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The time harmonic Green function for a point load in an unbounded fluid-saturated porous solid 
is derived in the context of Biot's theory. The solution contains the two compressional waves and 
one transverse wave that are predicted by the theory and have been observed in experiments. At 
low frequency, the slow compressional wave is diffusive and only the fast compressional and 
transverse waves radiate energy. At high frequency, the slow wave radiates, but with a decay 
radius which is on the order of em in rocks. The general problem of scattering by an obstacle is 
considered. The point load solution may be used to obtain scattered fields in terms of the fields on 
the obstacle. Explicit expressions are presented for the scattering amplitudes of the three waves. 
Simple reciprocity relations between the scattering amplitudes for plane-wave incidence are also 
given. These hold under the interchange of incident and observation directions and are 
completely general results. Finally, the point source solution is Fourier transformed to get the 
solution for a load which is a delta function in time as well as space. We obtain a dosed form 
expression when there is no damping. The three waves radiate from the source as distinct delta 
function pulses. With damping present, asymptotic approximations show the slow wave to be 
purely diffusive. The fast and transverse waves propagate as pulses. The pulses are Gaussian- 
shaped, which broaden with increasing time or radial distance. 
PACS numbers: 43.20.Fn, 43.20.Rz, 43.20.Bi 

INTRODUCTIO N 

We consider the problem of wave propagation in fluid- 
saturated porous media in the context of the Blot •-3 theory. 
This theory has recently been firmly established by the ex- 
perimental observation of the Biot slow wave. 4 The slow 
wave is a consequence of the fluid-solid coupling in the Blot 
equations. The theory also predicts a fast compressional 
wave and a shear wave. These are the analogs of the longitu- 
dinal and transverse waves of elasticity. A theoretical justifi- 
cation for Biot's equations has been provided by Burridge 
and Keller? 

In this paper, we consider the general topics of radiation 
and scattering in a porous medium. The fundamental radi- 
ation problem involves an applied time harmonic point load. 
The solution, which is the Green function for the dynamic 
Biot equations, is obtained in Sec. II in terms of three poten- 
tials, one for each kind of wave. This Green function reduces 
to the well-known elastic point load solution in the limit of 
zero porosity. Our solution has the form of three radiating 
waves. However, the attenuation of each wave depends very 
much on the frequency of the applied load. The attenuation 
enters through the inclusion of a damping term in the origi- 
nal equations proportional to the difference of solid and fluid 
velocities. Biot •'2 and Geertsma and Smit, 6 among others, 
have discussed the frequency dependence of the wave speeds 
and attenuation. In Sec. III, we examine the behavior of the 
point load solution as a function of a•, in particular for low 
and high frequencies relative to a critical frequency co½. Typi- 

a•Current address: Department of Mechanics and Materials Science, 
Rutgers University, P.O. Box 909, Piscataway, NJ 08854. 

tally, coc = 0 (106 cps) in rocks, so that the low-frequency 
results are applicable to geophysical problems. The slow 
wave is then diffusive. The high-frequency results are appli- 
cable to ultrasonic experiments, 4 in which case the slow 
wave is propagatory. 

The point load solution is then (in Sec. IV) used to derive 
representation integrals for the radiation from an arbitrary 
distribution of body forces and surface traetious. The gen- 
eral problem of scattering in a porous solid is considered in 
Sec. V. Our main result is a reciprocity relationship for scat- 
tering amplitudes from an arbitrary obstacle or inhomogene- 
ity. Finally, in Sec. VI, we Fourier transform our Green 
function to obtain the solution for an applied load which is a 
delta function in time as well as space. This solution has been 
derived by Burridge and Vargas 7 using Laplace transforms. 
However, our method is less cumbersome than that in Ref. 7. 

We also present a new result for the case of zero damping. 
The solution can then be expressed in closed form. 

we begin by introducing the Biot equations and the 
three wave solutions. 

I. BASIC EQUATIONS 

We will use the original notation of Biot •'2 as much as 
possible. We have the stress-strain relations 

• ---- (P -- 2N)V. uI -•- N [Vu -F (Vu) r ] -•- QV. UI, (1) 
s = QV . u + RV. U, (2) 

and the equations of motion 

dau c•2U = V. (r + b •tt (U -- u), (3) P]i c• + Pi2 c•t---•- 
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(u u). (4) Pno9•+P2z v•--• -----vs--b -- 
Here the vectors u(x,t } and U{x,t } are the solid and fluid dis- 
pla•ments, r•tively; • is the solid stress tensor; s is a 
•ar pro•ional to the fluid pr•sure; and I is the second- 
order identity tensor. The shear modulus Nis the same as the 
sh•r m•ulus of the d• frame. In addition, there are rela- 
tions •tw•n the Biot d•6e eons•ts P, Q, •, N; the bulk 
m•uli • •d •/of the solid •d fluid; •d a new constant 
•, the "jacketS" bu• m•ulus. •m We have 

1/• = [(1 - • )R -- •Q ]/(•R - Q:), (5) 

1/gf = [&g- (1 - • )Q ]/(•R - Qz), (6) 
1/• = R/(•R - Q •), (7) 

where 

(8) 

•d • is the •rosity or volume fraction of the fluid phase. 
•e equations are easily inve•ed to give P, Q, and R in 
te•s elfin, ff•, •, N, and 

The densities p0 in •s. {3) and {4) represent the ine•ia 
of the two ph•es. •ey are related to the fluid and solid 
densiti• p/and p• by • 

p,, +p,: = (1 -- (9) 

The coupling mass p•, < 0 is sometimes written as 

where the to•uosity T> 1 depends upon the pore geometu. 
•e p•eter b • •s. (3) •d (4) repr•enB the r•is- 

rive •mp•g due to relative motion •tw•n the fluid and 
•d. It in•rat• viscous dissipation into the •uations 
of motion •d therefore is a major source of attenuation in 
wav•. It is •mmon • the •terature to use bF (w) •stmd ofb 
• (3) •d (4). •e fr•uency-de•ndent function F(m) w• 
intr•u• by Bier: to a•unt for the dissipation when the 
•re s•e is of the order of the vis•us s•n depth or smiler. 
However, the fern ofF(o) is o•n to quition, sin• in gen- 
er• it is a •mplicat• vis•ynamic o•rator. At low fre- 
quenci•, such that 

• < •/a •, (12) 

where • is the kinematic viscosity and a is a typical pore 
dimension, we have • F(w)• 1. With a = 1• •m, which is 
typical of rocks, the right-hand side of (12) is 10 • cps for 
water-filled rocks. We will therefore take F(o)•1 in this 
paper. We note that our b is the same 
tim• the b in Ref. 7. 

