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The time harmonic Green function for a point load in an unbounded fluid-saturated porous solid
is derived in the context of Biot’s theory. The solution contains the two compressional waves and
one transverse wave that are predicted by the theory and have been observed in experiments. At
low frequency, the slow compressional wave is diffusive and only the fast compressional and
transverse waves radiate energy. At high frequency, the slow wave radiates, but with a decay
radius which is on the order of cm in rocks. The general problem of scattering by an obstacle is
considered. The point load solution may be used to obtain scattered fields in terms of the fields on
the obstacle. Explicit expressions are presented for the scattering amplitudes of the three waves.
Simple reciprocity relations between the scattering amplitudes for plane-wave incidence are also

given. These hold under the interchange of incident and observation directions and are
completely general results. Finally, the point source solution is Fourier transformed to get the
solution for a load which is a delta function in time as well as space. We obtain a closed form
expression when there is no damping. The three waves radiate from the source as distinct delta
function pulses. With damping present, asymptotic approximations show the slow wave to be
purely diffusive. The fast and transverse waves propagate as pulses. The pulses are Gaussian-
shaped, which broaden with increasing time or radial distance.

PACS numbers: 43.20.Fn, 43.20.Rz, 43.20.Bi

INTRODUCTION

We consider the problem of wave propagation in fluid-
saturated porous media in the context of the Biot!~> theory.
This theory has recently been firmly established by the ex-
perimental observation of the Biot slow wave.* The slow
wave is a consequence of the fluid-solid coupling in the Biot
equations. The theory also predicts a fast compressional
wave and a shear wave. These are the analogs of the longitu-
dinal and transverse waves of elasticity. A theoretical justifi-
cation for Biot’s equations has been provided by Burridge
and Keller.?

In this paper, we consider the general topics of radiation
and scattering in a porous medium. The fundamental radi-
ation problem involves an applied time harmonic point load.
The solution, which is the Green function for the dynamic
Biot equations, is obtained in Sec. II in terms of three poten-
tials, one for each kind of wave. This Green function reduces
to the well-known elastic point load solution in the limit of
zero porosity. Our solution has the form of three radiating
waves. However, the attenuation of each wave depends very
much on the frequency of the applied load. The attenuation
enters through the inclusion of a damping term in the origi-
nal equations proportional to the difference of solid and fluid
velocities. Biot"? and Geertsma and Smit,° among others,
have discussed the frequency dependence of the wave speeds
and attenuation. In Sec. III, we examine the behavior of the
point load solution as a function of @, in particular for low
and high frequencies relative to a critical frequency w, . Typi-
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cally, @, = 0 (10° cps) in rocks, so that the low-frequency
results are applicable to geophysical problems. The slow
wave is then diffusive. The high-frequency results are appli-
cable to ultrasonic experiments,* in which case the slow
wave is propagatory.

The point load solution is then (in Sec. V) used to derive
representation integrals for the radiation from an arbitrary
distribution of body forces and surface tractions. The gen-
eral problem of scattering in a porous solid is considered in
Sec. V. Our main result is a reciprocity relationship for scat-
tering amplitudes from an arbitrary obstacle or inhomogene-
ity. Finally, in Sec. VI, we Fourier transform our Green
function to obtain the solution for an applied load which is a
delta function in time as well as space. This solution has been
derived by Burridge and Vargas’ using Laplace transforms.
However, our method is less curnbersome than that in Ref. 7.
We also present a new result for the case of zero damping.
The solution can then be expressed in closed form.

We begin by introducing the Biot equations and the
three wave solutions.

I. BASIC EQUATIONS

We will use the original notation of Biot'? as much as
possible. We have the stress—strain relations

o=(P—2N)V-ul+ N [Vu + (Vu)’] + QV-UIL (1)

s=QV-u+RV-U, (2)
and the equations of motion
& u U a
P11F+P12?=v'0+bE(U—“)’ 3)
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Here the vectors u(x,¢ ) and U(x,¢ ) are the solid and fluid dis-
placements, respectively; o is the solid stress tensor; s is a
scalar proportional to the fluid pressure; and I is the second-
order identity tensor. The shear modulus N is the same as the
shear modulus of the dry frame. In addition, there are rela-
tions between the Biot elastic constants P, Q, R, N; the bulk
moduli x; and &, of the solid and fluid; and a new constant
Ky, the “jacketed” bulk modulus.>'® We have

Pin— —Vs—b%(U—u). 4)

1/, = [(1~¢)R —4Q /xR — @7, (5)

Vi, = [¢x— (1 — )Q 1/kR — @7, (6)

1/x, =R /(kR — Q?), (7)
where

k=P—4N (8)

and ¢ is the porosity or volume fraction of the fluid phase.

These equations are easily inverted to give P, ¢, and R in

terms of «,, &, k,, N, and §.5

The densities p;; in Eqs. (3) and (4) represent the inertia
of the two phases. They are related to the fluid and solid
densities p, and p, by’

pu+p=(1—¢)p, =p, 9

P2t pPn= ¢Pf =p,. (10)
The coupling mass p,, <0 is sometimes written as

pr= —(T—ligp, (11)

where the tortuosity T'> 1 depends upon the pore geometry.

The parameter b in Eqs. (3} and (4) represents the resis-
tive damping due to relative motion between the fluid and
solid. It incorporates viscous dissipation into the equations
of motion and therefore is a major source of attenuation in
waves, It is common in the literature to use bF (w) instead of b
in (3) and (4). The frequency-dependent function F (w) was
introduced by Biot’ to account for the dissipation when the
pore size is of the order of the viscous skin depth or smaller.
However, the form of F (w) is open to question, since in gen-
eral it is a complicated viscodynamic operator. At low fre-
quencies, such that

w<v/a, (12)

where v is the kinematic viscosity and a is a typical pore
dimension, we have? F(0)=1. With ¢ = 100 um, which is
typical of rocks, the right-hand side of (12) is 10° cps for
water-filled rocks. We will therefore take F(w) =1 in this
paper. We note that our b is the same as in Ref. 1, but is ¢ *
times the b in Ref. 7.

