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SUMMARY

Crack diffraction in a transversely isotropic material is analysed, The solution is
given for the diffracted field generated by incidence of a plane time-harmonic wave
on a semi-infinite crack located in a plane normal to the axis of symmetry of the
material. The exact solution is obtained by Fourier integral methods and the
Wiener-Hopf technique. The method of solution applies when the slowness surfaces
of the quasi-longitudinal and quasi-transverse waves are convex in the direction of
the crack. The diffraction coeflicients have been determined for regions of slowness-
surface convexity, The diffraction coefficients have been used in the context of the
geometrical theory of diffraction to compute high-frequency scattering by a crack of
finite length. Applications to scattering by delaminations in a medium of periodic
layering have been considered for the case when the wavelength and the crack length
are of the same order of magnitude, but both are much larger than the larger layer
thickness.

1. Introduction

THE propagation of waves in unbounded, homogeneous but anisotropic
linearly elastic solids is well understood. The number of known solutions for
scattering problems in anisotropic solids is, however, much smaller than for
isotropic elasticity. The simplest problems, reflection and refraction of plane
waves, have been discussed in detail (see for example (1, 2)). Lamb’s
problem for an anisotropic half-space was solved by Abubakar (3, 4) and
Kraut {5).

In this paper we consider the problem of diffraction from a crack edge in
an anisotropic solid. A semi-infinite crack is located in a plane of symmetry
of a transversely isotropic material. The incident wave motion is confined to
the plane which is normal to the crack edge. Therefore, the scattering
geometry is two dimensional. A related problem of wave motion generated
by symmetric concentrated forces on the crack faces in a material of cubic
isotropy was considered in (6).

{Q. Ji Mech. appl. Math., Vol, 37, Pt. 4, 1984]
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The two-dimensional isotropic diffraction problem was first solved by
Maue (7). The three-dimensional isotropic problem was considered in (8, 9).
The current problem can be viewed as a canonical problem whose solution is
necessary for the development of an anisotropic geometrical theory of
diffraction {(GTD), see (9) for the isotropic theory.

After a brief review of wave propagation in a transversely isotropic solid
in section 2, the diffraction problem is formulated in section 3. The Wiener-
Hopf technique is used to obtain the solution. In section 4 we derive
diffraction coefficients which permit us to extend GTD to include anisotropic
diffraction. Finally in section 5 we consider a fransversely isotropic solid as a
model of a layered composite {(each of the layers being isotropic), when the
ratio of wave length and layer thickness is large. The crack is taken to be
parallel to the layers. The diffracted field is compared to that of an isotropic
solid and the implications for non-destructive testing of materials are noted.

2. Reflection of plane waves

As a preliminary to the discussion of diffraction by a semi-infinite crack,
we give a brief review of the propagation of plane waves in transversely
isotropic solids, and the reflection of plane waves at a traction-free bound-
ary. The geometry is shown in Fig. 1. The y-axis is parallel to the axis of
symmetry of the solid. The term exp (—iwt} will be omitted.

For plane strain the stress—strain relations may be expressed in the form

o, = plau, +(c—d)v,}, (2.1)
o, = p{(c—d)u, + b}, o {(2.2)
O,y = pd (U, +v,), (2.3)
where u, =du/dx, etc., and
a = Cyi/p, b= Css/p, (2.4)
¢ = (C13+ Cialp, d = Cyalp. (2.5)

Here Cyq, Cys, Cas and C,, are four of the five elastic constants that enter in
the three-dimensional stress—strain relations of a transversely isotropic solid.
It is noted that for cubic isotropy we have a = b, while the equations reduce

[ L

a b

Fic. 1. Geometries for {a) reflection and (b) diffraction
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to those for an isotropic solid when a=b and c=a~d (then pa=\+2pu,
pc=A+pn and pd=pu). By the use of (2.1) to (2.3) the displacement
equations of motion are obtained as

Al + duy, + cv,, = —w’u, (2.6)
U, + do,, + boy, = —w’v. 2.7)

Let us first consider plane waves of the general form

u={A.(d), B,(\)} exp [ic(Ax+B,y)]. (2.8)
Substitution of (2.8) into (2.6) to (2.7) gives‘
ar?+dp2—1 CAB, AN (O
( CAB,, d\?+ B2~ 1)(3,,) B (0)' 29