We now consider time hamonic motion with re• radi- 

al frequency w. Omitting the tern e - • from all quantities, 
the equations of motion become 

+ v.. = 0. 
•:½,2u +•22U) + Vs = 0, (14) 

where 

•, =•m, +{-- i)m+"i(b/•) ß 

•US we note that the dissipation only appears in the equa- 
tions through the ine•ial terns. 

We conclude Sec. I by describing the three kinds of 
traveling wave solutions to the coupled systems (13), (141, 
and (2). The following is basically a summary of the results of 
Biot in his original paper.• The reader is referred to that 
paper for a full description. We shall call the two dilatational 
waves the fast (F) and the slow (S) waves, and the equivolu- 
minal wave we call the transverse (T) wave. A plane wave of 
type a, a = F, S, or T can be expressed as 

(u,U) = (m,4,,m)exp(ik`'n. x), Inl = 1, (16) 
where 

m]]n ifa=For S, m.tn ifa=T, 

the quantity`4`' is the ratio of fluid to solid displacement for 
each wave type, and k`' is the corresponding wavenumber. 
The phase speed is 

v,, = w/k,,, a = F,S,T. (17} 

Expressions for`4`' and v`' are given in Appendix A. 
In general, when there is viscous dissipation {b • 0), the 

quantities ,4`' and v`' are complex valued functions of fre- 
quency. The slow wave is strongly attenuated, particularly at 
low frequency, where it behaves as a diffusion process. We 
will discuss the frequency dependence of these quantities in 
greater detail in Sec. III. 

The Biot equations are valid insofar as the wavelengths 
of the propagating waves are much larger than the pore size. 
Otherwise scattering effects become important and a differ- 
ent theory is necessary. The long wavelength criterion is 

co<v/a, (18) 

where v is the wave speed and a the pore size. Typically, 
o = 10 • cm/s and a = 100/•m, for which the right-hand side 
of{18) is 10 7 cps. Thus the inequality (18) is always satisfied. 

II. THE POINT LOAD SOLUTION 

Let a point force of unit magnitude act at the vector 
position x' in the direction d in the solid phase. The resulting 
displacement fields u and U may be represented by two sec- 
ond-order tensors ua(x;x ') and U ø (x;x') as 

u,(x)- o ., -- u,•(x,x )dj, (19) 

= U i• (x,x)di, (20) 

or in vector notation 

u=u•'d, (21) 

U = U •. d. (22) 

[Note: Do not confuse the semicolon subscripts in (19) and 
(20) with covariant differentiation.] The equations for u a and 
U a are, in vector notation, 

co2(O•ua +•,2U a) + PVV. u a 

+ QVV. U • + NV A V A u • = -- I6(x -- x'), (23) 

co2(•12UG "• •22 UG ) -• QVV' u a + RVV. U a = 0, (24) 
where 6 is the Dirac delta function. The solution to Eqs. (23) 
and (24) is uniquely specified once we impose a radiation 
condition at infinity and a regularity condition at the origin. 
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The former requires that the fields u G and U G be composed of 
outgoing waves far from the origin. The regularity condition 
requires that the behavior of u • and U • near the origin 
should be less singular than that of the applied load there. 
The formulation of the problem is now complete. 

The related problem of determining the time-dependent 
Green function has been considered by Burridge and Var- 
gas. 7 We note that Eqs. (23• and (24) are exactly equivalent to 
the Fourier transform of Eq. (1.1.1) in Ref. 7, with the addi- 
tional substitution F--• -- I in (24). Thus the time-dependent 
Green function may be obtained from u a and U a by taking 
the inverse Fourier transform. In Ref. 7, the authors also 
obtain a solution in terms of an inverse transform, in their 
case the Laplace transform. However, the kernel of their 
inverse transform is not given explicitly in terms of simple 
functions [see Eq. (2.3.7) of Ref. 7]. We will show that it is 
possible to express u G and U a, and thus the kernel of the 
inverse Laplace transform in Ref. 7 in relatively simple 
forms. The time-dependent problem is discussed in Sec. VI. 

We start by representing the solution in terms of three 
scalar potential functions •b,,, a = F, S, and T as follows: 

u • = vv•r + was + (v%I - vvCr), (25) 

u ø = ArVVCr + AsW;•s + A r(V:½TI -- VV½•). 
(26) 

We also note the identity 

-- S {x)I = VV{ 1/4rrr) + {V2I -- VV)(1/4;rr), (27) 
where r = lxl, and without loss of generality, we have taken 
x' = 0. Substituting from Eqs. (25)-(27) into Eqs. (23) and 
(24), we obtain 

+ ( v•I -- •){•,, 
+ • - (]/•r)} = 0, (28) 

•{ [•,: + •:•)• + {Q + •)v:•] 
+ [•:•,: +k•)• + (O+•s)V%] } = 0. (29) 

Three equations for •r, •s, and •r are obtained if we put the 
te•s in curly bra• to zero separately. We also note that 
the solutions must be spherically symmetric. Thus for 
a = F, S, or T, we have 

v• = (•)•/r, {30) 
where the p•mes denote differentiation with respect to r. 
Our thr• •uations •e 

[•:•,, +•,•){•)+ {? + 

[•:•,, +•,•)(•)+ {v + •){•)' ] (3]) 

[•,• +k•)(•) + (• + 
+ [•,• +k•,){•) 

+ {• + •)(•)• ] = 0, (32) 
•,: +•:•)(•) + s{•)' = •/•. (33) 
Consider •. (33) first. It is an inhomogeneous equation in a 
single un•own. The solution can • writte n as the sum of 

the particular solution of the inhomogeneous equation, plus 
the general solution to the homogeneous equation. The latter 
must satisfy the radiation condition at infinity. Thus we 
have, from Eqs. (33), (17), (A1), and {A2) 

•br = BrGr(r} + l/Nk •4zrr, (34). 
where 

G•,(r) = eika•/4zrr, a = F,S,T. (35) 
The first term on the right-hand side of Eq. (34) is the general 
solution with Br a constant still to be determined, and the 
second term is the particular solution. The constant Br is 
found from the regularity condition at the origin. Referring 
to Eqs. (25), (26), (34), and (35), we observe that the term 
(V2I -- •rV)•br is less singular than a delta function, if and 
only if, 

Br = -- 1/Nk •. (36) 
Therefore, ;br is bounded at the origin and is given by 

;br = (1/Nk •.)[ 1/4rrr -- Gr(r) ]. (37) 
We now consider the two coupled inhomogeneous equations 
(31) and (32). Again, the solution •bv and •bs can be written as 
the sums of particular plus general solutions. We find, after a 
little algebra and with reference to Appendix A, that 