We now consider time harmonic motion with real radi-
al frequency @. Omitting the term e ~“ from all quantities,
the equations of motion become

a’z(ﬁnu +p,U)+V-a=0, (13)

@’ (@0 + pyU) + Vs =0, (14)
where

ﬁmn = Pmn +(— l)m+n’(b/w) (15)

Thus we note that the dissipation only appears in the equa-
tions through the inertial terms.
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We conclude Sec. I by describing the three kinds of
traveling wave solutions to the coupled systems (13), (14), (1),
and (2). The following is basically a summary of the results of
Biot in his original paper.' The reader is referred to that
paper for a full description. We shall call the two dilatational
waves the fast (F) and the slow (S') waves, and the equivolu-
minal wave we call the transverse (T°) wave. A plane wave of
type a, @ = F, S, or T can be expressed as

(w,U) = In| =1, (16)
where

mnifa=For S, mlnifa=T,
the quantity 4, is the ratio of fluid to solid displacement for
each wave type, and k, is the corresponding wavenumber.
The phase speed is

v, =w/k,, a=FST. (17)

Expressions for 4, and v, are given in Appendix A.
In general, when there is viscous dissipation (b #0), the

(m,4 ,m)exp(ik,n - x),

" quantities 4, and v, are complex valued functions of fre-

quency. The slow wave is strongly attenuated, particularly at
low frequency, where it behaves as a diffusion process. We

- will discuss the frequency dependence of these quantities in

greater detail in Sec. I11.

The Biot equations are valid insofar as the wavelengths
of the propagating waves are much larger than the pore size.
Otherwise scattering effects become important and a differ-
ent theory is necessary. The long wavelength criterion is

w<v/a, (18)

where v is the wave speed and ¢ the pore size. Typically,
v = 10°cm/s and a = 100 um, for which the right-hand side
of (18) is 107 cps. Thus the inequality (18) is always satisfied.

Il. THE POINT LOAD SOLUTION

Let a point force of unit magnitude act at the vector
position x’ in the direction d in the solid phase. The resulting
displacement fields u and U may be represented by two sec-
ond-order tensors u®(x;x’) and U% (x;x’) as

u,(x) = g (x:x')d,, (19)
Ui(x) = UG (xx')d,, (20)

or in vector notation
u=uf-d, (21)
U=U°¢.4d, (22)
[Note: Do not confuse the semicolon subscripts in (19) and

(20) with covariant differentiation.] The equations for u® and
U¥€ are, in vector notation,

@*(6,u° + p1,U°) + PVY - u®
+QVV-US+ NVAVAU = — I§(x — x'), (23)
@*(p1u° + p2,UC) + QVV - u® 4+ RVV- U =0, (24)

where § is the Dirac delta function. The solution to Eqs. (23)
and (24) is uniquely specified once we impose a radiation
condition at infinity and a regularity condition at the origin.
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The former requires that the fields u® and U be composed of
outgoing waves far from the origin. The regularity condition
requires that the behavior of u¢ and U€ near the origin
should be less singular than that of the applied load there.
The formulation of the problem is now complete.

The related problem of determining the time-dependent
Green function has been considered by Burridge and Var-
gas.” We note that Egs. (23) and (24) are exactly equivalent to
the Fourier transform of Eq. (1.1.1) in Ref. 7, with the addi-
tional substitution F— — I'in (24). Thus the time-dependent
Green function may be obtained from u® and U€ by taking
the inverse Fourier transform. In Ref. 7, the authors also
obtain a solution in terms of an inverse transform, in their
case the Laplace transform. However, the kernel of their
inverse transform is not given explicitly in terms of simple
functions [see Eq. (2.3.7) of Ref. 7]. We will show that it is
possible to express u¢ and U, and thus the kernel of the
inverse Laplace transform in Ref. 7 in relatively simple
forms. The time-dependent problem is discussed in Sec. V1.

We start by representing the solution in terms of three
scalar potential functions ¢,, @ = F, S, and T as follows:

u® = Vv + YV + (Vi1 — Vi), (25)

U = A VVi. + A VVYs + A (Vi I — VVY,). 2

We also note the identity

— 8 (x)I = VV(1/4mr) + (VI — VV)(1/47r), (27)
where 7 = {x|, and without loss of generality, we have taken
x’ = 0. Substituting from Egs. (25)<27) into Eqs. (23) and
(24), we obtain
VV{[0®*B11 +hr2Arie + (P + QALY ]
VV{[0*p11 +praApipr + P+ QAL)V ]

+ (VI — VW) 0*By, + pradr Wy

+ NV, — (1/477)} =0, (28)
vv{ [(02([312 +PAr W +(Q + RAF)VZ'/'F]

+ [@*P12 + podsls + (@ + RA5)VYs ]} = 0. (29)
Three equations for ., ¥, and ¢ are obtained if we put the
terms in curly braces to zero separately. We also note that

the solutions must be spherically symmetric. Thus for
a=F,S, or T, we have

Vi, = ()" /1, (30)

where the primes denote differentiation with respect to .
Our three equations are

[@*B1 + pradre)lrde) + (P + QAF)(rygr)" ]
[“’z(pu +P12AF)rYr) + (P + QAF)rdr)"

[@*(B11 + Pr2AF)rYe) + (P + QAp)rde)' ] (31)
[@*B12 + PrAr)rdr) +(Q + RAL)rYe)" ]

+ [@*(p12 + prAs)rbs)

+(Q + Rds)rs)"] =0, (32)
@*Prz + PrArNrdr) + N(rdr)" = 1/4x. (33)

Consider Eq. (33) first. It is an inhomogeneous equation in a
single unknown. The solution can be written as the sum of
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the particular solution of the inhomogeneous equation, plus
the general solution to the homogeneous equation. The latter
must satisfy the radiation condition at infinity. Thus we
have, from Egs. (33), (17), (A1), and (A2)

¥y = BrG(r) + 1/Nk 24y, (34)
where
G, =e""/arr, a=FS,T. (35)

The first term on the right-hand side of Eq. (34) is the general
solution with B, a constant still to be determined, and the
second term is the particular solution. The constant By is
found from the regularity condition at the origin. Referring
to Eqgs. (25), (26), (34), and (35), we observe that the term
(VI — VV)¢; is less singular than a delta function, if and
only if,

B, = — 1/Nk3. (36)
Therefore, 9, is bounded at the origin and is given by
Yr =(1/Nk3)[1/4mr — G{n)]. (37)

We now consider the two coupled inhomogeneous equations
(31) and (32). Again, the solution ¥ and ¢ can be written as
the sums of particular plus general solutions. We find, after a
little algebra and with reference to Appendix A, that

Yr = BrGr(r) + (I/Nk 7471 [ (A5 — A7)/ As — AF)], (38)
s = BsGs(r) + (1/Nk 2T47’)[(AF — A7)/ Ar — As)]. (39)

The second terms on the right-hand sides of (38) and (39) are
the particular solutions and the first terms the general solu-
tions. The constants B and B are determined by the regu-
larity condition. This amounts to requiring that ¢ and ¥
be bounded at the origin, and hence