Let G(A, B) be the determinant of the matrix in (2.9). The vanishing of
this determinant defines the slowness surfaces, 8 =£8,(A), n=1, 2 where n
defines the type of wave, and

b+d—Lx>2 {<b+d—L)\2)2 a 1
2=_______+ Ly = ety 2 2}2. .
B 2bd (1) ~bd , Hik2 (2.10)
In (2.10),
L=ab+d?*-¢?, (2.11)
ul2=pZ-A%  pi=1/a, pi=1/d. (2.12)

In the isotropic limit, n=1 and n =2 correspond to longitudinal and
transverse plane waves respectively. Therefore we refer to them in the
anisotropic case as quasi-longitudinal and quasi-transverse waves,

The functions $;(A) and B,(A) possess several branch points in the
complex A-plane. These branch points are of two kinds. The first kind are
those points at which 8;(A) or 8,(A) is zero. Assuming that a —d >0, which
is the case in practice, we have that

Bilp) =0,  B3p)>0. (2.13)
Thus the points A = £p, are branch points of 8;{(A). Now, if
c*<bla—d), (2.14)
then we have
Bi(p) <0,  B3(p2)=0, (2.15)
and so the points A = +£p, are branch points of 8,{(1). However, if
c*>bla—d), (2.16)
then
Bip) =0,  Bp)>0. (2.17)

- Condition (2.14) is equivalent to the condition that the quasi-transverse
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slowness surface be convex in the x-direction (2, p. 103). In other words, if
(2.16) holds, then the slowness surface is concave in the x-direction and the
wave surface has two cusp points located symmetrically with respect to the
x-axis (points Qy in the notation of 2). The implication of (2.17) is that
B1(A) has four branch points on the real axis and B2(A) has none. The real
slowness surface (A, 8,())) is therefore not closed, it is ‘missing’ those pieces
where the quasi-transverse slowness surface is concave. These missing pieces
are contained in ,(A).

The second kind of branch points are where the discriminant of B2(A) is
zero, that is where B83(A)—B3(A) is zero. Such points will occur in pairs.
Between the two points of a given pair we may define a branch cut such that
B1(A)+Bo(A) is continuous across the cut while B1(A) and B,(A)} are each
discontinuous. In the analysis of the Appendix it turns out that 8, and B,
occur only in the combination 8,+ B,. Therefore these cuts give no con-
tribution to the analytic factorization in the Appendix.

'The angle of incidence is defined as the angle that the ray direction of the
incident plane wave makes with the positive x-axis. It follows from the
definition of the ray direction (2) that the angle of incidence is the angle
which the normal to the slowness surface makes with the x-axis. Let 6, be
the angle of incidence of a wave of type n, then

Gs

=tan @, (2.18)
Gy lg=g.00

Thus, given n and 6, equations (2.10) and (2.18) define the corresponding
values of A and B,. Having found A and B.. the corresponding ratio of B, to
A, follows from (2.9) as

BP!/AH = Mn ()\ )/C)\Bm (2'19)
where
Mn(:\)=—a)\2-d33+ 1. (2.20)

To investigate the reflection of a plane wave of type n, n=1,2, we
consider

u” = E,{cAB,, M,} exp [iw(Ax + 8,y)], (2.21)
where
E7 %= (cAB)?+ (M2, (2.22)
The corresponding stresses at y =0 are (o), oy exp (iwAx), where
o9 = iwpE,B,G, (2.23)
oyx = iwpE, B,F,, (2.24)
and where
G, =clc—d)A\*+bM,, (2.25)

F, = (dA/B)(cBr+M,). (2.26).
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An incident wave of type n will give rise to reflection of waves of both
types 1 and 2. A convenient form of the reflected wave field is:

u™®= RYE{cAB, —M;} exp [iw(Ax — B,y)] +
+ R3E{—cABy, My} exp liw(Ax—B,y)],  (2.27)

where RY and R} are the reflection coefficients. The conditions of vanishing
stresses oy and o, at y =0 then gives the equations

G, —G,\(E;B,R} G
( ! 2)( 1By ;) = TEan( ) (2.28)
—F F, JN\EyBoRE/ K,

This system of equations can be solved for R} and R} to yield

R" = Ean FnG3-m +GnF3—m
" E.pn FEG,-FEG,

(2.29)

where n defines the incident wave (n=1,2) and m the reflected wave
(m=1,2).

