a critical point is reached when the DEM curve
intersects the uppermost curve of Fig. 2 at ¢=0.6. At this
point, there is no oblate EMA curve with which the DEM
curve can intersect, and so it must *jump” to a prolate EMA
curve. Mathematically, the oblate and prolate EMA define
two different branches which intersect along the L = 1/3
curve. The point at which L “flips” from oblate to prolate in
Fig. 4 is the point at which the DEM curve intersects the
congruence of oblate EMA curves. The congruence is found
by solving simultaneously Eq. (8) and its derivative with re-
spect to L:

i 4
(1_””_1)2([(1—an+le— [(1+L)y+(1—L)]2)

B-L)3L—1) _
+¢ [I_Lz]z 0'
(32)

One solution to these equations is L = 1/3, y = (2 — 3¢ )/2
for $<2/3. However, at ¢ =x0.45, another solution becomes
possible. This is the required oblate congruence, shown in
Fig. 5. It bifurcates from the EMA sphere solution and con-
tinues until ¢ = 0.8, with L increasing from 1/3 to 1 alongit.
The “flipping™ points in Fig. 4 are given by the intersection
of the oblate congruence with the DEM curves, see Fig. 5.
We have plotted the flipping point as a function of m in Fig.
6. We note that it asymptotes at ¢ = 0.8 as m— 0.

The above analysis indicates that the mapping of DEM
onto EMA involves a rather pathological microgeometry in
the latter. Now both EMA and DEM are realizable theories.
They are each defined by an incremental dilute-concentra-
tion approach. This corresponds physically to a hierarchy of
length scales in the composite, such that consecutive length
scales are of different orders of magnitude. The major differ-
ence between EMA and DEM in this picture is that EMA is
symmetric and DEM is not. En DEM, the conductor (materi-
al 1) is a backbone which always percofates. On the other
hand, the percotation properties of EMA depend in a subtle
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0 0.2 0.4 0.6 0.8 1.0

¢

FIG. 5. The congruence of EMA curves (heavy line} and several DEM solu-
tions. The discontinuity in L (¢ ) occurs where the DEM curve intersects the
congruence.

way upon the grain shape. The percolation threshold can be
made arbitrarily close to zero by letting the grains be suffi-
ciently needlelike. However, since in our present analysis
both phases have the same shape, it is not intuitively obvious
what effect the insulator grains have as the conductor grains
become needlelike. The uncertainties over the shape of the
nondominating phase are most critical at the flipping point
when a sudden change from oblateness to prolateness in
EMA corresponds to a continuous change in material prop-
erties as a function of volume fraction.

V. EFFECT OF INTERCHANGING THE PHASES

We now reverse the roles of the conductor and insula-
tor, i.e., put €, = 0. The DEM solution then has the insulator
as the backbone, or €0) = 0 in Eq. (12). The resuit is there-
fore € =0 for ¢ < 1. Is the same result obtained when we
exchange the phases in EMA with the L (¢ ) that gave us
DEM? The answer is no, because the EMA solution can be
zero only if <1 — ¢.(¢ ), where ¢, is defined in Eq. (7). But
we saw that ¢, >2/3, and so the EMA must give a nonzero
result for 1 —¢_(¢) <@<1. The solution in this range is
€ = y€,, where ¥ solves

1 4
é —1( n )
A TRy iy TRy T gy
5—-3L
i— =0, 33
+(1-9) 22 (33)
5.0
4.2 -
3.4
m
2.6
1.8
1.0 1 | | |
0 0.2 0.4 0.6 0.8 1.0
®

FIG. 6. The “flipping” point at which the EMA grains jump from oblate to
prolate.
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FIG. 7. The original DEM solution and the EMA solution when the roles of
conductor and insulator are reversed.

with L (¢ ) given by Eq. (29). We have plotted the EMA solu-
tion in Fig. 7 along with the solution for €, = 0. We note the
discontinuity in € for the phase-exchanged solution.

It is not surprising that EMA does not reproduce DEM
when the phases are interchanged. The DEM microgeo-
metry is inherently unsymmetric while that of EMA is sym-
metric. If we had mapped EMA onto a symmetric theory,
then the mappng would be conserved under the interchange
of phases. For example, suppose that instead of DEM we had
EMA with the grain shapes given by a distribution which is
symmetric in the phases. We then proceed to find the equiva-
lent EMA defined by L (¢ ), as we did for DEM. This mapping
is automatically conserved when we interchange the phases,
no matter what values €, and €, may have. Thus, we must be
careful in comparing different effective-medium theories
when one of the associated microgeometries is unsymmetric.

APPENDIX A: BOUNDS

In general, it is possible to bound € within some region
of complex space. These bounds have been discussed in de-
tail by Bergman,'” and may be improved upon if some statis-
tical information is available. We consider the special case in
which both ¢, and ¢, are real. Then € is also real and must lie
between the Hashin—Shtrikman bounds, !’

e_=hle,)<e<e =h(ey), (A1)
where €,, and €,, are the lesser and greater, respectively, of
€, and €,. The function A (x) is

2x€ + €€,

h (x) = p—)
2x + €,65 V/e)

(A2)
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where the overbar denotes the volume-weighted average,
e.g., € =/fi€, + fo€;,. We note that the Hashin-Shtrikman
bounds are equivalent to the Maxwell-Garnett approxima-
tion.