By = (— 1/Nk7)[{ds — A7)/(As — 47)], (40)
'Bs =(— 1/Nk7)[(Ar — A7)/(Ar — 45)]. (41)

The Green tensor u® now follows from Egs. (25), (34), and
(38){41) and the result

Vi = (1/N)G(r) (42)
as
u® = (I/Nk D)k 3G (NI + VV[G(r)
— DpGg(r) — DsGs(r)] }, (43)
where we have defined D and D as
Dy = (A5 — Ar)/(As — Ap),

(44)
Dg =(Ar — A7)/(Ap — 45),
and for future reference we define Dy as
D, =D+ D;=1. (45)

The Green tensor U® now follows from Eqs. (26) and (43) as
UC = (1/Nk2){k% ArGNT + VV[A4,:G(r)

—ApDGr(r) — AsDsGs(n)]}. (46)

When the point of application of the load is not at the

origin, then x'#0 and the Green tensors are as above, but

with [x — x’| substituted for r. We define the Green stress

tensors o, (x;x') and s§ (x,x’) through Egs. (1) and (2). It is
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evident from Egs. (43) and (46) that u® and U® possess the
symmetries

U (XX') = g, (x;x') = ug (x';x), 47)
UG (xx) = Ug(xx) = U (x';x). (48)

These are reciprocity relations satlsﬁed by the Green dis-
placement tensors. The stress tensors satisfy

U:‘Gj;k(x;xl) = - ng (x';x), (49)

SE(xx) = — s (x';x). (50)

The displacement and stress tensors discussed thus far
have been for a point load applied in the solid part of the
porous medium. The solution for a load which is applied in
the fluid follows from Eqgs. (23) and (24) by removing the
delta function in (23) and putting it in (24). Omitting the
analysis, the result is
Ugelxx')y (51)
the fluid displacement is given by the right-hand side of (46)
with A, replaced by A%, a = F, S, and T. These results may
also be derived quite simply using the representation integral
(87) derived below, with F; = §,6(x — x'), f; = 0, and letting
V'be all of space. In general, any distribution of loads can be

handled by Eq. (87) using the fundamental solutions u€ and
U°®.

u.(x) =

Itl. ASYMPTOTIC APPROXIMATIONS

In Sec. 111, we consider our results of Sec. II in certain
physical limits. We shall look at the limits of large observa-
tion distance, low and high frequency, low porosity, and stiff
frame. We are specifically interested in the behavior of the
wave speeds, attenuations, and the quantities 4A,, @ = F, S,
and 7. Some of our results have appeared in the literature
previously. For example, Biot'? and Geertsma and Smit®
discuss the frequency dependence in detail. The stiff frame
limit is discussed by Johnson and Plona.!!

A. Farfield approximation
The farfield of the point source is defined by
|k, #|>1, a=FS,T, (52)

where, without loss of generality, we have taken the source at
the origin. Thus in the farfield we have fora = F, S, or T,

VG, (nN=ik,tG,(N[1+O0/|k, r|)], (53)

where £ is the unit vector in the direction of the observer at x.
Using (53) in Eqs. (43) and (46), we obtain

uf =(1/N){(Bu — #; P )Grlr) + 7 % [(ke/kr)?

XDpG(r) + (ks/kr’DsGs(n)] 1, (54)

UG =(I/N){(bi — # 3 )A7Gr(r) + 7, 7, [(kr/kr)z
XA:DpGr(r) + (ks/kT)ZAstGS(")] } (55)

The farfield stress tensors then follow from Egs. (1)and (2) as

(k.
a-,‘,?;k P~ 2 i ( ‘2') B3, ()G, (), (56)
a=Fst \K T
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(k3 Q+RA,\, |
B (kzr )D,, (T) G0 (57)

By = ¥+ 8y b — 27, 7 7 (58)

and
#e = ({[[(P+ Q4,)/N | — 2}6; + 27, },}F,
a=PF,_S. (59)

The asymptotic form of u€ and U€ clearly shows that
three distinct waves radiate from the point source: two dila-
tational (F,S ) and one equivoluminal (T). The various param-
etersk,,A4,,D,, and B, are all frequency-dependent com-
plex numbers. The attenuation of the wave of type @, @ = F,
S, or T depends upon the magnitude of Im(k,, ), which in turn
is a function of frequency."? Therefore, the relative magni-
tude of each wave depends critically on the frequency of the
source.

We note that when the source is not at the origin (x' #0)
but |x’| €7, then Eqs. (54)(57) are correct if we make the
substitution

G, (r\—G,(rexp( — ik, - x'). (60)

B. Low-frequency approximation

Following Biot,' we define a characteristic frequency
as

0, =b/p=b/dp,. (61)

We note that our w, is 27f,, where f; is the characteristic
frequency in Ref. 1. Sometimes b is written as'

b=¢usk), (62)
where 1 is the fluid viscosity and k the intrinsic permeability
of the rock. The values of b encountered in rocks are of the
order of 10° g/cm® s and often much greater.” Therefore, »
is of the order of 10° cps in rocks and sand. The ratio w/w, is
very small; we can use this fact to approximate our results.

A straightforward expansion of the expressions in Ap-
pendix A yields the following:

For the transverse wave:

ky = 1+l<wc) /;; +0(m2)]

Uro

o,

vro = (N /p)'?%, (63)
Ar =1 +ilw/w,.) + 0.
For the fast compressional wave:
kF—— [1 +z(wc) ’2); ZZ+O(aJ2)]
Uro = (H /p)'”?,
Ap=1+iw/0.)Z + 0 (@?), (64)
Z=1—(R+Q)pyro
Dy =1 +ilw/o)p/p)l — Z)* + O(0?).

For the slow compressional wave:
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__ in/4 pH 3/2
k, =™ | oo, <—_PR = QZ) + 0™,
As=—(P+ Q)R+ Q)+ O(w), (65)

Ds = — i(w/a,.)p,/p)1 — Z) + O (o).

The asymptotic behavior of the wavenumbers %,,
a =F, S, and T shows that the F and T waves have attenu-
ation proportional to »*. The S wave has much greater at-
tenuation, which goes as (ww,)"/%. The form of k4 in Eq. (65)
shows that the S wave is essentially a diffusion process at low
frequency.’

Looking now at the displacement ratios 4,, a = F, S,
and T, we observe that the solid and fluid displacements are
in phase and of almost equal magnitude for F and T waves.
The slow wave, in contrast, propagates with solid and fluid
displacements out of phase and unequal in magnitude. This
relative motion generates much viscous dissipation and ac-
counts for the high attenuation of the slow wave.

