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A flexible membrane is set in.an infinite plane baffle. The plane separates an acoustic field from a 
vacuum. A time harmonic wave is incident from the fluid on the membrane. When the frequency 
of the incident wave is not close to an in-vacuo resonant frequency of the membrane, the reaction 
of the fluid on the membrane is small. However, near a resonant frequency the fluid-membrane 
coupling is significant. We use the method of matched asymptotic expansions to obtain an 
asymptotic expansion of the scattered field. It is uniformly valid in the incident frequency. The 
expansion parameter e, 1 is the ratio of the fluid and membrane densities. The outer expansion, 
valid away from resonance, is O {e}. The inner expansion, valid near resonance, is of order unity. 
The fluid loading is shown to have the effect of decreasing the resonant frequencies from those of 
the in-vacuo membrane. Simple and double resonant frequencies are analyzed. However, the 
methodis applicable to higher order resonant frequencies. Finally, the method is applied to 
normal incidence.of a plane wave on a circular membrane. 

PACS numbers: 42.20.Fn, 43.20.Bi, 43.40.At 

INTRODUCTION 

A thin, tightly stretched membrane is set in an acousti- 
cally rigid infinite plane Z = 0. The upper half space is an 
acoustic fluid and the lower half space is a vacuum. A time 
harmonic wave propagating in the upper half space is inci- 
dent on the plane. It scatters in the usual way from the rigid 
p•art of the plane as a specularly reflected wave. However, the 
field scattered by the membrane is more complex since the 
membrane deflects and oscillates in response to the incident 
field. In particular, when the frequency of the incident field 
is far from a resonance (natUral) frequency of the membrane 
in a vacuum, thereaction of the fluid on the membrane is 
small. However, when the incident field frequency is close to 
a resonance frequency, the fluid and the membrane strongly 
couple and the amplitude of the membrane's motion and of 
the scattered field are large. 

Such resonant interactions have been observed experi- 
mentally in other scattering problems in acoustic, elastic, 
and electromagnetic wave propagation.•'2 In •/ddition, they 
have been studied for problems in which explicit representa- 
tions can be obtained for the solutions, e.g., by "partial 
wave" expansions (see Ref. 1 for a review of previous investi- 
gations). Thus the previous analytical investigations have 
been restricted to simple "separable" geometries. In this pa- 
per we employ the method of matched asymptotic expan- 
sions to obtain asymptotic approximations of the scattered 
field, as the parameter e--,O, that are uniformly valid in the 
frequency of the incident field. The small parameter e is de- 
fined as the ratio of the field and membrane densities. The 

idea of solving scattering problems for flexible surfaces using 
this small parameter is due to Leppington. 3 However, he 
employed a different method of analysis. 
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under Grant No. AFOSR 80-0016A, the National Science Foundation 
under Grant No. MCS 8300578, and the Office of Naval Research under 
Orant N00014-76-C-0063. 

The outer expansion of the method of matched asymp- 
totic expansions, which is O (e), gives the scattered field away 
from the resonances. The inner expansions, which are O(1), 
give the scattered fields at and near the resonances. The in- 
ner and outer expansions are then combined to obtain the 
composite, or uniformly valid asymptotic approximation to 
the scattered field. This approximation is expressed in terms 
of the in-vacuo normal modes of the membrane. The inner 

expansion is related to the classical resonant scattering ap- 
proximation, for those problems which can be solved expli- 
citly (see Ref. 1 and references given there fo r a discussion of 
resonant scattering theory and its applications). 

A virtue of our method is that the leading term in the 
asymptotic expansion clearly reveals the precise structure of 
the solution and its dependence on the incident frequency 
without requiring an explicit representation, e.g., by partial 
waves. However, for its validity e must be small, or equiv- 
alently the membrane must be heavy compared to the fluid. 
Furthermore, the results of our analysis suggest efficient nu- 
merical methods for evaluating the scattered fields, as we 
discuss in Sec. IV. The method is developed in Seca. II and 
III for resonant frequencies which are simple, i.e., there is 
only one in-vacuo normal mode of the membrane corre- 
sponding to that resonant frequencY. Multiple resonant fre- 
quencies are analyzed in Sec. VI. The method,is applied in 
Sec. V to the normal incidence of a plane wave on a circular 
membrane. 