3. Diffraction by a semi-infinite crack
The total field is expressed as the sum of the incident and the diffracted
fields
“tot — uin +l.l, (31)

where u™ is given by (2.16) and u represents the diffracted field. In the
following we denote by A; the fixed value of A for the incident wave.

The stress components of the diffracted field are denoted by o, o, and
Tyx- Since the total tractions must vanish on the faces of the crack, we have,
for y=0, x=0, that

oy, = a9 exp (iwAx), (3.2)
Tyx = — 0oy €XP (fwh;x), (3.3)
where ¢ and oo, are given by (2.23) and (2.24). The plane of the crack is
perpendicular to the axis of the transversely isotropic material, and hence
(3.2) and (3.3) will give rise to displacement fields that are symmetric and
antisymmetric respectively, with respect to the plane y=,0. It is then

convenient to formulate symmetric and antisymmetric problems separately
for the half-plane y=0. These are as follows.

Symimetric problem:
Oy =0, y=0, ~o<x <oo, (3.4)
v=0, —oo <l x (), (3.5)

oy =~y exp (iwh;x), 0<x <. (3.6)
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Antisymmetric problem:

o, =0, y =0, —oo << x <0, (3.7)
u=0, —co<<x =0, (3.8)
Oy = =g exp (loAx), 0<x<w, (3.9)

We shall seek solutions to the problems formulated by (3.4) to (3.6) and
(3.7) to (3.9) as superpositions of plane waves of types 1 and 2: ’

2 oo
u= 3 |7 Aereen a, (.10
m=1 ¥~ .
g
2, [ M,.(A) .
— m A :m(Ax+Bmy) . )
v m>':‘1 L B (Ve dr (3.11)
Also M, which is defined by (2.20), may be rewritten as
M, =—dB%+ap’. (3.12)
Note that
2483=(b+d—LAYD/bd;  BIB%= anind/b. (3.13)

The expressions for the stresses corresponding to (3.10) and (3.11) are

oy = Z ipcoLm [(c—d)A+bM, [cA]A,, (A) exp [iw(Ax + 8,,y)1dA, (3.14)

m=1

p e
Op= 2, ipwJ’ dlB. + M /cBn AL (M) exp [iw(Ax + B,y)] dA. (3.15)
m=1 )
Now for the symmetric problem the condition that v=0 for y =0, x=0,
implies that v{x, 0) may be expressed as

oo

vix, 0)= J‘ V7(A) exp (iwhx) dA, (3.16)

where V7(A) is analytic in the lower half of the A-plane. The condition that
o, =0 at y =0 and the use of (3.15) and (3.11) yields expressions for A,(A)
and A,(A) in terms of V7(A). The application of these expressions in (3.14)
subsequently gives

12309

- fwhx 3
(V) V7(A)e' ™™ dA, (3.17)

o, (x, 0) = ipwJ‘

where
Mz(Fl G, FzG1)
acdA (B}- B3)

R(A)= (3.18)

N
<
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We may also write
o,(x,0)= J [THA)+T7(A)]e™™ da, (3.19)

where T" and T~ are analytic in the upper and lower halves of the A-plane
respectively, It follows from (3.6) that

s io$
T (A) = o) et (3.20)
By equating (3.17) and (3.19) we obtain K
i RQ) V7A) =T (A)+ T (A). (3.21)
m1(A)

Equation (3.21) is of the type that can be solved by the Wiener~Hopf
technique. Here we state briefly the formal procedure and the result. For
details we refer to the Appendix. First we introduce the auxiliary function

K(A)=ZR\)(A*—A}), (3.22)

where A =+Ag are the roots of R(A)=0, and Z is a constant which is
chosen such that K(A) — 1 as |A| > . In the complex A-plane, K()) may be
factored in the standard manner (see the Appendix) as

K) =K *(A)K~(\), (3.23)

where K7(A) and K7(A) are analytic in the upper and lower halves of the
A-plane respectively. The following relation holds:

K7(A)=K*(-A). (3.24)
To solve (3.21) it is rewritten as

(T™+THui) i —AR)K-(\) V-

A+ ADK*(A) ZuT(A) . (3.25)

where pT(A) follow from (2.12):
pT=(p1£A): (3.26)