•br = BrGr(r) + (1/Nk •.4•rr)[ (As -- Ar)/(As.-- Ar) ], (38) 
•bs = BsGs(r) + (1/Nk :r4rrr) [(At -- Ar)/(Ar -- As}]. t39) 
The second terms on the right-hand sides of(38) and (39) are 
the particular solutions and the first terms the general solu- 
tions. The constants Br and Bs are determined by the regu- 
larity condition. This amounts to requiring that ;br and 
be bounded at the origin, and hence 

Br = (-- 1/Nk•)[(A s --Ar)/(A s --At) ], (40) 
'Bs = (-- 1/Nk •)[(Ar --Ar)/(A • --As) ]. (41) 

The Green tensor u • now follows from Eqs. (25), (34), and 
(38)-(41) and the result 

V2•br = (1/N)Gr(r) 
as 

u a = (1/Nk •){k •-GT(r)I + VV [ Gr(r) 
-- DvGr(r) -- DsGs(r) ] }, 

where we have defined D r and D s as 

Dr • (As -- AT)/(As --At), 

(42) 

(43) 

(44) 

and for future reference we define D r as 

Dr =Dr + Ds = 1. (45) 

The Green tensor u ø now follows from Eqs. (26) and (43) as 
u ø = (]/mk •){k • • •O•(r)g + VV [• 

-- JvDfGr(r) -- AsDsGs(r) ] }. (46) 
•en the •int of application of the load is not at the 

ofi•, then x'• 0 and the Green tenson •e • a•ve, but 
with I x - x' I substitut• for r. We define the Green str• 
tenon a•(x;x') •d s•(x,x') t•ough •s. (1) •d (2). It is 
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evident from Eqs. (43) and (46) that u ø and U ø possess the 
symmetries 

= u,:k(x ;x), (47) uk:,(x;x ) ui;•(x;x ) = 
G • G • G • 

v,;•(,• ;,,). (48) U•;i(x;x ) = U•;• (x;x) = 

These are reciprocity relations satisfied by the Green dis- 
placement tensors. The stress tensors satisfy 

a•k(x;x') = - •r•k(x';x), (49) 
G , G • 

s;k(x;x ) = - s;•(x ;x). (50) 
The displacement and stress tensors discussed thus far 

have been for a point lead applied in the solid part of the 
porous medium. The solution for a lead which is applied in 
the fluid follows from Eqs. (23) and (24) by removing the 
delta function in (23) and putting it in (24). Omitting the 
analysis, the result is 

u• (x) = vy• (x;x'); (51) 
the fluid displacement is given by the right-hand side of (46) 

2 F, S, and T. These results may with.4,, replaced by,4 a, a = 
also be derived quite simply using the representation integral 
(87) derived below, with F• = •j•(x - x'),f = 0, and letting 
l•be all of space. In general, any distribution of loads can be 
handled by Eq. (87) using the fundamental solutions u • and 
U •. 

III. ASYMPTOTIC APPROXIMATIONS 

In Sec. III, we consider our results of Sec. II in certain 

physical limits. We shall look at the limits of large observa- 
tion distance, low and high frequency, low porosity, and stiff' 
frame. We are specifically interested in the behavior of the 
wave speeds, attenuations, and the quantities ,4a, a = F, & 
and T. Some of our results have appeared in the literature 
previously. For example, Bier 1'2 and Geertsma and Smit 6 
discuss the frequency dependence in detail. The stiff frame 
limit is discussed by Johnson and Plona. n 

A. Farfield approximation 

The farfield of the point source is defined by 

Ik• rl•.l, a =F,$,T, (52) 
where, without loss of generality, we have taken the source at 
the origin. Thus in the farfield we have for a = F, & or T, 

VGa(r) = ikaeG•(r)[1 + O(1/Ik • rl)], . (53) 
where • is the unit vector in the direction of the observer at x. 

Using (53) in Eqs. (43) and (46), we obtain 

u,;• •(1/N){ (8,, -- •, •,)ar(r ) + •, •, 

XDrGF(r ) + (ks/kr)2DsGs(r) ] }, (54) 

U a m(1/N){(• - •, •4rGr(r ) + • ?k [(kr/kr) 2 i;k 

•e fa•eld stress tensors then follow from •s. {1} and (2) as 

a•;• •s.r i D•B q;,(r)G•(r), (56) 

where 

and 

(57) 

(58) 

B• = ({ [(P + Q.4=)/N ] - 2}• + 2•, ?/)•, 
a = F•. (59) 

The asymptotic form of u 6 and U 6 clearly shows that 
three distinct waves radiate from the point source: two dila- 
rational (FeV) and one equivoluminal (T). The various param- 
eters k•,.4,•, D,•, and B •;• are all frequency-dependent com- 
plex numbers. The attenuation of the wave of type a, a = F, 
S, or T depends upon the magnitude of Im(k• ), which in turn 
is a function of frequency.l'• Therefore, the relative magni- 
tude of each wave depends critically on the frequency of the 
source. 

We note that when the source is not at the origin (x'• 0) 
but [x'l•r, then Eqs. (54}-(57) are correct if we make the 
substitution 

Ga (r)--*G• (r)exp{ -- ik• •. x'). (60) 

B. Low-frequency approximation 

Following Biot, 1 we define a characteristic frequency 
tO c aS 

co½ = b/p2 = b/&pf. {61} 
We note that our co½ is 2rrf½, where f½ is the characteristic 
frequency in Ref. 1. Sometimes b is written as 

b = • :(i.z/k ), (62) 
where/• is the fluid viscosity and k the intrinsic pem•bility 
of the rock. The values of b encountered in rocks are of the 

order of 1• •cm 
is of the order of 10 • cps in rocks and s•d. •e ratio •/• is 
ve• small; we can use this fact to approximate. our r•ults. 

A straightfomard expansion of the expressions in Ap- 
pendix A yields the following: 

For the transverse wave: 

V•o • + O(•) , 
Vro = (N/p) '/•, (63) 

• r = 1 + i(•/•) + 0 (02). 
For the fast compressional wave: 

[ ] ks= • 1+ +O(oa) , 
UFO 

Vso = 

• = 1 + i(w/w•)Z + O (•), (64) 

z = • - (• + •)/•V}o, 

• = • + •(•/•)•/•)(• - z )• + o (•). 
For the slow compressional wave: 
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k, =e "•/'* wrOc (p;f Q2) 'a+ O(co3/:•), 
= - (P + 12)/(R + Q) + o (6s) 

= - - Z + 0 
The •ymptotic behavior of the wavenumbers k•, 

a = F, S, and T shows that the F and T waves have attenu- 
ation propo•ion• to w•. The S wave has much greater at- 
tenuation, which g•s • (ww,) •/•. The fo• ofks in •. (65) 
shows that the S wave is essentially a diffusion process at low 
frequency. • 

Looking now at the displacement ratios A,, a = F, S, 
•d T, we obse•e that the solid and fluid displacements are 
in phase and of a•ost equal magnitude for F and T waves. 
•e slow wave, in contrast, propagates with solid and fluid 
displacements out of phase and unequal in mag•tude. This 
relative motion gencrat• much viscous dissipation and ac- 
counts for the high attenuation of the slow wave. 