The analysis in this paper can be extended to other reso- 
nant scattering problems such as the scattering from a mem- 
brane that is backed by another acoustic fluid rather than a 
vacuum, the scattering from baffled elastic plates, and the 
scattering by nearly soft and nearly rigid three-dimensional 
acoustic targets. We expect to preaent the results of these 
investigations in future publications. 
I. FORMOl.kTION 

We assume that the incident and scattered fields and the 

membrane's motion are proportional to exp( -- kot ), where co 
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is the circular frequency of the incident field. This time fac- 
tor is omitted in the subsequent analysis. Dimensionless 
space variables x--•(x,y,z) are defined by dividing the dimen- 
sional variables by a characteristic length L of the mem- 
brane, such as its maximum "diameter." Then the acoustic 
velocity potential • (x) satisfies the Helmholtz equation 

Ao•b + k2•b = 0, k•L/ca (1) 
in the upper half-space z > 0. Here, ca is the acoustic sound 
velocity, k is the dimensionless acoustic wavenumber, and 
A o is the Laplucian in x. The acoustic pressure Pis related to 
the potential by 

?= paico, (2) 

where pa is the mass density of the acoustic fluid. 
The equation of motion for the lateral deflection w(x,y) 

of the membrane, which lies in the region M of the plane 
z = 0, is 

Aw + k 2c2w = L 2P(x•v,0) c• , c---- (3) 
T c m 

Here, A is the Laplucian in x andy, c,• =(T/p,•)t/2, p,• is the 
density per unit area of the membrane, and T is the tension 
applied to the membrane. The acoustic pressure P (x,y,0) acts 
as a driving force on the membrane. 

Since the plane z = 0 is acoustically rigid outside of M, 
we have the condition 

ß ,(x,y,O) = O, x,.j•M. (4a) 

Here the subscript denotes partial differentiation. In addi- 
tion, the acoustic and membrane motions are coupled by the 
requirement that their vertical velocities are continuous on 
the membrane's surface. This gives 

•z(x,Y,O) = -- i(coL )w(x,y), x•. (4b) 
We denote the potential of the incident acoustic field by 

• = ß •. It is a solution of(1) and hence it depends on k. Then 
we express the total acoustic field in z > 0 by 

ß = ) + - z;k ) + (x,y,z). 
In (5) ß t(x,y, -- z;k ) is the specularly reflected field from the 
rigid plane z = 0 and •b is the field scattered by the mem- 
brane. We do not indicate the dependence of •b on k. By 
inserting (5) into (2) and (4b) and then substituting the results 
into (I), (3), and (4a) we obtain, by eliminating w, the scatter- 
ing problem for •b as 

Ao•+k2•b=0, for z>0, (6) 
•b,(x•v,0} = O, for x•M, (7) 
AO•,(x,.v,O) + k 2c2•,(xo,,O) 

= Ek2c2[•(X,y,O) + 2•b•(x,y,O;k)], for x,yOff. (8) 
In addition, • satisfies the Sommerfeld radiation condition 
as z--•oo. The dimensionless parameter E in (8), which is de- 
fined by 

)L, (0) 
is the ratio of the volume densities of the fluid and the mem- 
brane. For many acoustic fluids and membrane materials • is 
small, For example, for air and aluminum •m5 X 10 -4. 

This formulation of the scattering problem is now sim- 

plitied by employing the Oreen's function gixlg;k) of the 
Helmholtz equation (6) for the upper half space that satisfies 
the boundary condition •(x,y,0} = 0 for all x andy and the 
radiation condition as z--• oo. Then the scattered potential is 
given by 

M 

where • is the vector with components (•,•/,•), g is given by 
g(xl;k) = gl)/(2rrl x - gl), (11) 

and we have employed the notation 

v(x,y)m4•(xd,,O) for x,yOff. (12) 

Thus the scattering problem (6)-(8) is reduced to solving the 
integro-differential equation 

Av+k2c2v=ek2c2[G(k)v+ 2•z(x•v,O;k)], (13a) 
for x, • subject to the condition 

v(X,.v) = o, on B, (1 
where B is the boundary curve of the membrane. The bound- 
ary condition (13b) is obtained by continuity from (7) and 
(12). The integral operator G (k) in (13a) is defined by 

G (k)•G (x,y,O;k). (13e) 
It is proportional to the acoustic "bac k" pressure acting on 
the membrane's surface. 