One may argue physically that since EMA and DEM
both correspond to realizable isotropic composites, they
must satisfy the Hashin—Shtrikman bounds. Here we present
a mathematical proof. This provides a check on the realiza-
bility of the theories. We first show that the e of EMA always
lies within the Hashin-Shtrikman bounds. The proof for
spheres is straightforward since in this case Eq. (2) is equiva-
lent to the equation

€= hle) (A3)
Now, for x >0 we have 4 '(x) > 0 and 4 "(x) < 0. This implies
that Eq. (A3) has only one positive root and it lies between € _
and €. When the grains are not spheres, we assume without
loss of generality that €, > €, and we let f, = ¢. Consider any
value of € between €, and ¢,, say e==f3. Then the upper bound
€, isequal toSat¢ = ¢, where

36,(8 —€,)
1— — . A
& (26, + B e, — &) (A4)

We consider the more general version of the EMA equation
than Eq. (2) where the two components have different
shapes. We have

.fl(e - €|) fz(f - 62) =0 (AS)
(1= LWe+ LY,  (1— L%+ L%,
where L7, j = 1,2 are the depolarization coefficients of ma-
terial j. The EMA € of Eq. (A5} equals 8 at ¢ = ¢ where

¢E — €2S1(B/€1)(€1 _ﬁ) , (A6)
€S B/e e, —B)+ €S B/eNB —¢€)
where
1 ,

S,'(x)=i=§;,’3 Ty Tk j=lor2. (A7)
We have

b, —p = (1 — B —e€)e,M ’ (A8B)

(€1 — €)(26, + BIS (B /€))

where

M = (1 + 2¢,/€,)S,( B/€;) — 35,( B /€)). (A9)

We now show that M>0. First we note that S,(x}, considered
as a function of L,, L,, and L, subject to the condition
L+ L,+ Ly,=1, is minimized by Ly=L,=L,=1/3.
Also, S, is maximized by putting one L equal to unity and the
other two to zero. Thus,

1996 J. Appl. Phys., Vol. 57, No. 6, 15 March 1985

Downloaded 21 Apr 2003 to 128.112.139.194. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp

9(1 + 2¢,/€,)
1+28/e,
with equality when the grains are spheres. The function N { £)
is zero at B=¢€, and B = ¢, and is positive in-between.
Therefore, M >0, and so by Eq. (A8) we have that ¢, >¢.
This proves that the EMA ¢ is bounded above by €, . Simi-

larly, it can be shown that ¢_ is a lower bound.

We will now show that the DEM e lies within the Ha-
shin-Shtrikman bounds. Again let €, > €, and ¢ = f;. Define
&, as the value of ¢ at which the DEM ¢ equals 8. Thus, ¢,
follows from Eq. (13). We note that ¢, of Eq. (A4) can be
rewritten in the form

—3(1 + 26,/B)=N(B), (A10)

M>

4 _ (e + 2¢)) de

1l —-¢, =exp A ————-(6 e+ 26) . {All)
Therefore,

1—¢p ' Gle)de

1—¢, exPj: gle€)e + 2€,) A1)
where

_ 1 __€ete) ) _
c=5( 3 T o) et a1

Now, G (€,) = 0 and G /3¢ > 0, s0 G (€)>0. Also, gle,€,)>0.
Therefore, the integrand of Eq. (A13) is positive which im-
plies that ¢, >¢,. This proves that the DEM ¢ is less than
the Hashin-Shtrikman upper bound. Similarly, it can be
shown that € is greater than the lower bound. We note that
the above proof has not used the fact that L, + L, + L, =1,
but only that L, >0, i = 1,3.

'G. W. Milton, in Physics and Chemistry of Porous Media, edited by D, L.
Johnson and P. N. Sen, AIP Conf. Proc. 107, 66 (1984).

?P. N. Sen, C. Scala, and M. H. Cohen, Geophysics 46, 781 (1981).

3A. N. Norris (unpublished).

“R. Landauer, J. Appl. Phys. 23, 779 (1952).

*D. A. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).

SM. Hori and F. Yonezawa, J. Phys. C. 10, 229 (1977).

F. Yonezawa and M. H. Cohen, J. Appl. Phys. 54, 2895 (1983).

®W. E. Kohler and G. C. Papanicolaou, in Multiple Scattering and Waves in
Random Media (North-Holland, New York, 1981}, pp 199-224.

%J. G. Berryman, J. Acoust. Soc. Am. 68, 1809,1820 (1980).

'9). E. Gubernatis and J. A. Krumhansl, J. Appl. Phys. 46, 1875 (1975).

"G, W, Milton (unpublished).

12K. S. Mendelson and M. H. Cohen, Geophysics 47, 257 (1982).

"3P. Sheng and A. J. Callegari, Appl. Phys. Lett 44, 738 (1984).

P, Sheng and A. J. Callegari, in Physics and Chemistry of Porous Media,
edited by D. L. Johnson and P. N. Sen, AIP Conf. Proc. 107, 144 (1984).

3R, McGlaughlin, Int. J. Eng. Sci. 15, 237 (1977).

'5L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media
(Pergamon, Oxford, 1960), p. 26.

'"D. J. Bergman, Ann. Phys. 138, 115 (1982).

Norris, Sheng, and Callegari 1996