The Green tensors u€ and U at low frequency thus
split up into two propagating but attenuated waves, and a
diffusive wave. The propagating F and 7 waves are like lon-
gitudinal and shear waves in a homogeneous viscoelastic sol-
id, with density p and frequency-dependent complex Lamé
constants 4 £ and u* given by

pE=N[1—iw/o.)p/p)].
(66)
AP+ 2" =H [l —ilw/a,)p/P)Z%].

C. High-frequency approximation

In certain circumstances the frequency ratio (w/w,) can
belarge. Referring to Eqs. (61) and (62) we see that this could
occur if, for example, the fluid viscosity is small or the per-
meability large. The former is the case for superfluid “He in
the pores, the so called “superleak.”'? Large permeability is
obtained in experimental situations in which the fluid can
percolate easily, for example, glass beads immersed in fluid.
Also, experiments are usually performed at ultrasonic fre-
quencies, which are much higher than those encountered in
geophysical applications.

Biot? has shown that at high frequencies it is necessary
to include a viscous boundary layer effect. This is reflected in
the equations through a frequency-dependent function F (w)
that multiplies b (see Sec. I). Therelevant parameterin F (w)is

Ko = aJo/v, (67)
where ¢ is a typical pore dimension and v is the kinematic
viscosity, v = u/p;. For large &y, F (@) goes as k,e™*. From
Eqgs. (61) and (62), we have w/w, = dawn/v. Normally one
has « proportional to a2, so that w/w, » 1 implies «,> 1, and
vice versa. Therefore, one would normally need to consider
F (w) explicitly in the high-frequency range. However, in the
following we will assume F = 1. This may be reconciled with
the previous statements by assuming the dominant pores to
be slitlike. For such pores the relevant pore dimension a is
the thickness, but the permeability will be proportional to a/,
where the length 7 is much greater than a. In this way it is
possible to envisage cases where w/w, » 1 but «, can be small.
We also avoid the necessity of introducing an explicit F (w),
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which requires making specific assumptions about the pore
microgeometry. Finally, we note that even when
F (0)a(iw)'’?, the only results below that are affected are the
wave attenuations, which then grow as '/2. All the other
quantities become frequency independent and thus, inde-
pendent of F (o).

From the results given in Appendix A, we find that the
velocities v, and amplitude ratios 4, become real quantities
to first order in (@, /@) for @ = F, S, and 7. We have the
inequalities'

Ap>Ar>0>45, A =1-T"1«1, (68)
where the tortuosity 7'is defined in Eq. (11). Thus the quanti-
ties D and Dg = 1 — D have values between zero and one.

The leading order terms in the wavenumbers are, for the T
wave:

. 2
o v
k. = (0‘ 1+_c( Teo
T Ur, 20T \ v,

- 1) + 0(@‘2)] , (69)
where

Vi V50 = (1 — dp/Tp) ™' > 1, (70)
and for the F and S waves, a = F,S:

ka = (a)/vFOCaao)

[1+ [lezzz(l’m)z IChs _1| ]
2‘0 p UTao‘ )

+ O(a)“z)] , (71)

where C,  is the limiting value as w— o of C,, which is
defined in Appendix A. It is shown in Appendix B that

Cr,>1>Cs . (72)

Hence the quantity in square brackets in Eq. (71) is less than
unity for both ¢ = Fand S.

The attenuation of each wave tends to a constant value
a,,a=F,S, and T in the limit w— «, where

a, =Imk, (o= ). (73)
The T-wave attenuation, from (69) and (73), is

ay = bvr_ /20T 7%,. (74)
From the definition of b in (62) we see that a scales roughly
with (y¢ */kT?). Taking = 10~2 g/cm s for water, p = 2.5
g/em?® vy, ~Vro =2km/s, and putting k =k 10~% ¢
wehavea, ~¢ 2/(T %k }em ™. Thecritical quantity hereis the
product T%k. Typically, in rocks, k is much less than unity.
The tortuosity 7 may be much greater than unity, however.
Itis known for a stiff frame that'* T= ¢ (o/0),where o and
o are the electrical conductivities of the fluid and the porous
solid, respectively, assuming the grains are insulators.

The high-frequency attenuation of the a wave, a = F,
S, or T, disappears, if and only if, vg, = vg,, Where vy
= Cg,, Upo is the asymptotic value of v, as @— . This can
occur for a@ = F only, and corresponds to Biot’s compatibi-
lity condition.! In fact, when the compatibility condition
holds, v = vgy and A, = 1 for all frequencies.

We note that the high-frequency limit is not the same as
the limit of vanishing dissipation, 5—0. In the latter case, the
attenuation vanishes at all frequencies. But when 5> 0 and
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@— o, the attenuation of each wave tends to a constant val-
ue which is proportional to b.

D. Low porosity, high-frequency approximation

When ¢ = 0, the bulk modulus «, of the dry frame de-
fined in (7) is equal to «,. For arbitrary porosity, we write

Ky, =K,(1 — /M), (75)

where M is an O (1) parameter defined by the microgeometry.
Effective medium theory estimates of M are given in Ref. 14,
for example. Substituting Eq. (74) into Egs. (5}{7) deter-
mines P, Q, and R. The high-frequency, low porosity (¢<1)
approximations follow from Appendix A as

vp =l +N)p +O(p),

vr=N/p+0(¢),
L 'Y S
vg_Tpf 1+K,(M 1)] +0($), (76)
Ap =1+ (65— €)/(Te —M8) + 0 (8),
_ 1 ps (Te—Ms
As = ¢M(—T_M)+om,
where
S=[1+Mk/x,—1)]7), (77)
€=(p;/p;)(1 + 4N /x,), (78)

and the tortuosity 7 is defined in (11).

The most important result in (76) is that the ratio 45 is
O (¢ ~")as$—0. Thusall the motion associated with the slow
wave is concentrated in the vanishingly small fluid compo-
nent. Referring to Eq. (44), we note that D, = 1 + O(¢ ) and
Dg = O (¢),sothatu®reduces in the limit to the purely elastic
Green displacement tensor.' The slow wave term in U of
(46) remains, however, since Ag Dg = O(1). This shows ex-
plicitly that the slow wave motion generated by a point force
is significant only in the fluid.