We observe that if the term Go is omitted from (13a), the 
resulting boundary value problem is for the oscillations of a 
membrane in a vacuum driven by a force proportional to the 
incident field on the membrane. The dimensionless natural 

or resonant frequencies of the free oscillations of the mem- 
brane and the corresponding modes are proportional to the 
eigenvalues k• c and the corresponding eigenfunctions •b• of 

Av+k•c2v=O, v=0 on B. (14) 
Consequently, for the driven membrane with k = k•, n = 1, 
2,...resonance occurs and the membrane's amplitude is un- 
bounded if ß •(x•v,0) is not orthogonal to •. However, for 
the scattering problem (13) with k = k• the back pressure Go 
restrains resonance, and the amplitude is bounded. More- 
over, if e is small, as we assume, then the back pressure is 
small and a "near" resonance occurs. 

In this paper we employ the method of matched asymp- 
totic expansions 4 to obtain an asymptotic approximation as 
e--•0 of the solution of (13) that is uniformly valid in k. The 
corresponding acoustic field is then obtained from (10). For 
k bounded away from k• (nonresonance) we solve (13) by a 
regular perturbation expansion in e which is called the outer' 
expansion. As k--•k• this outer expansion becomes singular, 
as we demonstrate. A second asymptotic expansion of the 
solution, which is called the inner expansion, is then ob- 
tained for k near k• (near-resonance). The inner and outer 
expansions are then combined to form the composite expan- 
sion 4 of the method of matched asymptotic expansions, 
which is the desired uniform asymptotic expansion. We 
should mention that in the traditional applications of the 
method of matched asymptotic expansions (see e.g., Refs. 5- 
7), the singularity, or boundary layer, occurs as the indepen- 
dent variables approach critical values. In the present appli- 
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cation the singularity in the expansion occurs when the pa- 
rameter k approaches a critical value. This is similar to the 
application of the method to study imperfect bifurcation. s 

II. THE UNIFORM ASYMPTOTIC EXPANSION 

A. The outer expansion 

For k bounded away from k,, n = 1, 2 ..... wc seek an 
asymptotic expansion of the solution of(13) in the form 

v = • vi(x,y,k )e •. (15) 
j=0 

The coefficients v/are determined by inserting (15) into 113) 
and equating coefficients of the same powers of e in the re- 
suit. Thus we obtain 

Ao• + k 2c•v• = •, 2c • [ O (•)v•_, + 2•'(x,y,0;• )•l, ] 
v• = 0 on B, j = 0,1,2 ..... (16) 

where, v_•--=0 and 6• is the Kronecker 6 function. Since 
k •k,, we deduce from (16) withj = 0 that %----0. Then in- 
setting this result into (16) withj = 1, we solve the boundary 
value problem for v• by an expansion in the eigenfunctions 
•, of (14). Assuming that the eigenfunctions form a com- 
plete orthonormal set, this gives, 

v• = 2k k a _ k] 
where the •. are defined by 

l•j(k)--=(•t(x,y,O;k),•j(x,y)), j= 1,2,., (17b) 
and we have used the notation 

(f,g) = f ff(xo,•g(x,y•lx dy ' (18) 
M 

for any two functionsf and g defined on M. We can obtain 
the subsequent coefficients in the expansion (15) by solving 
the inhomogeneous problems (16) withj = 2,3 .... with analo- 
gous eigenfunction expansions, but we do not present these 
results. In our analysis we assme that the eigenvalues and 
eigenfunctions of (14) are known either explicitly or from 
numerical computation. 

The coefficient v• is unbounded as k--•kj, j = 1,2 ..... as 
we observe from (17). Hence, the outer expansion 

v = v• + O(• 2) (19) 
is invalid for k at near the resonant frequencies of the mem- 
brane. Of course if •(kfi = 0 then v• may be bounded as 
k--•k• . 
B. The Inner expansion 

We obtain an asymptotic expansion of the solution of 
(13) that is valid for k at and near these resonant frequencies 
by first defining the stretc. hing parameter a by 

k = (1 + (20) 

for each fixed value ofn = 1,2 ..... Then by inserting (20) into 
(13), we seek a second asymptotic expansion of the solution 
in the form 

v = •, Yi(x,y,a)•. (21) 
j=0 

Then we find, for example, that V o and V• are solutions of the 
boundary value problems: 

AV o+k•c aV o=0, V o=0 on B; (22) 

= - 2aVo + o(L)Vo + 
Vt = 0 on B. (23) 

The coefficients V2, V>... satisfy similar inhomogeneous 
boundary value problems. 