The right-hand side of (3.25) is analytic in the lower half of the A-plane. On
the left-hand side, the term T, which is given by (3.20), contains a pole at
A = A, Now we subtract the term

T iAW)/ (g +A)KT(A,) (3.27)

from both sides of (3.25), to obtain an equation whose right-hand side and
left-hand side are analytic in the lower and the upper half of the A-plane
respectively. By the usual Wiener—Hopf argument the right-hand side and
the left-hand side must then be equal to the same entire function. We note
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that the Wiener—Hopf technique requires the left- and right-hand sides to be
analytic in a common strip. Such a strip may be obtained by giving p, and p,
small imaginary parts. This mathematical device is physically equivalent to
introducing dissipation. The loss-less case is then found by letting the strip
collapse onto the real axis.

In the plane of the crack (y =0) and near the crack edge we have v~ x3, It
is known that v~ x* implies V™ ~A"% as [A\| — . By virtue of this observa-
tion the entire function represented by the left-hand side of (3.25) minus the
term given by (3.27) must then be identically zero, which leads to the result
that

|
oY Z p1(A)p(A)
2mpe (A + Ar)A = AR)K (MK (A)A - N)

V-(A)= (3.28)

The antisymmetric problem may be solved by first writing u(x, 0) as
u(x, 0)= j U~(A)e' ™ dA, (3.29)

where U~(\) is analytic in the lower half plane. This representation of
u{x, 0) satisfies the condition that u=0 for y =0, x=0. The remainder of
the analysis is completely analogous to that for the symmetric problem. We
just cite the result that

oS, Z wz Az ()
2mrpew (A + Ag)(A — AR)K (MK T (M)A — )

U-(A\)= (3.30)

The solution for u to the full problem may be expressed as in (3.10) and
(3.11) where A;(A) and A,(A) are now
ap G U —bu, F, V™
abdp,(B3-B%)
—ap G U™ +bu [ V™
abdu,(B1— B3

A= (3.31)

Ax(M)= (3.32)

4. Asymptotic difiracted field

We now discuss the form of the scattered field given by (3.10) and (3.11)
at a large radial distance from the crack tip. The general type of integral to
be considered is

I, = j F(A) exp Liwr(X cos 6 + B, sin 8)] dA, (4.1)

where m =1, 2, and (r, 8) are polar coordinates defined by
x=rcos 6, y=rsin§. (4.2)

For large r this integral can be approximated by deforming the path of

s
i
R
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integration to a contour of steepest descent through the point of stationary
phase. In deforming to the steepest-descent contour certain poles and
branch cuts may be encountered in the complex A-plane. The first pole is at
A = Ag, which corresponds to the surface waves on the crack faces. The other
pole is at A = A, which gives rise to specular reflection and the shadow zone.
The branch-cut contributions are exactly analogous to the phenomenon of
head waves in isotropic diffraction theory. Since each of these features has
been well discussed for isotropic diffraction, we shall concentrate our
attention on the steepest-descent contribution.
The point of stationary phase occurs at Aq such that
i}

Gs
G,

=tan 0. (4.3)
B=B, ()\o)

At this stage we make the additional assumption that the slowness surface of
type m is convex at A,. The method of stationary phase then gives (10)

| 27y0\b
I, ~e ™ |sin 6] (—?)ZF()\O) exp [iwr(Ao cos 0+ B, (Ao) Isin 8))], (4.4)

r

where v, is the curvature of the slowness surface at Ay:
'YO = ‘GiGBB -+ G%G)\)\ - ZG)\GBGAB I (Gi"{"‘ G:é)u—%]‘g':ﬁ;m(‘\o)- (45)

We note that the convexity condition is always satisfied for the quasi-
longitudinal wave (2). However, the quasi-transverse slowness surface may
have concave regions. If A, is in such a region the above asymptotic
approximation becomes invalid; we refer to (11) for more details.