We have assumed so far that the tortuosity T'is indepen-
dent of ¢. This is certainly not true, but the precise depen-
dence of T on ¢ is uncertain. Berryman'® has estimated
T=0(¢ ~')andJohnsonezal.*find T = O (¢ ~'/?)as ¢—0.
Whatever the specific behavior may be, we note thatif 7—
as ¢—0, then we still have 4,— — o as $—0. Also, from
(76) and (68) we see that A, 47— 1, and v3—0, indicating
that the fluid moves in phase with the solid and the slow
wave disappears.

E. Stiff frame, high-frequency approximation

When the pore fluid is much more compressible than
the frame, we have «,<x,, «,, N. The following high-fre-
quency results then follow from Appendix A:

(ﬂfcb +4N )'/2 vy N 172
Vp~\——F—%= y Ug~ y Dy~ (p ) ’
—ép/T VT — ép,/T
Ap~1—(3/T - vi/M)/(v: — v), (79)

As~ — [(Ky + 4N Vi, ] [(1 = v/0M ' — T Y],

where v, = (x,/p,)"/? is the speed of sound in the fluid and M
is defined in (75). The fast and transverse waves have the
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speeds of longitudinal and transverse waves in an elastic sol-
id with moduli «, and N and density p — ¢p,/T. The slow
wave speed depends very simply on the fluid sound speed
and the tortuosity 7. The full ramifications of this relation-
ship have been explored by Johnson.'>"?

We note from (79) that A = O (ks/k;). Thus, as in the
case of low porosity, the slow wave motion is almost com-
pletely restricted to the fluid in the pores. The energy density
of a wave is roughly proportional to xg#” in the solid and
k,U? in the fluid. For a slow wave, the ratio of fluid to solid
energy densities is therefore » 1. Since the slow wave energy

_ resides mainly in the fluid, it is imperative that the pore

spaces be well connected if the slow wave is to propagate.
Also, from (45) and (79) we have Dy ~ 1, Dg = O (k/k,). The
results of Sec. II then predict that a load applied in the solid
will radiate mostly as F and T waves, with relatively little
energy going into slow waves. The converse of the stiff frame
is that of a weak frame. We shall not consider this limit here,
but note that Johnson'"'” has used it to explore the acoustic
properties of gels.

F. High-frequency example

Ultrasonic experiments on consolidated water-satu-
rated glass beads (Ridgefield sandstone) by Plona* have
shown the existence of the slow wave. In Sec. III F, we will
evaluate the various high-frequency limits of the wave pa-
rameters for the data of Ref. 13. The solid (grain) and fluid
parameters are p, = 2.49, p, = 1 g/cm’, k, =49.9, and «;
=2.25%10'° dyn/cm?. The bulk parameters follow from
measurement of the dry frame longitudinal and transverse
wave speeds.

. Urary = [k, +§N)/P1]”2,
(80)
Urdey = (N /p))'"2.

The permeability of the sample is not given in Ref. 13. How-
ever, reported values of the permeability in similar sam-
ples'!'819 give k=~ 10~# cm? (1 Darcy). We assume here that
k = 10~% cm?. With the viscosity of water asy = 10~ 2g/cm
s, the characteristic frequency f, = w./2m follows from Egs.
(61)and (62) as (0.14) ¢ X 10°cps, where ¢ is the porosity. The
center frequency of the experiments was 0.5X 10° cps. The
porosity varied from 0.33 to 0.1; therefore, the ratio w/w,
varied from about 10 to 40, indicating the high-frequency
regime. However, the typical pore size is known to be on the
order of 102 cm,!? which implies that «, of Eq. (67) is very
large. Therefore, we cannot expect to estimate the wave at-
tenuations without making further assumptions (see Ref. 16
for a discussion of the amplitudes in these experiments), but
we can use the other asymptotic results of Sec. III C. Indeed,
a comparison with the wave speeds computed using the ex-
act equations shows the high-frequency approximations to
be accurate to within 1%."'

The results are shown in Table I. The stiff frame ap-
proximations of Sec. III E can be shown to give reasonable
approximations (accuracy ~ 10%) to the results. It is inter-
esting to note that as ¢ decreases, the amplitude ratio 4
increases in magnitude, as predicted in Sec. III D. The slow
wave energy becomes concentrated in the pore space, which
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is itself disappearing. Also, from Table I we note that Dg€1, ~ where n is the unit normal out of V. This is the Betti-Ray-
indicating that forces applied to the solid phase will not pro-  leigh reciprocal identity for a porous medium.

duce slow waves efficiently [see Egs. (43) and (46)]. Direct Now let us consider the special case when u® and U? are
coupling of the applied force to the pore fluid is necessary to  the Green tensors for a point load. Then

generate slow waves. In the experiments, this was achieved uB(x) = uS,(x;x’), UPx) = UG, (x;x)

using a water immersion technique with open pore boundary ! LADT R AT D

conditions at the porous/fluid interface. Ultrasonic waves in (86)
the water bath thus coupled to the slow wave. fAx)=8,8(x—x), Fix)=0,

where k denotes the direction of application of the point
IV. DYNAMIC RECIPROCITY AND A REPRESENTATION  15ad. Dropping the superscripts on w?, U4, ¢, and 5%, and

INTEGRAL interchanging x and x’ we obtain

We first derive a dynamic reciprocity relationship for a G
the Biot equations. This result is the Biot analog of the Betti- f [ fi(xYui (x'sx) + F;U G 1AV (x')
Rayleigh theorem in elasticity.'* A similar result has been v

derived by Vargas.?® Let the time harmonic fields u* and U + J [(ojuS. — o%u)) + (UG —sS U]

satisfy the inhomogeneous Biot equations: s
o' + 5 U + Vot = — £, (81) xn, dS{x') = [“"(x)’ fxisin ¥, (87)
o + U + Vst = — F. (82) 0,  ifxisoutside V.

. . . . This is our representation integral. It expresses the field u(x)
Here fA and F” are body.forces per unit volume in the solid a4 yny point in ¥in terms of the applied body forces in ¥ and
and fluid phases, respectively. The stress tensor o and sca-  the tractions on S. A similar representation exists for the
lar 5* are defined by Eqgs. (1) and (2) for the fieldsu”and U gyjq displacement U. It can be obtained from Eq. (87) by
Similarly, let u?, U, o®, and s” be the displacement and  replacing the terms G,(|x —x'|), a=F, S, and T by
stress fields produced by body forces £* and F2. Consider the A, G {|x — x’'|) wherever they occur in the left-hand side. In

integral other words, if Eq. (87) is rewritten as
— (a) ’ '
[ Wpa+ Frop— st + Frupay wi=_ 3 JOKIGx—x]) (88)

: ‘B R , where J'® are integro-differential operators and x is in V,
= J-V [oGu7 +5iUD) — (o gul +57U{)]dV  (83)  then

over an arbitrary volume ¥ and the subscript comma de- CUx)= Y AJPX)G,(x —x')). (89)
notes differentiation. The right-hand side of Eq. (83) follows . a=FST
from Egs. (81) and (82) and the corresponding equations for

. . ; V. ER
system B. The integral on the right-hand side can be ex- SCATTERING THE.OREM.S )
pressed as the divergence of some quantity by using Egs. (1) In Sec. V, we derive reciprocity relations for the scat-
and (2). We obtain tered F, S, and T waves that are produced when a wave is
4. B B g incident upon an obstacle of finite extent. These relations

(o 3,4 + 5% u? (o5 + s3UD) include as a special case the known reciprocity relations for

= [lo§u? — olul) + s5"U} — UM, (84)  purely elastic waves.?"?