The Green tensors u • and U • at low frequency thus 
split up into two propagating but attenuated wav•, and a 
diffusive wave. The propagating F and T waves are like lon- 
gitudin• and sh•r wav• in a homogeneous viscoelastic sol- 
id, with density p and frequency-dependent complex Lam• 
constants 2 e and • even by 

= [ - 
(66) 

+ = H [ 1 - i(o/co,)odp)z 

C. High-frequency approximation 

In certain circumstances th e frequency ratio (colwc) can 
be large. Referring to F-xlS. (61) and (62) we see that this could 
occur if, for example, the fluid viscosity is small or the per- 
meability large. The former is the case for superfluid 4He in 
the pores, the so called "superleak."•2 Large permeability is 
obtained in experimental situations in which the fluid can 
percolate easily, for example, glass beads immersed in fluid. 
Also, experiments are usually performed at ultrasonic fre- 
quencies, which are much higher than those encountered in 
geophysical applications. 

Blot 2 has shown that at high frequencies it is necessary 
to include a viscous boundary layer effect. This is reflected in 
the equations through a frequency-dependent function F(co) 
that multiplies b (see Sec. I). The relevant parameter inF(co)is 

Ko = a,J-•-•, (67) 
where a is a typical pore dimension and v is the kinematic 
viscosity, v = lu/pf. For large %, F(co) goes as Ko ei'•/4. From 
Eqs. (61) and (62), we have co/coo = •bco•c/v. Normally one 
has •c proportional to a 2, so that co/coo } 1 implies go} 1, and 
vice versa. Therefore, one would normally need to consider 
F(co) explicitly in the high-frequency range. However, in the 
following we will assume F = 1. This may be reconciled with 
the previous statements by assuming the dominant pores to 
be slitlike. For such pores the relevant pore dimension a is 
the thickness, but the permeability will be proportional to el, 
where the length l is much greater than a. In this way it is 
possible to envisage cases where co/co½ •, 1 but % can be small. 
We also avoid the necessity of introducing an explicit F(co), 

which requires making specific assumptions about the pore 
microgeometry. Finally, we note that even when 
F(co)a(ico} 1/2, the only results below that are affected are the 
wave attenuations, which then grow as cot/e. All the other 
quantities become frequency independent and thus, inde- 
pendent of F{co). 

From the results given in Appendix A, we find that the 
velocities oa and amplitude ratios A• become real quantities 
to first order in (co½/co) for a = F, S, and T. We have the 
inequalities 1 

dr>Ar>O>As, Ar=l--T-t<l, (68) 
where the tortuosity Tis defined in Eq. (11). Thus the quanti- 
ties Dr and Ds = 1 - DF have values between zero and one. 
The leading order terms in the wavenumbers are, for the T 
wave: 

co +o(co -') (69) 

where 

• 2 = (1 1, (70) vr.o/Vro -- •bp//Tp)- • > 
and for the F and S waves, a = F$: 

ka = (co/VFo ) 

{ y Ic: - II] X 1+•- • • ..,.•-----•- 

+ O(co-:)}, (71) 
where C,,• is the limiting value as co--•oo of C,, which is 
defined in Appendix A. It is shown in Appendix B that 

Cr.• > 1 > Cs• . (72) 

Hence the quantity in square brackets in Eq. (71) is less than 
unity for both a = F and S. 

The attenuation of each wave tends to a constant value 
a,, a = F, S, and T in the limit co--, •o, where 

a, = Im k, (co = oo). (73) 
The T-wave attenuation, from (69) and (73), is 

ar = Ovr• /2pT2v•o . (74) 
From the definition orb in (62) we see that a r scales roughly 
with [u•b 2/kT2). Taking/• = 10 -2 g/cm s for water, p = 2.5 
g/cm a, vr• • Vro = 2 km/s, and putting k =/• 10 -8 cm •, 
we have a r = qb 2/(T 2•: )cm - •. The critical quantity here is the 
product T2[. Typically, in rocks, [: is much less than unity. 
The tortuosity Tmay be much greater than unity, however. 
It is known for a stiff frame that • T=•b (•re/a),where'•r• and 
• are the electrical conductivities of the fluid and the porous 
solid, respectively, assuming the grains are insulators. 

The high-frequency attenuation of the a wave, a = F, 
$, or T, disappears, if and only if, v•.• = V•o, where 
= C•.• V•o is the asymptotic value of v• as o-, oo. This can 
occur for a = F only, and corresponds to Biot's compatibi- 
lity condition.• In fact, when the compatibility condition 
holds, v• = Vro and A r = 1 for all frequencies. 

We note that the high-frequency Iimit is not the same as 
the limit of vanishing dissipation, b-•0. In the latter case, the 
attenuation vanishes at all frequencies. But when b > 0 and 
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• •o, the attenuation of each wave tends to a constant val- 
ue which is proportional to b. 

D. Low porosity, high-frequency approximation 

When • = 0, the bulk modulus 1% of the dry frame de- 
fined in (7) is equal to tq. For arbitrary porosity, we write 

•b = •q(1 - •/M), (75) 

where M is an O (1) parameter defined by the microgeometry. 
Effective medium theory estimates elm are given in Ref. 14, 
for example. Substituting Eq. (74) into Eqs. (5}--{7) deter- 
mines P, Q, and R. The high-frequency, low porosity (• 1) 
approximations follow from Appendix A as 

• = (•b + ;N)/p + O 1• }, 

= v/p + ), 

•s = •s l+t•s -1 + 0(•), 
Tp! • 

(76) 

/ir = I + (• -- e)/(Te --MRS)+ 0((• ), 

1 P= (.T_e--M6.• + 0(1), As= 
where 

6 = [l +M(Ks/Kf-- 1)] -•, (77) 
e = •f/p,)(1 + •/r•), (78) 

and the tonuosity Tis defined in (11). 
The most impelant result in (76) is that the ratio A s is 

O {• - i) as •. Thus all the motion •s•iated with the slow 
wave is concentrated in the vanishingly small fluid compo- 
nent. Refe•ng to •. (•), we note that D• = 1 + O {• ) and 
D s = O (•), so that u • reduces in the limit to the purely elastic 
Green displacement tensor. • The slow wave te• in U • of 
(46) remains, however, since A s D s = O (1). This shows ex- 
plicitly that the slow wave motion generated by a point force 
is si•ificant only in the fluid. 