Assuming that knc is a simple eigenvalue of (14) with 
eigenfunction •b•, the solution of (22) is 

Fo = .4• •b• (x,y), (24) 

where the constant amplitude,4, is to be determined. Multi- 
ple eigenvalues will be considered in Sec. VI. We deduce 
from (23) that I,'• satisfies an inhomogeneous eigenvalue 
problem. Thus, R • in (23) must satisfy the solvability condi- 
tion that it is orthogonal to every solution of the homogen- 
eous problem corresponding to (22), i.e., 

(•,,•,) = 0. (2•) 

By inserting (24) for V o into the expression for R •, (25) is then 
reduced to a linear algebraic equation for the amplitude.4•. 
Its solution is 

& = 2• (•)/(2a + a•),. (26) 

where the a• are defined by the fourfold integrals 

: 
MM 

X •l,,, (xo, kt• dv dx dy. (27) 

Thus, the inner expansion, which is valid for k near k•, is 
given by 

= ,L Ix,y) + o (28) 

C. The matching conditions 
In the method of matched asymptotic expansions it is 

assumed that there exists an interval in k near k., which is 
called the overlap interval, and in which the outer and inner 
expansions are both valid asymptotic expansions of the solu- 
tion. In this interval the outer and inner expansions must 
match 4 in the following sense. Since the overlap interval is 
near k• for small e, we express the outer expansion in terms 
of the stretched (or inner) parameter a by inserting (20) into 
the outer expansion (19) and then re-expanding the result as 

v = • Oi(x,.v,a)e i. (29) 

Here, the fi• are the outer coefficients expressed in terms of 
the inner parameter. For k in the overlap interval, we require 
that la]--•oo as •--0. Then, omitting all details, it can be 
shown that in this interval (29) is reduced to 

v = [,8,(k,)/a] [1 + O(1/a)lg,, + 0(•). (30) 
Since in the overlap interval the outer expansion (29) 

and the inner expansion (21) are both Valid asymptotic ex- 
pansions of the solution, their difference must be asymptotic 
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to zero. We then deduce that the matching conditions 4 are 

lim [ F•(x,y,a) -- •j(x,y,a)] = 0, j = 1,2 ..... (31) 

From the forms of the inner coefficients (28) and (26) and 
from (30) it can be shown that the conditions (31) are identi- 
cally satisfied. We omit all details of this analysis. 

D. The uniform expansion 
The composite expansion of the method of matched 

asymptotic expansions provides the desired uniform asymp- 
totic expansion of the solution for k in an interval about k,. 
It is given by the sum of the inner and outer expansion minus 
the outer expansion in the inner parameter (30) in the overlap 
interval. Since in this interval the outer expansion--•0 as 
a--• co, to lowest order the composite expansion is 

v• a(2a + a.) + 2•k •__•, , (32) _ 
where a equals (k - 

The uniform expansion for the scattered acoustic po- 
tential is obtained from (32), (12), and (10) as 

•,•,( fi.(k.)a.•., 2•k •(k ) )o (xik )• ' a(2a+a,) + k'--•----k•. 2 
(33) 

where G(x;k) is defined in (10). In the farfield, where 
r = I xl --, co, we find by the standard application of the law of 
cosines and the binomial theorem to I x -- gl in (11) that (33) 
becomes 

,a(2ad-a.) + k2-k• F•(k,i) j=! 

(34) 

The directivity factors Ft, 1 = l, 2 ..... are defined by 

2tr 
M 

H•e, i = •lx• is the unit v•tor in the direction of obse•a- 
fion, •d y = •,•,0). Thin in the fadeld the com•site ex- 
posion for the a•ustic •tenti• is redu• to a sphe•c•ly 
outgong wave whose mplitude is •ven by the sum in (34). 
•e squ•e of the absolute value of this sum is the d•erential 
cr•s •tion of the membrane •nding to the com•s- 
i• exposion. •e Ft are the Fourier tr•sfo•s of the 
m• •z •th r•ct to the o•e•ation d•tion. 

•e •ymptotic exposions preented in (32•34) are 
u•fo•y v•id in • •te•al •nmi•ng a simple eigenv•ue 
kn. They are v•id for •y other k bounded away from the 
other eigenvalues k = k•n). If•ch eigenv•ue is simple, 
then we ob•in an •ymptotic exposion that is v•id for •1 k 
by replacing a by (k - kn)/ek, in (32•34), •d then sum- 
•g •er n. We •d for ex•ple thin the displacement v 
b•0mes 

• ( --k•a'•m(k')• 
) + 7' (36) 

k --k• 

Similarly the composite expansion of the farfield, corre- 
sponding to (34), that is valid for all k given by 

(• •A (•,k )(e'•'/r), (37a) 

•4 {•,k ) = • (k km)[2(k--km)-b•kmam] 
(k,fi, (37) + k2_k• 

where 1,4 ([,k)l 2 is the scattered differential cross section of 
the membrane. A similar resul. t holds for (33). 