Let S be the surface of volume ¥, The volume integral We begin by writing the total fields as the sum of inci-
on the right-hand side can be recast as a surface integral over ~ dent plus scattered fields:
S by a simple application of Green’s theorem. Equation (83) (w,U) = (u', U™} 4 (u*,U*). (90)
th.en becomes The scattered fields must satisfy the radiation conditions
f [(fPuf —fiud)+ (FEU? —FlUP)aV that their farfields are of the form

vV

se an 1
= [ [oi oty + vt —Putnas, @) w= 3 x@e.n|i+o(L)], e e

TABLE I Results for the high-frequency example. The wave speeds are in units of km/s; v, 4, and vy,,, are given and vg,, v, , and vy, follow from
Appendix A and Sec. ITI C. ¢ is the porosity; T'is the tortnosity [Eq. (11)); the amplitude ratios A, A5, and A follow from (16) and Appendix A; and Dy is de-
fined in (44). The numbers in parentheses denote powers of ten.

¢ (%) T Upgy + Uray Vg Vs o V5o Ap Ag Ay Dy

335 1.75 3.10 1.82 3.23 1.01 1.74 0.68 -12 043 2.0(—-2)
26.6 2.00 3.83 2.28 .39 0.97 2.20 0.66 —-22 0.5 T.1{—3)
219 2.40 4.32 2.65 4.35 0.89 2.57 0.70 -3 Q.58 3.6(—3)
16.2 . 3.02 4.84 2.81 482 0.81 2.74 0.74 — 358 a.67 1.3(—3)
10.5 3.84 5.16 3.09 517 0.71 34 0.81 — 85 0.74 7.8(—4)
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U= 3

A4, X G, (r) [1 +0 (l)] , r—ow. (92
a=FsT kar

The vector scattering amplitudes x* are functions of the di-
rection of observation £, but not of the distance r. Thus they
depend upon the choice of origin, but the scattered fields in
(91) and (92) do not. The scattering amplitudes are polarized

such that
X*At=0, a=FS, x*t=0, a=T. (93)

We will obtain explicit representations of the x* shortly.

Let the obstacle or inhomogeneity be surrounded by the
closed surface X. For example, if the object is an infinitesi-
mally thin crack, then 3 may be the two faces of the crack.
Or, if the object is an elastic inhomogeneity then 2 may be its
outer surface. Now consider the representation integral (87)
with u, U, ¢, and s replaced by the fields u*, U*, ¢*°, and 5** of
the scattered waves. Let ¥ be the volume between X and the
surface of a sphere of radius A which is centered at the point
of observation and encloses 2. As 4— o, the integral over
the surface of the large sphere vanishes because of the radi-
ation conditions (91) and (92) and we obtain

wix) = j ([0 G ') — 0% ]

+ [$US, — S U*]}n, dS(X), (94)

where n is the unit normal into 2. A similar expression for
U™(x) follows from (88) and (89). Equation (94) is an exact
representation of the scattered field at the position x outside
T in terms of the fields on X. This equation could be used as
the starting point in the derivation of an integral equation for
the scattered fields. For example, if 3 is the surface of a
crack, the equation is obtained by letting x approach 2 and
then applying the boundary conditions on the crack faces.
This procedure is outlined in Ref. 23 for the elastic case.
The farfield scattering amplitudes now follow from
Eqs. (91) and (94) and the results of Sec. III A. We obtain

XA = [ (/NN =1, 1) [05) + 418,

+ ikyB L (Aui*)n,exp( — ikr£ « x')dS (x')

(95)
and fora = For S,

=10, (= )f[ (o) + 54,8, 1,

exir]

xexp( — ik, r-x')dS (x'). (96)

We note that the scattering amplitudes of Egs. (95) and (96}
automatically satisfy the radiation conditions (93).
Consider two fields 4 and B, as in Eq. (85), but with no
body forces present in ¥, which we take to be the volume
interior to 2. Then if the material of the inhomogeneity or
obstacle possesses a symmetric stress tensor, we have from

Eq. (85)
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nB) = | [lo o — ofut
+ (AU — PUH]n, dS =0. (97)

This relation holds, for example, when the medium inside is
an anisotropic Biot material, or an anisotropic elastic mate-
rial, which is a particular case of the Biot material. The result
(97) is independent of the boundary conditions on X, which
could be a closed or open pore or the intermediate permeable
condition,? for example.

Now, splitting both fields 4 and B into sums of incident
plus scattered fields as in (90), we obtain

74,in;B,in) + ¥{4,sc;B,in)
+ #lA,in;B,sc) + yiAd,sc;B,sc) = 0. (98)

The first integral in (98) can be transformed into an integral
over the interior of X using (84). This integral is zero since
A,in and B,in are regular in 3. Similarly, the last integral in
(98) can be transformed into a volume integral over the re-
gion external to = and a surface integral at infinity. Both
integrals are zero, the first because the scattered fields are '
regular in the exterior region and the second due to the radi-
ation conditions (91}—(93). This leaves us with

J [(a,;;.inustc O,Bsc Am) -f-(.S'A mUBsc SB.ch.:.in)]ni dS
=

— f [a‘?,inuf ,SC UA ,SC. Bm)
p3

+ (sPU e — 15U P ]n, dS. (99)
Now, let the incident fields be plane waves:

u’" = a explik,p+x), |p|=1, (100)

u?" =b explikzq-x), |q| =1, {(101)

where a,8 = F, S, or T. The vectors a and b are polarized in
accordance with (16). Substituting for the incident fields in
(99) and using Eqgs. (1), (2), {95), and (96), we obtain the reci-
procity relations
k;Dga -« x®) —

p)=k.D,b x"“(—q. (102)

Here, the vector x*# is the scattering amplitude of type a
due to the incident field B. Also, the quantities D, are de-
fined in (44) and (45). We note that (102) includes all possible
scattering processes. For example, when there is no mode
conversion (@ = 3), we have

a-x*?(—p)=b-x"(—q). (103)
The reciprocity relations (102) include the elastodynamic
reciprocity relations®' as a special limit. In this case, @,8 = F
or Tand D, = 1.