We have assumed so far that the to•uosity Tis indepen- 
dent of •. This is ce•inly not t•e, but the precise depen- 
dence of T on • is unce•in. Bedman • has estimated 
T = O (• - •) and Johnson et al. •3 find T = O (• - •/•) as •. 
Whatever the specific behavior may be, we note that if T• • 
as •, then w e still have A,• -- • • •. Also, from 
(76) and (68) we see that At, Ar•l, and vs•, indicating 
that the fluid moves in phase with the solid and the slow 
wave di•p•ars. 

E. Stiff frame, high-frequency approximation 

When the pore fluid is much more compressible than 
the frame, we have •c/•c•, tq, N. The following high-fre- 
quency results then follow from Appendix A: 

..... , (f - ,slr] ' 
Ar• 1 -- (v•/T-- v•/M)/(v• -- v•), (79) 

_ + [(1 T-')], 
where vœ = {•cf/pœ) •/• is the speed of sound in the fluid and M 
is defined in (75). The fast and transverse waves have the 

speeds of longitudinal and transverse waves in an elastic sol- 
id with moduli 1% and N and density p -- q•p//T. The slow 
wave speed dependa very simply on the fluid sound speed 
and the tortuosity T. The full ramifications of this relation- 
ship have been explored by Johnson. •' 'a 

We note from (79) that A s = 0 (•cs/•c/). Thus, as in the 
case of low porosity, the slow wave motion is almost com- 
pletely restricted to the fluid in the pores. The energy density 
of a wave is roughly proportional to •csu • in the solid and 
•c/U • in the fluid. For a slow wave, the ratio of fluid to solid 
energy densities is therefore •, 1. Since the slow wave energy 
resides mainly in the fluid, it is imperative that the pore 
spaces be well connected if the slow wave is to propagate. 
Also, from (45) and (79) we have Dv • 1, Ds = 0 (•cf/•c•). The 
results of Sec. II then predic t that a lead applied in the solid 
will radiate mostly as F and T waves, with relatively little 
energy going into slow waves. The converse of the stiff frame 
is that of a weak frame. We shall not consider this limit here, 
but note that Johnson I •'•7 has used it to explore the acoustic 
properties of gels. 

F. High-frequency example 

Ultrasonic experiments on consolidated water-satu- 
rated glas• heads (Ridgefield sandstone) by Plona 4 have 
shown the existence of the slow wave. In Sec. III F, we will 
evaluate the various high-frequency limits of the wave pa- 
rameters for the data of Ref. 13. The solid (grain) and fluid 
parameters are p• = 2.49, p/= 1 g/cm •, ff• = 49.9, and 
= 2.25 X 101ø dyn/cm:. The bulk parameters follow from 
measurement of the dry frame longitudinal and transverse 
wave speeds. 

Oœ,dr • ----- [(K• + •N)/pl ] 1/9, 
(80) 

Or, dry = (N/p,) l/2. 
The permeability of the sample is not given in Ref. 13. How- 
ever, reported values of the permeability in similar sam- 
plesl •.•s.•o give k.,• 10- s cm: { 1 Darcy}. We assume here that 
k = 10 -s cm:. With the viscosity of water asp = 10 -2 g/era 
s, the characteristic frequencyf• = co•/2•r follows from Eqs. 
{61} and {62} as {0.14} • X 10 • cps, where • is the porosity. The 
cente.r frequency of the experiments was 0.5 X 106 cps. The 
porosity varied from 0.33 to 0.1; therefore, the ratio co/co• 
varied from about 10 to 40, indicating the high-frequency 
regime. However, the typical pore size is known to be on the 
order of 10-: era, 11 which implies that •c o of Eq. {67} is very 
large. Therefore, we cannot expect to estimate the wave at- 
tenuations without making further assumptions {see Reft 16 
for a discussion of the amplitudes in these experiments), but 
we can use the other asymptotic results of See. III C. Indeed, 
a comparison with the wave speeds computed using the ex- 
act equations shows the high-frequency approximations to 
be accurate to within 1%. • i 

The results are shown in Table I. The stiff frame ap- 
proximations of Sec. III E can be shown to give reasonable 
approximations (accuracy • 10%) to the results. It is inter- 
esting to note that as • decreases, the amplitude ratio/l s 
increases in magnitude, as predicted in Sec. III D. The slow 
wave energy becomes concentrated in the pore space, which 
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is itself disappearing. Also, from Table I we note that Ds • 1, 
indicating that forces applied to the solid phase will not pro- 
duce slow waves efficiently [see Eqs. (43} and {46}]. Direct 
coupling of the applied force to the pore fluid is necessary to 
generate slow waves. In the experiments, this was achieved 
using a water immersion technique with open pore boundary 
conditions at the porous/fluid interface. Ultrasonic waves in 
the water bath thus coupled to the slow wave. 

IV. DYNAMIC RECIPROCITY AND A REPRESENTATION 
INTEGRAL 

We first derive a dynamic reciprocity relationship for 
the Biot equations. This result is the Biot analog of the Betti- 
Rayleigh theorem in elasticity.•S A similar result has been 
derived by Vargas. 2ø Let the time harmonic fields u A and U A 
satisfy the inhomogeneous Biot equations: 

(.t)2(/•l lff4 ..•_•12U.4 ) + V o 0..4 = __ f.,l, (81) 
a•2{/•12 u•l -{-/•22 U•I ) =[= VS '4 = -- F •. (82) 

Here f• and F • are body forces per unit volume in the solid 
and fluid phases, respectively. The stress tensor o -• and sca- 
lar• are defined by Eqs. (1} and (2} for the fields u • and U '•. 
Similarly, let u s, U s, o 'e, and s e be the displacement and 
stress fields produced by body forces f• and F s. Consider the 
integral 

over an arbitra• volume • and the sub•pt comma de- 
not• differen•tion. •e •ght-h•d side of •. (83) follows 
from •s. (81} •d (82) •d the •esponding •u•tions for 
system B. The inte• on the •ght-hand side can be ex- 
pres• • the divergen• of •me quantity by using •s. (1) 
•d (2). We ebon 

+ 

•t S • the suWa• of volume K •e volume integral 
• the fi•t-hand side •n be r•st • a surface •te•al over 
S by a s•ple appli•tion of G•n's th•r•. •uation (83) 
then •om• 

[(ffW -f)uf} + Wfuf - 
• A B B A = - + Wuf- dS, 

where n is the unit normal out of K This is the Betti-Ray- 
leigh reciprocal identity for a porous medium. 