Ill. IN'rleRPRg'r&?lON OF TH g 

The inner and outer expansions can be recovered from 
the uniform expansions (32)-(34) by taking appropriate lim- 
its in these equations. Thus ilk -- k, = O (1) as e--R)., so that 
at = 0 (l/e), then the first term of(32) is O (ca). Consequently, 
the second term dominates and (32) is reduced to the outer 
expansion (19). Similarly, the farfield potential given by (34) 
is reduced in the outer limit to 

), ß = k2--k• r 
Thus the displacement v and the •cattered potential • are 
O (•) when the incident frequency is bounded away from all of 
the membrane's resonant frequencies. That is, the acoustic 
potential is given essentially by the sum of the incident and 
specularly reflected waves because the acoustic fluid density 
is much smaller than the membrane density. This qualitative 
behavior has already been observed • in other scattering 
problems that can be solved explicitly, e.g., by partial wave 
expansions and from their subsequent numerical evalua- 
tions. 

However, when the incident frequency approaches a 
resonant frequency, i.e., when k = k. (1 d- a6) for fir = O(1) 
as •--,0, the second term in (32) is O (1). It combines with the 
first term to yield the inner result (28). Similarly, the farfield 
expression (34) for the scattered potential is reduced for k 
near k. to 

(k. /r). (39) 

This is O (1/6) larger than the outer expansion (38) and it 
is of the same order as the incident and specularly reflected 
waves. Thus the scattering potential contributes to the low- 
est order approximation only when k is near a resonant fre- 
quency. 

The coefficient of the outgoing spherical wave in (39) is 
the product of the ampliœude,4. and the directivity factor F. 
which gives the radiation pattern of the membrane for k near 
k.. Furthermore, 1,4. F.[ 2 is the differential cross section of 
the scattered acoustic potential for k near k. and IF. (k.,i)[ 2 
is the differential cross section of the farfield scattered acous- 

tic potential •b. produced by the membrane vibrating with 
frequency k. and mode 9. (x•). The amplitude d. contains 
information about the coupling between the acoustic medi- 
um and the membrane, which we now describe. 

In Appendix A we show that the fourfold integral (27) 
which .defines a. is given by 
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a• •R +iI, 

where R and I are defined by 

• =--fff(IV• I • - k •1• I• x • •, 

(4o) 

{41} 

Z_----k. IF. 2 sin 

Here I/k. • the to• cro• s•tion of•. •d R is t• the 
•ff•n•g d•e•io• ••. • to• •ustic 
•t•g cro• •tion for k n• k. • therefore • w•tten 

•r = (IA. IVk.•. (42) 
•mb•g (26) •d (•) we ob• 

4lfi"(k")l• (43) 
•c •c of the m•ulus of A• is skctch• • a •nc- 

tion ofa • Fig. 1, S• the m•um •u• at a = - R/2 
•d s• R > 0, • wc show • Ap•nd• B, (20) imp]i• •hat 
the m•mum •u• for k sli•tly l•s th• k•. • R is a 
denning p•eter. Fu•hc•orc, it foUows'from (43) that [ 
• the b•d•dth of I•, ]. To ev•uate ]•, ]• it is •sum• that 
k. •d •.(x•) •e •own expli•tly or by numefi• •mpu- 
•fion. •en the integr•s that de•e •,, R, •d I m•t • 
de• simii•ly. 

lf• •, then•, (k,) = 0 •d the soNability •ndition 
(25) Dv• 

(• + a,•, = 0. (•) 

A nolo solution of t•s •tion r• a = -- •a•. 
From (20), (•), •d (41) it follows that the •mplex eige•re- 
quency of the •upl• fluid•l•tic system is •ven by 

JAn j2 

-R/2 

FIG. 1. A graph of [.4. j2 for a simple eigenvalue. 

to order O (e). The negative imaginary part in (45) corre- 
sponds to damping because e - i•, is the assumed time depeu- 
dence. Since the decay rate is proportional to I, this param- 
eter measures the ability of the membrane vibrating at 
frequency k,, to convert motion into acoustic energy. 