It is possible to derive “optical” theorems in nonabsorb-
ing media which relate total scattering cross sections to for-
ward scattering amplitudes. Tan?* has derived these rela-
tions for elastodynamics. The key to any optical theorem is
the conservation of energy in an infinite sphere: The energy

a(B j(

‘of the plane wave coming in is equal to the energy going out.

The whole procedure is not applicable when there is attenu-
ation in the host medium. Since this is the case with the Biot
porous solid, it is not feasible to obtain optical theorems,
except in two cases: first, when the Biot medium is not
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damped (b = 0), but this is an unrealistic assumption. The
second case is when the Biot compatibility condition holds
(see Sec. III C and Ref. 1). Under these special circum-
stances, the fast wave radiates to infinity and it is possible to
derive an optical theorem. Owing to the limited applicability
of such a theorem, we shall not present it here.

VL. THE TIME-DEPENDENT POINT LOAD SOLUTION

The results of Secs. I-V are for a time harmonic point
load. Any other time-dependent point load may be consid-
ered by taking the appropriate Fourier transform of u® and
U€ with respect to w. In particular, if the applied load is a
delta function at time ¢ = 0, the corresponding solid dis-
placement tensor is

1 o

— u% —“ dp.
2r J- »

(104)

This is the same solution considered by Burridge and Var-
gas,” who obtained the solution using Laplace transforms.
We will show how the results in Ref. 7 can be obtained readi-
ly from our time harmonic solution.

A. An exact result for no dissipation

We consider first the case of no dissipation present in
the system (& = 0). Then, the integral in (104) can be obtained
in closed form. As discussed in Sec. III C, the wave speeds
arereal, as are the quantities 4, and D,,a = F, S,and T. The
inequalities (68) hold and D, and D are between zero and
unity. The time harmonic Green tensor in (43) depends on w
only through the wavenumbers &, defined in (17). Substitut-
ing for u® in (104), we have in the first term

1 5(:-L), (105)
47Nr Uy

1 ® — it
m f_ . GT(r)e do =

which follows from the definition of G (r) in (35). We note
that the wave speeds v,, @ = F, S, and T are equal to the
infinite frequency speeds when dissipation is present. Thus,
referring to Sec. III C,

Ur =VUrys Vo =Coplpe, @=FS. (106)
In particular, we have for & = For S,
— D © @ )
x (r) o= gy
2N J_. k3%
—vyD, (= [ . r\] do
= xp | —iw{t——)| =
8w’ Nr —mep[ w( va)] w*
2D
=T "(:--’-)H(:——’-), (107)
47Nr v, v,

where H is the Heaviside step function; H (x) = 0, x <0 and
H (x) = 1, x> 0. Combining Egs. (105) and (107), we obtain
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41rNu=Il5(t__’-)
r

v o -3
o 2Ju(-3)
(-2

Evaluating the derivatives in Eq. (108), we can write u expli-
citly as

aa r
u,-u- = 4—”E [(5,1 —_— r,-rj)5 (t —_ ?)
P vr \? r
+ FF; (—— Dgb (t — —)
Up Vg
vr \? r
+(or) 2o (=)
Us Vg
na t r
+ (8; — 377 % = [H (t — -l:)

— D H (t —é) —DSH(t-—é)” . (109)

In analogy with the time harmonic case, the fluid displace-
ment U follows from (109) by replacing &{(¢t — r/v,) and
H(t—r/v,)by A, 6(t—r/v,)and A H(t — r/v,), for each
a=F,S,and T.

Several comments are in order regarding Eq. (109).
First we note that three S-function singularities propagate
with speeds vy, vy, and vg. The magnitude of each singular-
ity is proportional to D, @ = F, T, and S. As each singular-
ity passes a given point in space, a discontinuous function
proportional to (¢ /7°) is “turned on.” Suppose, for example,
that v; > vy > vs and consider the series of events at a fixed
value of r. The fast §-function pulse passes at t = r/vy, leav-
ing a displacement after it which is proportional to — Dyt
Then, the transverse pulse passes at ¢ = r/v;, changing the
proportionality constant to (1 — D)t = Dg¢. Finally, at
t =r/vs, the slow pulse arrives, leaving zero displacement
after it. The fluid displacement U undergoes a similar dis-
placement history. After the arrival of the F pulse the dis-
placement is proportional to ( — Az Dgt). This proportional-
ity changes to (4 D¢t ) when the T pulse passes and becomes
zero at t = r/vs. We note from Eq. (68) and the definition of
Dy and Ds in (44) that the sense of u changes at t = r/v,
while the sense of U remains the same. Thus all motion is
confined to the interval between the arrivals of the first (fast)
pulse at £ = r/v, and the final (slow) pulse at t = r/uv;. Final-
ly, we note that u reduces to the well-known result for pure
elastodynamics'® when Ds—0, as discussed in Sec. III D.

(108)

B. Approximate results when dissipation is present
The presence of viscous damping (b #0) in the system
makes the inverse transform in (104) impossible to do in
closed form. However, it is possible to extract the dominant
terms for large values of £ and r. This has been done by Bur-
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ridge and Vargas’ using inverse Laplace transforms. We
now rederive the results of Ref. 7 in compact form using
(104) and our results in Sec. III.

It can be shown'”’ that, in general, the F- and T-wave
attenuation is zero only at zero frequency. The slow wave is
attenuated at all frequencies, and so its contribution will be
exponentially small in comparison with the F and T waves.
Therefore, we first consider the farfield approximation to u®
in (54) with only the F- and T-wave terms present. We ex-
pand the quantities k., k-, and D about their zero frequen-
cy values using (63) and (64). Then, substituting from (54)
into (104) and using the identity

a0 2
J- exp [ 175) ( — _r_)] exp (—(;”’—zr) do
— e Uro Uro
(770;-0 )V2 ( r— wro)z)
= exp| ————
v,r dvr/vrg
and a similar one for the F wave, we obtain

U~/ 2006 /2t P12 (8 — ri;)N 2

(110)

Xexp[ — (r — tvyo/4vyt | + 77, H ~3/2

Xexp[ — (r— o) /4vst |1, (111)
where
v, = (N/2b)p,/p (112)
and
vy =(H /2b)p,Z /p)*- (113)

The other quantities in Eqgs. (110}-{113) are defined in Sec.
III B. In going from (110) to (111) we have substituted
r=tvy, for r in the pre-exponential factor. This is valid
since any error is exponentially small. A similar substitution
has been made for the F~-wave term.