Now let us consider the special ease when u s and U s are 
the Green tensors for a point lead. Then 

.f(x) = uf(} = 
(86) 

ff(x) = 6,k6(x -- x'), Ff(x) = 0, 
where k denotes the direction of application of the point 
load. Dropping the superscripts on u •, U •, 0 '4, and s •, and 
interchanging x and x' we obtain 

f/ , O • O [f,(x ;x) + F,U, 

- + (su? 

Xn• d$(x') = I u•(x)' ifx is in •,', (87) 
l0 s fix is outside 

This is our representation integral. It expresses the field u(x) 
at any point in Yin terms of the applied body forces in Yand 
the tractions on $. A similar representation exists for the 
fluid displacement U. It can be obtained from F-xl. (87) by 
replacing the terms a--F, and T by 
,4• G• (Ix -- x'l) wherever they occur in the left-hand side. In 
other words, if Eq. (87) is rewritten as 

a = F,S.T 

where J'ff• are integro-differential operators and x is in Y, 
then 

U,(x) = x'l). (s9) 
a = F.S,T 

V. SCATTERING THEOREMS 

In Sec. V, we derive reciprocity relations for the scat- 
tered F, $, and T waves that are produced when a wave is 
incident upon an obstacle of finite extent. These relations 
include as a special case the known reciprocity relations for 
purely elastic wavesf 1'• 

We begin by writing the total fields as the sum of inci- 
dent plus scattered fields: 

(u,U) = (u%U '•) + (u%U% (90) 
The scattered fields must satisfy the radiation conditions 
that their farfields are of the form 

[ u •= •'• X•(/)O•(r)1+ , ,-7oo, (91) 
ct - F,S, T 

TABLE I. Results for the high-frequency example. The wave speeds are in units of kin/s; ot• and ur.a• are given and •.,, oa,, and ur,. follow from 
Appendix A and See. III C. 9• is the porosity; Tis the tortuoaity [Eq. { 11 }]; the amplitude ratios .4t,,/Is, and A T follow from { 16} and Appendix A; and D s is de- 
fined in {44). The numbers in parentheses denote powers of ten. 

(%) T ut,.• Ur• v•.. Us. . Ur.•, A• A s A r Ds 

33.5 1.75 3.10 1.82 3.23 1.01 1.74 0.68 -- 12 0.43 2.0( -- 2) 
26.6 2.00 3.83 2.28 3.89 0.97 2.20 0.66 -- 22 0.5 7.1( -- 3) 
21.9 2.40 4.32 2.65 4.35 0.89 2.57 0.70 -- 33 0.58 3.6( -- 3) 
16.2 . 3.02 4.84 2.81 4.82 0.81 2.74 0.74 -- 58 0.67 1.3( -- 3) 
10.5 3.84 5.16 3.09 5.17 0.71 3.04 0.81 -- 85 0.74 7.8( -- 4) 
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U'•= • ,4 a x•(r)Ga(r) 1 + , r--,oo. (92) 
a =.ES, T 

The vector scattering amplitudes X" are functions of the di- 
rection of observation •, but not of the distance r. Thus they 
depend upon the choice of origin, but the scattered fields in 
(91) and (92) do not. The scattering amplitudes are polarized 
such that 

x•A•=0, a=F,S, X•.•=0, a=T. (93) 

We will obtain explicit representations of the X a shortly. 
Let the obstacle or inhomogeneity be surrounded by the 

closed surface •. For example, if the object is an infinitesi- 
mally thin crack, then 5• may be the two faces of the crack. 
Or, if the object is an elastic inhomogeneity then Z may be its 
outer surface. Now consider the representation integral (87) 
with u, U, •r, and s replaced by the fields u •, U •, o •, and s • of 
the scattered waves. Let Vbe the volume between 5• and the 

surface of a sphere of radius A which is centered at the point 
of observation and encloses 5•. As A--*m, the integral over 
the surface of the large sphere vanishes because of the radi- 
ation conditions (91) and (92} and we obtain 

u•(x) Ix { , a ,. c ,• = - %;ku; ] [•(x )u;•k (x ,x) 

+ [s•o,• - s• v7] In, aS(x'l, 1941 

where n is the unit normal into •. A similar expression for 
U•(x) follows from (88) and (89). Equation (94) is an exact 
representation of the scattered field at the position x outside 
• in terms of the fields on •. This equation could be used as 
the starting point in the derivation of an integral equation for 
the scattered fields. For example, if ß is the surface of a 
crack, the equation is obtained by letting x approach ß and 
then applying the boundary conditions on the crack faces. 
This procedure is outlined in Ref. 23 for the elastic case. 

The farfield scattering amplitudes now follow from 
Eqs. (91) and (94) and the results of See. IIIA. We obtain 

+ •krBo;n(r)u • In•exp( -- ikr•' x')dS(x') 
(95) 

and for a = F or $, 

x exp( - a,r. x')aS(x'). (96) 

We note that the scattering amplitudes of Eqs. (95) and (96) 
automatically satisfy the radiation conditions (93). 

Consider two fields ,4 and B, as in Eq. (85), but with no 
body forces present in V, which we take to be the volume 
interior to •. Then if the material of the inhomogeneity or 
obstacle possesses a symmetric stress tensor, we have from 
Eq. (85) 

r(aJ) •- ;• [(a • ' ' • oui - % u:,) 

+ (s•U• -- ffU•)]n, as = o. (97) 
This relation holds, for example, when the medium inside is 
an anisotropic Biot material, or an anisotropic elastic mate- 
fir, which is a pa•icular case of the Biot mated,. The r•ult 
(97) is independent of the bounda• conditions on X, which 
could be a closed or open pore or the intemediate perucable 
condition, 24 for example. 

Now, splitting both fields A and B into sums of incident 
plus scattered fields as in (90), we obtain 

•A,in;B,in) + •A,sc;B, in) 

+ •A,in;B,se) + y(A,sc;B,se) = 0. (98} 

The first integral in (98) can be transfo•ed into an integrfl 
over the interior of X using (84). This integrfl is zero since 
A,in and B,in me regular in •. Similarly, the last integrfl in 
(98) can be transfo•ed into a volume integral over the re- 
•on exte•al to • and a surface integral at infinity. Both 
integrals are zero, the first.because the scattered fields are 
regul• in the exterior region and the second due to the radi- 
ation conditions (91)-(93). This leaves us with 

' •'• •""' (•"•U• '• •'•U•"")]•, as -•u) •+ . - 

+ (sS'•"Vf "• -- s•'•V•'•")] n, dS. (99) 

Now, let the incident fields be plane waves: 

u '•'•" = a exp(ik•p. x), IPl = 1, (100) 

u s'•" = b exp(ik•q. x), Iq] = 1, (101) 

where a,]• = F, $, or T. The vectors a and b are polarized in 
accordance with (16). Substituting for the incident fields in 
(99) and using Eqs. (1), (2), (95), and (96), we obtain the reci- 
procity relations 

k3Dea ..X•( - p) = k2•D•b ß )t•(• I( -- q). (102) 
Here, the vector X '•sl is the scattering amplitude of type a 
due to the incident field B. Also, the quantities D• are de- 
fined in (44) and (45). We note that (102) includes all possible 
scattering processes. For example, when there is no mode 
conversion (a =/• ), we have 

a. X•ls•( -- p) = b. Xal• I( -- q). (103) 
The reciprocity relations (102) include the elastodynamic 
reciprocity relations TM as a special limitß In this case, a,//= F 
or T and Dr • 1. 