ß IV. NUMERICAL PROCEDURES 

When solving the scattering problem numerically by 
the method of normal modes, the membrane displacement is 
expressed as 

v(xo,) = b,. 
Then by substituting (46) into (13) we find that the coeffi- 
cients b. are the solution of the infinite system of linear 
algebraic equations 

z(k,e)b = 2ek 20(k ), (47) 
where b and ( • are the infinite vectors with components (b•, 
b2,...) and •, •,...), respectively, 'and r is the symmetric 
infinite matrix whose components •'0 are defined by 

•'o(k,e)=(k • - k•)8i/ + ek 2Do(k ), i,j = 1,2 ..... (48) 
The elements of the complex valued symmetric Do are de- 
fined by the fourfold integrals 

MM 

x ,(x,ykl dx (49) 

so that D, 
To solve (47) numerically wc first truncate it to an 

N X Nsystcm. The value of N that is selected depends upon 
the value of k, the desired accuracy, and the size of the com- 
putcr's memory. In general, the first N eigenvalues and ei- 
genfunctions of the membrane are obtained by solving (14) 
numerically. Then the matrix elements D O arc obtained by 
numerical integration in (49) using these cigcnfunctions. 
Since the matrix D• is symmetric, only N (N + 1)/2 of the 
elements need bc computed. The truncated vector •(k ) is also 
computed by numerical integration from the definition 
(17b). Finally, the truncated version of (47) must be inverted 
to obtain the approximate solution vector b = (b•,b• ..... bN). 
These coefficients are inserted into (46) to yield the approxi- 
mate solution. This process must be repeated for each de- 
sired value of k. We now show how the asymptotic method 
of Sec. II as applied to the algebraic system (47)-(49) can be 
used to substantially simplify and reduce the computations 
as compared to the direct numerical method described in 
(46)-(49) when ß is small. If k is bounded away from kj 
(j---- 1,2,...), then the outer expansion given by (17)-(19) is 
valid. The infinite sum in (17) must be truncated at n = N. To 
evaluate this sum, the first N eigenvalues, eigenvectors, and 
the truncated vector [/•/•(k ),..•B•v(k )] must be computed nu- 
merically for each desired value of k as in the direct numeri- 
cal method. However, it is now not necessary to perform the 
costly numerical evaluations of the matrix elements Do(k ) 
and the subsequent numerical inversions for each desired 
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value ofk because the k dependence of the solution is essen- 
tially given by the outer expansion. 

If k is close to the simple eigenvalue kn, then v is given 
asymptotically by g'o in (24). The determination of g'o only 
requires the numerical calculation of •bn, •n (kn) which have 
already have been obtained for the outer expansion, and 
Dn n (kn) = an. The numerical savings here is even more sub- 
stantial than in the outer region because the k dependence 
and the resulting matrix inversion are given explicitly by the 
inner expansion. 

The numerical approximations to v in the inner and 
outer regions can now be combined to produce the uniform 
result given by (32). This result will become invalid near kz 
for I • n. If all the eigenvalues of the membrane are simple, 
then (36) holds. Thus, only the matrix elements D, for 
1 -- 1,2,...•V need be evaluated numerically at k -- kt. Even 
in this more complicated expansion a sizable numerical ad- 
vantage is gained. This is because the off-diagonal Dmn are 
not needed and no inversions are necessary. 

V. NORMAL INCIDENCE OF A PLANE WAVE ON A 
BAFFLED CIRCULAR MEMBRANE 

We now apply the asymptotic method to study the scat- 
tering era normally incident plane wave, 

on a circular membrane. Then the membrane displacement 
and the scattered acoustic potential vary only with z and the 
cylindrical radius p=X/•T•. The axisymmetric eigenval- 
ues and eigenfunctions of the unit circular membrane are 9 

k. ,L ,/,.*T• "rø(ckn ,o) n = 1,2,..., (51) 
c 

where•n is the nth root OfJo(• ) = 0. Since they are all simple 
eigenvalues the uniform expansions (36) and (37) are valid. 
To evaluate them, we must determine R and ! which are 
defined in (41). 

If follows from the Fourier analysis in Appendix B that 
R and [ can be expressed as 

II Ign(l'Wl R = •)•/• d•d•l, 
•> k n 

(52) 

!= II IgnO')l (53) 
Y<kn 

Here ¾ is the two-dimensional vector with components (•,•/) 
and We find from the definition ofF• • (35) and the 
pro•i• Of Jo(ck n p} that 

F• {k,t) = ck• Jo(kt sin a } , (54) 
a - 

where t is • •bitr• v•tor, t •ltl, •d • is the •gle 
•tw•n t •d the z a•s. Inse•g (54) with k = 1, t = y, and 
• = •/2 •to (52) and (53) we obt• the one-dimensional 
•te•s 

R = k• •sh 2 t -- c • cosh t dr, 

!= k n JO • 0•2b•'7 / cos Ode. (56) 
•us we have reduc• the fourfold •grals • the defini- 
tions ofR •d I in (41) to the one-d•ension• •te•s (55) 
and (56). •e• •te•als •e humerichly ev•uat• for a 
fix• n •d va•ing c, where k, = 2n/C. They •e •aph• in 
Fi•. 2 •d 3 fern = 1 ..... 15 •d for c•l. 