The result in (111) neglects terms O (¢ —3/2) and smaller.
The diffusion coefficients v, and v, are the same as those
defined by Burridge and Vargas”; Eq. (111) agrees with the
resultin Ref. 7. We note that the two terms in (111} have their
maxima at distinct times. We refer to Burridge and Vargas’
for a discussion of this result.

The slow wave diffusion process can be obtained by put-
ting the S part of u€ in (43) into (104). The low-frequency
expansions of Egs. (63}65) are then used to approximate the
integrand. Let u”, with D for diffusion, be the displacement
field. Then

2
o —1 (R + Q) v (f) : (114)
47b H r
where
sz —exp[ ( ) e“”"—iwt]dm (115)
270 v
d

= (PR — Q?%/bH. (116)

The branch cut of (w)"/? in (115) is defined such that
(@)% = i|w|"? for @ < 0. The integral in (115) is to be under-
stood as a principal value integral. It can be shown that
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ds
J——J- sm( "2)s

= erf[r/(4v,2)'?]
Combining Eqgs. (114) and (117) we get

W' - 41lrb (R;Q) v [_ ((4v,;)"2)] (1)

and, from Eq. (65),

(117)

U= — [P+ V(R + Q)]u”. (119)

These results agree with those of Burridge and Vargas,” ex-
cept for a minus sign.

The diffusion constant v, of (116) is equal to the diffusi-
vity C, of Rice and Cleary.”® The equivalence has been dem-
onstrated by Chandler and Johnson.?® These authors discuss
the behavior of C,, as a function of the physical parameters.
Dutta and Odé” also find that the same diffusion constant
governs the quasistatic slow wave. We note that in the stiff
frame limit (see Sec. I1I E), we have

(120)

where v is the speed of sound in the fluid. The other diffu-
sion constants v, and v; of (112) and (113), unlike v,, depend
upon the fluid and bulk densities p, = p,/¢ and p. Therefore,
they cannot be derived from a quasistatic analysis which
ignores inertial effects. Rather, they are a consequence of the
full Biot equations.

vizdK/b=v}/o,,

C. Precursors

In addition to the wave packets discussed above, there
may also be discontinuous precursors. There are three in
number, corresponding to F, T, and .S waves. They are a
consequence of the fact that the time harmonic waves can
have finite attenuations at “infinite” frequency, i.e., for
w/w.»1. In this respect, we note the caveats in Sec. III C
and below. Under the assumption that F{w) = 1 as wo— o0,
the time harmonic Green tensors are given by the right-hand
sides of (54) and (55) with k,,, D,,and A,,a =F, S, and T,
given by their asymptotic values discussed in Sec. ITI C. Spe-
cifically, u®(w)}—>u%=(w), where

uge = lNr [(5,-,- — F;#;)exp ( for ) e T

UTr.n

2 .
P Ure - lwr —a,r
+#75 Y ( ) D, exp (— e .

a=FS Uaco vam

(121)

The subscript « indicates the infinite frequency (w— o) or
zero dissipation (b—0) limits of a quantity, which have been
discussed in Sec. III C. The attenuation coefficients a,,
a =F, §, and T follow from Egs. (69), (71), and (73).

The displacement field (u® — u%=)is O (v~ ') as ¥— oo.
Therefore, its inverse Fourier transform can have finite step
discontinuities but not 8-function singularities. However,
since
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@ 1y A0
[ -
. 1T
1 r —a
=— |, —#F)5 [t — e” "
47Nr [( v ! ( v,-m)
vTao 2 r — apyr
+ 2 Dawc‘i(t— )e (122)
a=FSs \ Vg, Voo
and
u® = uf~ +(IIG—I.IG’°°), (123)

it follows that (122) represents the most singular part of u as
defined in (104). At the arrival of the pulses in (122),

a,r=ta,v, =0(o.t) (124)

and since w, is very large for rocks, ~ 10° cps, it follows that
the singularity strengths become negligible very quickly. Re-
ferences 7 and 20 also discuss the discontinuous precursors
and reach the same conclusion about their fast decay.
Finally, we note that the existence of traveling singular-
ities is due to the finite attenuation at infinite frequencies.
Frequency-dependent models of the function F{w) usually
have F(w)~ (iw)"/? {e.g., Biot?} and hence produce infinite
attenuation as ®— w0 . The effect of this is to kill the singular-
ities of (122). The low-frequency diffusive pulses are un-
changed. Realistically, we can expect the damping to in-
crease with frequency. Therefore, not much emphasis
should be placed on the precursors. The dominant sources of
motion are the low-frequency contributions (111) and (118).
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APPENDIX A: THE BIOT WAVE SPEEDS AND RATIOS

Transverse wave:

vr =N /p)722/4)s (A1)
Ar= —72/Vn- (A2)
Fast and slow waves, @ = For S:
vk = (H /p)C2, (A3)
ag= —ZuiCa oy (A4)
Oy — 721'C¢2z
where
P=pu+20n+pn (AS)
¥y =yl (A6)
H=P+20+R, (A7)
ow=P/H, 0,=Q/H, 0yp,=R/H, (A8)
A=Vu¥a— ﬁz: (A9)
C =002 — 0%, (A10)
B =71100 + V22011 — 2712012 (Al1)
D = (B?—44C)'?, (Al12)
and
Cis=(B+D)24. (A13)
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APPENDIX B

Wewillshow that C%_ >1.LetB_,D_,andA4_ bethe
limiting values of B, D, and 4 in Appendix A as @—> o0 . Then
\/C%t =B, —D_)2C (B1)
and
D_ =(B_ —2C) +4Cp,/p)*Z*>|B_ —2C|, (B2)
with equality, if and only if, Z = 0, where Z is defined in Eq.

(64). We note that Z = Ois the compatibility condition.' Two
cases now arise: First, if

B_ —2C>0, (B3)
then (B1) and (B2) imply that C¢_, > 1 since C>0." If

B_ —2C<0, (B4)
then (B1) and (B2) give

1/C2_ <(B, —C)/C. (B5)

However, from (B4) we see that the right-hand side of (B5) is
less than 1, and so C, > 1. When Z = 0, we can easily show
that (B3) holds and hence C._, = 1. Similarly it can be
shown that Cg_ < 1.-
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