It is possible to derive "optical" theorems in nonabsorb- 
ing media which relate total scattering cross sections to for- 
ward scattering amplitudes. Tan 22 has derived these rela- 
tions for elastodynamics. The key to any optical theorem is 
the conservation of energy in an infinite sphere: The energy 
of the plane wave coming in is equal to the energy going out. 
The whole procedure is not applicable when there is attenu- 
ation in the host mediumß Since this is the case with the Biot 

porous solid, it is not feasible to obtain optical theorems, 
except in two cases: first, when the Biot medium is not 
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damped (b = 0), but this is an unrealistic assumption. The 
second ease is when the Biot compatibility condition holds 
(see See. IlI C and Ref. 1). Under these special circum- 
stances, the fast wave radiates to infinity and it is possible to 
derive an optical theorem. Owing to the limited applicability 
of such a theorem, we shall not present it here. 

VI. THE TIME-DEPENDENT POINT LOAD SOLUTION 

The results of Sees. I-V are for a time harmonic point 
lead. Any other time-dependent point lead may be consid- 
ered by taking the appropriate Fourier transform of u a and 
U ø with respect to o•. In particular, if the applied lead is a 
delta function at time t = 0, the corresponding solid dis- 
placement tensor is 

1 f; uOe_,•,dco. (104) 
This is the same solution considered by Burridge and Var- 
gas, ? who obtained the solution using Laplace transforms. 
We will show how the results in Ref. 7 can be obtained readi- 

ly from our time harmonic solution. 

A. An exact result for no dissipation 

We consider first the case of no dissipation present in 
the system (b = 0). Then, the integral in (104) can be obtained 
in closed form. As discussed in See. III C, the wave speeds 
are real, as are the quantities.4 a and Da, a = F, $, and T. The 
inequalities 168) hold and DF and Ds are between zero and 
unity. The time harmonic Green tensor in {43) depends on •o 
only through the wavenumbers k• defined in (17). Substitut- 
ing for u a in (104}, we have in the first term 

3N f-' Gr(r)e-i•o, da•= 1 6 (t-- •-r)' (105) 2 • 4•rNr 

which follows from the definition of G•(r) in (35). We note 
that the wave speeds o•, a = F, S, and T are equal to the 
infinite frequency speeds when dissipation is present. Thus, 
referring to See. III C, 

vr=vr•, v•=C•,ovo, a=F,S. (106) 

In particular, we have for a = F or S, 

-- D• •; Ga(r) e_i•,, dcø 2•rN • 

8treNt • exp' -- r da• 

r t r 

t- t (lO8) 

Evaluating the derivatives in Eq. (108), we can write u expli- 
citly as 

I {(6o -- •,•'•)•5 (t -- •r ) u•j = 4•rNr 

t r 

\Os / 

--Dell(t-- 3 --DsH(t--3] 
In •alogy with the time ha•onic •, the fluid displa•- 
ment U follows from (109• by replacing 8{t- r/v•) •d 
H (t -- r/o•} by A•6(t -- r/o•) and A•H {t -- r/o•}, for each 
a =F, & and T. 

Several •mments are • order regard•g 
Fint we note t•t thr• 6-f•ction singularities propaste 
with speeds or, or, and Os. •e magnitude of•ch fingu•r- 
ity is propo•ional to D•, a = F, T, and & As each singular- 
ity passes a giv• point in spa•, a di•ontinuous function 
proponion• to (t/•} is "turned on." Sup•se, for ex•ple, 
that vv > or > Os and consider the •fi• of events at a 
value off. •e fast 8-function pul• passes at t = r/o v, l•v- 
ing a displac•ent a•er it which is pro•ional to -- Dvt. 
Then, the transverse pulse pas• at t = r/or, eh•ng the 
proponionality constant to (I--Dv}t = Dst. Finflly, at 
t = r/os, the slow pulse arrives, l•ving zero displacement 
aft• it. •e fluid displa•ment U underg• a similar dis- 
pla•ment histo•. After the arrival of the F pulse the dis- 
placement is pro•ional to [ -- AeDvt }. •is pro•ional- 
ity eh•ges to (AsDst) when the Tpulse pas• •d •m• 
zero at t = r/%. We note from •. (68} and the definition of 
De and D s in (•} that the sense of u changes at t = r/o r 
while the •n• of U remains the •e. •us •1 motion is 

confin• to the •te•al between the •vals of the fi•t (fast) 
pulse at t = r/or and the final (slow} pul• at t = r/o s. Final- 
ly, we note that u r•uc• to the well-known r•ult for pure 
elaaodynami• •5 when Ds4, as discuss• • Sec. III D. 

-- t-- H t-- , (107) 
4•rrNr 

where H is the Heaviside step function; H (x) = 0, x < 0 and 
H(x) = 1, x >0. Combining Eqs. (105) and (107), we obtain 

B. Approximate results when dissipation is present 

The presence of viscous damping (b •0) in the system 
makes the inverse transform in (104) impossible to do in 
closed form. However, it is possible to extract the dominant 
terms for large values of t and r. This has been done by Bur- 
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ridge and Vargas ? using inverse Laplace transforms. We 
now rederive the results of Ref. 7 in compact form using 
(104J and our results in Sec. IIL 

It can be shown •'? that, in general, the F- and T-wave 
attenuation is zero only at zero frequency. The slow wave is 
attenuated at all frequencies, and so its contribution will be 
exponentially small in comparison with the F and T waves. 
Therefore, we first consider the farfield approximation to u a 
in (54) with only the F- and T-wave terms, present. We ex- 
pand the quantities k F, k r , and DF about their zero frequen- 
cy values using (63) and (64). Then, substituting from (54) 
into (104) and using the identity 

f;• exp [ -- ico (t -- -.-• - j ace 
1)TO 

( •'v•rø I '/: (r--tørø)•-• (110) ---- •,--•:r / exp ( 4•2r/Oro ,l 
and a similar one for the F wave, we obtain 

% '/V(2rt)3/2] I(& - r,o)V-3/2 

Xexp[ - Ir- tVo)V%t ] + 

žexp[ --{r-- wro}z/4%t ]}, (111} 
where 

• = (• /2b )(a•/f) 2 (112) 
and 

•3 = (H /2b }•o2Z /•}L (1 l •) 

The other quantities in Eqs. (110}-{113} are defined in Sec. 
IIl B. In going from (110) to (111} we have substituted 
r = tyro for r in the pre-cxponcntial factor. This is valid 
since any error is exponentially small. A similar substitution 
has been made for the F-wave term. 