Combining the above result with (3.10) and (3.11) we obtain the far-field
of type m due to an incident wave of type n:

u™ ~ L L Em(C)\Bma Mm)l)\=)u0D:1(9; Gn) €Xp [lmr(AO cos 6 + Bm(AO) lSin GD]'
(pawr)?
(4.6)

In this expression the unit displacement vector see (2.21) is divided by the
square root of the non-dimensional distance p,or, where p, is defined in
(2.12). The quantity D}, is the diffraction coefficient:

pZ’YO)% Z Ean

2m / abcd E, B,

% [Sin GaFnGS—m“;(Ai)/M;(AO) _ ]Siﬂ Gt bGnFES*m“';(A:)/MT(AO)] (47)
Aol BHAo) — B3 (Ao o= A)(Ag— Ag)(A + AR)KT(A)K(—Ag)

D1(0: 6,) = (-1 (. ko)X
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where the quantities with subscripts n and m are evaluated at A, and A,
respectively. It can be shown that these diffraction coefficients reduce to
those of isotropic elasticity (9) in the appropriate limit. The far-field of (4.6)
1s singular at the physical elastodynamics reflection and shadow boundaries.
This is attributable to the inadequacy of the asymptotic expansion (4.4) at
these boundaries. The singularities may be removed using a uniform asymp-
totic analysis of the integrals I,: see for example (9).

5. Examples for a layered medium

In this section we consider a laminated composite consisting of alternating
plane parallel layers of two homogeneous, isotropic, elastic materials with
the same density. The exact dynamic theory of such a medium presents
many difficulties particularly if one should want to consider simultaneously
the effects of the layered structure and a crack edge. However, a useful
approach is to use an effective modulus theory (12) whereby the laminated
medium is approximated by an equivalent anisotropic but homogeneous
elastic material. Although this is a static theory, it may be used for dynamic
problems when the typical wavelength is much larger than the larger of the
two layer thicknesses.

According to effective modulus theory (12), the gross elastic behaviour of
the laminated medium is transversely isotropic with the normal to the layers
as the axis of symmetry. The effective elastic constants Cy, Css, Cy4 and C,,
are given in (12, p. 33).

For the examples of this section we consider the case when the elastic
materials of both layers have a Poisson’s ratio of 1, which corresponds to a
bulk-wave-speed ratio of 2. Let the x-axis be in the direction of the layers
and the y-axis be normal to the layers. Then the effective elastic constants
are

Cry=[40+ D?uig + 31 (w — @*VI(a + @)1+ 1),
C33 = 4C44; C13 = 2C44, (5. 1)
Caa= U+ Dpia/ (i + ),

where [, [ are the thicknesses and w, (i the shear moduli of the two elastic
layers. The parameters a, b, ¢ and d follow from (2.4) and (2.5). Since it is
only the relative magnitue of these constants that is of importance we need
only the ratios

a/dz4+38(1—8)[1/(a—a2)_4]a} (5.2)

bid =4, c/d =3,
where we have defined 0==a =<1 and 0=g=1 as

a=p/(p+ @), (5.3)
e =1+ 1), (5.4)

S
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We note that a/d =4, with equality only in the trivial limit when the
composite is homogeneous. Thus (a/b)?, which is the ratio of the longitudinal
wave speed parallel to the layers to that normal to the layers, is greater than
unity.

We now consider a semi-infinite crack parallel to the layers in the
composite medium. The solution to the diffraction problem is obtained using
the effective medium hypothesis. The elastic constants of (5.2) automatically
satisfy the condition that the quasi-transverse slowness surface be convex in
the direction of the crack, see the Appendix. Convexity in the y-direction is
also ensured by (5.2) (see (2, (8.3.4))). We note in connection with the

“ Appendix and (2.11), that L>0.

The quasi-longitudinal slowness surface is always convex in transverse
isotropy. The same is not true of the quasi-transverse slowness surface.
Musgrave and Payton (13) have derived a simple condition which is suffi-
cient and slightly more than necessary for the existence of inflexion points
on the slowness surface away from the symmetry axes. It is

c+2d+[(a—d)b—d)}<2(a—d)b—d)c. (5.5)
This condition is met by the parameters of (5.2) if
ald >3(31+/129)=5-3.

Thus, when the ratio of the longitudinal speeds normal and parallel to the
layers exceeds 1-15, cusps will appear in the quasi-transverse wave surface
(2). The far-field solution of (4.6) with n or m equal to 2 then becomes
invalid in certain angular sectors (11).