•e monostatie cross s•tion of the s•tter• acoustic 

field is •ven by the value of I A I • in (37) in the back•atter• 
direction. It is ob•in• by setting t = f = (0,0,1) in (54) and 
inse•ing this result into (37). We have summ• t•s 
using the nume•cal values err •d I •ven • Figs. 2 •d 3 
and the fact that for the •reul• membr•e 

fi.(k) = -- 2•/ck,, for all k. (57) 
The squ•e r•t of the monos•tic cross s•tion is •aph• 
Fig. 4 for c = 0.5 and for k • the r•ge 0 < k < 20. For t•s 
r•ge of •cidcnt frequenci• there •e t• r•on•t fre- 
quenci• k'•, k•, •d.k 3 as is cl•rly indicat• • the figure. 
The mafima • at appro•mately k = 
cause the R •e relatively sm•. In addition, the cross •fion 
is sma• [O {e)] •tween the r•on•t p•s •d o•y one 
mum •urs •tween •ch pair of m•a. Thee •a, 
which •e c•]ed •tireson•, m o•ur close to the r•- 
n•t frequenci• • s•n in Fig. 4. 

•e •t•onan•s do not • • monos•tic cr• 

s•tions computed from either the •er or ou•r exposions 
sep•ate]y. •ey app•ent]y • at frequen• where 
neither of these exposions is v•id separately so that the 
unifo• expansion must be employS. In fact, • •ysis of 
the unifo• expansion, which we do not print, shows that 
the •tireson•ces o•ur when Re A = 0. In ad•tion, the 
•ysis shows that at the •tir•n• •ints I• I = O (•). 

We have •so compu• numefica•y the toni •atte•g 
cross section of the c•cul• merebrae for the •me r•ge of 
incident frequ•cies us•g the unifo• exp•on {3?). •e 
logarithm of this qu•tity is graph• • Fig. 5. We obse•e 
that the ]oc• minima •e l•ated ne•]y symmetfic•ly 
•tw•n the m•ima, •d ant•esonanc• do not •ur. 
is • controt to previous r•u]ts ]ø where •tir•on• 

.5 

0 5 10 15 20 25 $0 35 40 4-5 50 

l 1 X 2 k n 

FIG. 2. A graph of the first 151 as a function of k. = •./c, for c< 1. 
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FIG. 3. A graph of the first 15 R as a function of k, = A,/c. for c• I. 
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FIG. 5. Total scattering cross section .I: r for c = 0.5 and e ----- 0.1. 

the total scattering cross section were obtained. This dis- 
crepancy in the qualitative features of the solution may re- 
sult from the different values ofe employed in evaluating the 
cross section in this paper (e = 0.1} and the values used in 
Rcf. 10, where e>0.5. However, it may also result from inac- 
curacie• in the variational method 'ø where only two trial 
functions (modes} were employed. If the antiresonances oc- 
cur in a region w,here the uniform expansion is required, as 
our results suggest, then many modes may contribute to val- 
ues of the cross section as is suggested by the uniform expan- 
sion. 

VI. MULTIPLE EIGENVALUES 

The inner expansion obtained in Sec. II is for kc near the 
simple cigenvalue k.c. However, membranes typically have 
eigcnvalues with multiplicities greater than one, as well as 
simple eigenvalues. For example., the eigenvalues k..c and 
eigcnfunctions •b,.. of the unit square membrane are, 
k..½ ----- rr(m 2 + n2) 1/2, •,,,. = 2 sin m•rx sin n•d, m,n 
= 1,2 ..... The lowest eigenvalue is k I ,c = xf• and it is simple. 
However, the second eigenvalue k•2c = k 2,c = •/•r has mul- 
tiplicity two because •12 and •b21 are linearly independent 
and they are the only eigenfunctions corresponding to this 
eigenvalue. Larger eigenvalues may have m91tiplicities > 2. 

IAI 

2 4 6 8 10 12 14 16 18 20 

FIG. 4. Magnitude of the backscattered amplitude.4 for normal incidence 
on a circular membrane with c = 0.5 and e = 0.1. 