The result in { 11 l) neglects terms O {t -s/z) and smaller. 
The diffusion coefficients •z and *'3 are the same as those 
defined by Burridge and Vargas?; F_,q. { 111) agrees with the 
result in Ref. 7. We note that the two terms in {I I 1} have their 
maxima at distinct times. We refer to Burridge and Vargas ? 
for a discussion of this result. 

The slow wave diffusion process can be obtained by put- 
ting the S part of u a in {43) into (104)• The low-frequency 
expansions of Eqs. (63)-(65) are then used to approximate the 
integrand. Let u o, with D for diffusion, be the displacement 
field. Then 

u% - ' + 014} 4rob\ H ] ' 
where 

-- i exp e a"/4 J:f; 2• t •1 --iotldo (115) 
and 

v, = {PR -- Q 2)/bH. {116) 

The branch cut of {co) •/• in {115) is defined such that 
{co) I/2 =i]co] •/2 for to < 0. The integral in {115} is to be under- 
stood as a principal value integral. It can be shown that 

j = 2 e- '•' sin [ sr____• ds 

= erflr/(4%t }•/2] 
Combining Eqs. {114) and {117} we get 

(117) 

4,rb [ r k(4v,t )l [2J] 
and, from Eq. (65), 

1118) 

uD• -- [{P+ Q)/(R + Q)lu •. (119) 

These results agree with those of Burridge and Vargas, 7 ex- 
cept for a minus sign. 

The diffusion constant v• of(116} is equal to the diffusi- 
vity Co of Rice and Cleary? The equivalence has been dem- 
onstrated by Chandler and Johnson. • These authors discuss 
the behavior of Co as a function of the physical parameters. 
Dutta and Od6 2• also find that the same diffusion constant 

governs the quasistatic slow wave. We note that in the stiff 
frame limit (see See. III E), we have 

v • • •bc ff b = v]-/o% , (120) 
where v/is the speed of sound in the fluid. The other diffu- 
sion constants v2 and v 3 of{112) and {113), unlike v•, depend 
upon the fluid and bulk deusitiesp/= p:/• andp. Therefore, 
they cannot be derived from a quasistatic analysis which 
ignores inertial effects. Rather, they are a consequence of the 
full Biot equations. 

c. Procureors 

In addition to the wave packets discussed above, there 
may also be discontinuous precursors. There are three in 
number, corresponding to F, T, and $ waves. They are a 
consequence of the fact that the time harmonic waves can 
have finite attenuations at "infinite" frequency, i.e., for 
co/(• ß 1. In this respect, we note the caveats in Sec. Ill C 
and below. Under the assumption that F(co) = 1 as 
the time harmonic Green tensors are given by the right-hand 
sides of (54) and (55) with k,,, D•, and.4,•, a = F, $, and T, 
given by their asymptotic values discussed in See. III C. Spe- 
cifically, u ø (co)--•u a' oo (o•), where 

u•.•.• • 1 [{• __ ?,?i}exp ( kor__• 4,rNr \ Vr• / 

q- ?•J Z (ørøø• 2Da•ø ex'p (icør• e_•.] . a--F,S \Va• o / kVa• / 

(121) 

•e su•cfipt • indicates the i•nite fr•uency (•) or 
•ro dissipation {•) limi• ofa q•tity, wMch have • 
discussM in S•. III C. The attenuation •cients a•, 
• • F, •, •d T foRow from •s. {69), {71), and {73). 

•e disph•m•t field (u • -- u •'•) h O (•- •) • •. 
•erefore, its inve• Fourier tr•sfo• can have finite step 
di•nfinuifi• but not 5-function singultrix. However, 
sin• 
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I 

or ' 2 t• (t__ 
and 

?' ) e--art OT. 

] e - a•- (122} 

u ø = u ø" + (u a -- uO"}, (123) 
it follows that 022) represents the most singular part ofu as 
defined in (104). At the arrival of the pulses in (122), 

a•r = ta•v•. = O(coct ), (124) 

and since coc is very large for rocks, -- 1• eps, it follows that 
the singularity strengths become negligible very quickly. Re- 
ferences 7 and 20 also discuss the discontinuous precursors 
and reach the same conclusion about their fast decay. 

Finally, we note that the existence of traveling singular- 
ities is duc to the finite attenuation at infinite frequencies. 
Frequency-dependent models of the function F{co) usually 
have F(co)--(ico) •/2 (e.g., Blot 2) and hence produce infinite 
attenuation as co--, oo. The effect of this is to kill the singular- 
ities of (122). The low-frequency diffusive pulses are un- 
changed. Realistically, we can expect the damping to in- 
crease with frequency. Therefore, not much emphasis 
should be placed on the precursors. The dominant sources of 
motion are the low-frequency contributions (111) and (118). 
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APPENDIX A: THE BlOT WAVE SPEEDS AND RATIOS 

Transverse wave: 

= 
• = - •/•. 

Fast and slow waves, a = F or S: 

~ 2 

o. v -- yvC,• 
~ 2 ' 

o= v - 

where 

and 

j= 1 or2, 

(A1) 

(A2) 

(A3) 

(A6) 

(A7) 

(AS} 

(A9) 

{A10} 

(All) 

(AI2) 

(A13) 

APPENDIX B 

We will show that C •. > 1. Let B,, D,, andA, be the 
limiting values orB, D, and A in Appendix A as to--, 0o. Then 

l/C •, = (B . -- O. )/2C (Bl) 
and 

D. = (B. -- 2C)2 + 4C (p2/p)2Z 2> lB. - 2C ], (n2) 
with equality, if and only if, Z = 0, where Z is defined in F-xl. 
(64). We note that Z = 0 is the compatibility condition. • Two 
cases now arise: First, if 

B. -- 2C> 0, (B3) 

then {B 1} and {B2} imply that Cr, > 1 since C > 0.• If 
S. - 2c<o, (n4) 

then (B1) and {B2) give 

- c)/c. 
However, from (B4) we see that the right-hand side of (BS) is 
less than 1, and so CF, > 1. When Z = 0, we can easily show 
that (B3) holds and hence C•. = 1. Similarly it can be 
shown that Cs. < 1.. 
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