0-3;

15

n=1,m=2
0-2 1.0+ ANISOTROPIC —
-@0 1 o5 TSOTROPIC_
.14 & A
— 7
) 0 O/Zk\ 1 4
0 0 30 6 90 120 150 180
03 3 n=2,m=2
| 021 21
9
0-1% 1
—— 7
0 : S TE -t | + §] et S T Y ;
0 30 60 909 120 150 180 O 30 &0 906 120 150 180
n n

FrG. 2. Graphs of @ =lcos 8,Dn(6, +m, 6,)| for a/d=5. The cos 6, -term
is included to remove the reflection singularities of D} and D3 at 8, = 3
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1-0 1

0:5+

0

0 0-5 10
Fic. 3. Sections of the slowness surfaces for ald=35

The four diffraction coefficients of (4.7) have been plotted as functions of
angle 0 in Fig. 2 for a/d =5 and 6 = 7 +6,, which corresponds to observa-
tion from the direction of incidence (pulse echo), see Fig. 1. The isotropic
coefficient with a/d =4 are shown for comparison. The corresponding slow-
ness surfaces are shown in Fig. 3. When a/d = 10 the slowness surfaces are
as shown in Fig. 4. For that case we have plotted only the diffraction
coefficient D1 in Fig. 5.

Cracks in the direction of the layering (delaminations) occur frequently.
According to the geometrical theory of diffraction, the diffraction coeffi-
cients for the semi-infinite crack can be used to compute the high-frequency
scattered field for a crack of finite length D. Let a plane quasi-longitudinal
wave of unit amplitude be incident on the crack at angle 6. The diffracted

1-0-
y ql’
0-51
gl
0 } {
0 0-5 1-0

X

FiG. 4. Sections of the slowness surfaces for a/d = 10

o
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0 30 60 90 120 150 180

B,

F1G. 5. Graph of & =lcos 8,D1}(0;+, 6,)| for a/d = 10

quasi-longitudinal field in the back scattered direction can then be computed
by using (4.6) for each tip of the crack individually. Superposition of the two
crack-tip diffractions gives a high-frequency approximation to the back
scattered or pulse-echo signal. In this approximation all multiply diffracted
rays are neglected. It is assumed that D is of the same order as the
wavelength. Since the wavelength must be much larger than the layer
thicknesses for the effective modulus theory to be valid, we must also
require that D is much larger than the larger layer thickness.

Taking the origin at the centre of the crack, we have plotted the far field
amplitude (r/D)z|u(r, 6)| in Fig. 6 as a function of the dimensionless fre-
quency Dew//b. We note that w//b is the longitudinal wave number in the,
direction normal to the slit (8 =4w). The value of a/d in Fig. 6 is 10,
corresponding, for example, to € =3 and a = (1+.%)/2~0-91 in (5.2). The
isotropic result (a = b) is also plotted in Fig. 6 for comparison. Because b is
the same for the two examples, the effect of anisotropy disappears at normal
incidence.

The simple diffraction theory used here is only reasonable at high fre-
quency and does not attempt to give the low-frequency scattering. The latter
could be found, for example, from a quasi-static analysis. However, our
results show that the anisotropy is important, especially at angles of inci-
cence near grazing.
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Fic. 6. Backscattered far-field quasi-longitudinal amplitude A =|u| /D as
a function of frequency k =wD/./b for a/d = 10

REFERENCES
1. M. J. P. Muscravg, Geophys. J. R. Ast. Soc. 3, (1960) 406.
2. —, Crystal Acoustics (Holden Day, San Francisco, 1970).

3. 1. ABUBAKAR, Geophys. J. 6 (1962) 337.

4. , ibid. T (1962) 87.

S. E. A. Kraur, Rev. of Geophys. 1 (1963) 401.

6. A. N. MARTIROSIAN, Proc. Acad. Nauk Armenian SSR 28 (1975) 33 (Russian).
7. A. W. MAuUE, Z. angew. Math. Mech. 33 (1953) 1.

’,.‘_"E"‘."b,.

IrEAs N



i
I
[
I
|
i
]
]
]

DIFFRACTION BY A SEMI-INFINITE CRACK 579

8. 1. D. AcueneacH and A. K. Gautssen, J. Acoust. Soc. Am. 61 (1977) 413.
9, ——, and H. McMAKER, Ray Methods for Waves in Elastic Solids (Pitman,
London, 1982). .
10. M. J. Ligurri, Phil. Trans. R. Soc. A 252 (1960) 397.
11. V. T. Bucawairp, Proc. R. Soc. A 2583 (1959) §63.
12. J. D. AcuensacH, A Theory of Elasticity withMicrostructure for Directionally
Reinforced Composites (Springer, Berlin, 1975).
13. M. 1. P. MuscravE and R. G. Payron, J. Elasticity, to appear.
14. J. D. AcHENBACH, Wave Propagation in Elastic Solids (North-Holland, Amster-
dam, 1973).
15. R. SToNELEY, Proc. R. Soc. A 232 (1955) 447,

APPENDIX

Factorization of K(A)
In order to investigate the analytic nature of K(A), we first write it in the form

K(A) = KoMK (M), (A.1)
where 2 s e X
. ~ad [4X°pipat (uz— A7)+ P(A +P~1|U«2)+Q]
[ab—(c~d)*] pi+ 12
KM=-2Z Al
1(A) g T 6, (A.3)
and
_, _Jab—b)
P_4abw(c—d)2’ (A4
_ P bb—a)+(c+d—b)c+b—3d)
Q=Tn" d7lab—(c—d)] ' (A.9)
Both Ks(A) and K,(A) tend to unity as |A| —ec. This implies that
- - 2_ WP — ([ 2~ YAl
a [-L+(L*—4abd®yF+[-L—(L*—4abd")?] , (A6)

2= 20ay ilab—(c —d)*]

where L is given in (2.11) and the square root function is defined such that
Im( )%20. Thus Z is real if L >0, which we shall assume in this paper.

The function Ky(A) is similar in form to the Rayleigh function for an isotropic
half-space. It essentially reduces to that function when P = Q =0. By application of
the principle of the argument (14, p. 190) it can be shown that (A?—AR)K{A) has
only two zeros in the complex A-plane, at X = ::Ap. We note that Ko(A) is real for A
real and greater than p,, which is greater than p,. At A =p,, the function
(A* = AR K(A) is equal 10 —2(ab)i/[ab ~ (c — d)?*], while as A —» oo, it is approximately
A2, Thus, if ab (¢ —d)*>0, as we shall presume, then Ay is real and greater than p..
The root A = Ay is the surface wave slowness on the crack faces. We note that L >0
is a necessary but not sufficient condition for the surface wave to decay exponentially
with depth (15). The function Ky(A) also has branch cuts between —p, and —p, and
between p, and p,. Therefore it is completely analogous to the isotropic Rayleigh
function, whose analytic factorization has been discussed, for example in (9, p. 141).
Proceeding as in (9) we obtain

[ T A
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where

-1 [P 482+ P)(p2 — 12R(1% — p2y
K3(\) = exp— J tan™ {( X2~ M~ pi } dt (A.8)
it

- (P5-2t92+P2+Q Jrer’

The function K;(A) has branch points at +p, a'n{d +p,, the branch points of @, and
o, TESpectively. In addition, there are branch points of the functions 8,(A} and
B2(A). These branch points are of two kinds. The first kind are those points at which
B1(A) and B,(A) are zero. In section 2 it was shown that these branch points of 8,())
and B,(A) coincide with the branch points of w,{A) and p.(A) respectively if and only
if the quasi-transverse slowness surface is convex in the direction of the crack. The
branch points at which the discriminant of 8%()) is zero do not affect the factoriza-
tion since B, and $, occur only in the combination 8+ 8., which is continuous
across these cuts (see section 2). Therefore, assuming that (2.14) is satisfied, the
factorization of K;(A) proceeds in the same manner as for Ky(A). We obtain

K (M) =K7(AMK7(A), (A9)
where
A 1= i(M281_M132)} di
Ki(AM)y=exp o J;] tan { PR (t)t+)\ . (A.10)

We note that u,(t) and B,(t) are imaginary for t between p, and p, while u,(¢) and
B:(t) are real.
The complete factorization of K(A) is

K*(A)=KsMKT(). {(A.11)
Finally, we note that '
b Z
KO)y=[K* (M= -— 5. (A12)
aliz

This relation provides a means of determining Ag quite simply or may be used as a
check on K*(A) if Ap is known.