We now obtain the inner expansion (21) for k,,c, an 
eigenvalue of multiplicity two. A similar analysis which we 
do not present applies to eigenvalucs of higher multiplicity. 
Denoting the corresponding orthonormal eigenfunctions by 
•. and •, the solution of (22} gives the inner expansion, 

[A.½'. + 
where the constant amplitudes A. and B. are to bc deter- 
mined. The solvability condition for (23} yields 

(a,•ff.) = 0, i = !,2. (59) 
By inserting I/o from (58) into the expression for R. (59} is 
reduced to the following linear algebraic equations for .4. 
and B• 

(• -•- Tll)•4n -[- Ti2d• n = 2•l(kn) , 
(6O) 

•2iA,, + (2•' + T22).•',, = 2•.2(kn), 
where 

i = 1,2, (61) 

and the T O are defined for i,j = 1, 2 by the fourfold integrals 
•i=( ,•//• ,G (k,, )½. • ). (62) 

It follows from (62} that T, 2 = 
The determinant A {a} of the system (60) is the quadratic 

function given by 

d (a} = (2• + Tii}{2ZI + T22) -- 
(63a) 

where A a and A t arc defined by 

AR{ct)=--,½a 2 +,2a Re(l",, + T,:) + Re(Tu T22 -- T•2 ), 
(63b) 

A,(a) = 2a Ira(T,, + Tn) + Im(T,,T22 -- T2n). 
Since we prove in Appendix C that A (a)• 0 for all values of 
a, the solution of (60) is 

,.4 n = [2• I.(kn}(24• + T22 

B. = [2,82,,(k,,}(2a + T,) -- 2TizB•.(k,,)]/A (c 0. 
To analyze the qualitative features of the inner expan- 

sion (58), we consider the magnitude (v,o). Then we obtain 
from (58), 

691 J. Acoust. Sec. Am., VoL 75, No. 3, March 1984 Kriogsmann eta/.: Aqoustic scattering by baffled membranes 691 



Ilvll 2 = • •. + B•) + O(e) = P{a)b 2 + O(e), 
where 

P(a)•-4 [ (4• 2 + 4Aa + f)/(A • + A •)], 
b 2=lt•'.(k.)l 2 + L•.(k.)l 2, 

(65) 

(66) 

-- T•f •(k,)l•J(b e) -! 
A •{R•T•)lfi •(k.)[ • + R•T.)lfi •(k.)l • 

- 2 R•rn)a• [•(•.) • (•.)] }(b•) -,. 
•e overb• d•ot• the •mplex •njugate. •e qu•tity b 
• pro•io• • the proj•tion of the en• of the Mcident 
wave into the null spa• 0f{22). •m •(a) is • "•p•tude 
•tio" of the • r• {58), to 1ow•t order in e. 

From (63) and (66) we d•u• •at 

P (a) = N2(a)/D4(a }, (67) 

wh•e N•(a) and D•(a) •e q•dratic and qu•ic •lynomi- 
•s, r•tively. Both •lynomi• have • •ffici• •d 
•e •sitivc •ause (v,o) > 0. •e stationa• •in• ofP (a) 
a• •e r•ts of the quin•c •ua•on 

D • •' = D•(a)N • (a) - N•(a• • (a) = 0. 
•e quintic is not r•dily solved •ause it is a •mplicated 
func•on of Tg and fi• (k,). Howev•, (68) h• real •ffi- 
ci•ts, • t•t it h• ei• one, •r•, or five r•l r•. If it 
has one r•l r•t, •e sketch ofP (a) is similar to that of Fig. 1 
which • the i•er r•n• for a simple eigenvalue. We •ve 
sketched P (a) in Fi•. 6 •d 7 when (68) h• thr• •d five 
r•, r•tively. •e m•a of P(a) •d their • 
s•nding 1• bandwidths may d•er substantially, de•nd- 
ing on the m•branc's s• and on the incid•t field. In 
•me ca•, the !•al b•d•dths may • na•w so that it 

]An] 2 

FIG. 6. A graph ofP (a) for a double eigcnvalue showing two relative maxi- 
ma. 

[An]2 

FIG. 7. A graph ofP (a) for a double cigenvalue showing three relative maxi- 
nla. 

may be difficult to detect the double and triple maxima of the 
response in an experiment. 

The inner expansion for the scattered acoustic potential 
corresponding to (58) which is obtained from (10)-(12) and 
(58) is 

• = G(x,k,)(A,½} +B,•) + O(e). (69) 

In the farfield as r-• oo'(69) is reduced to 

• = $ (k,,,e)(ea"'/r) qd 0 (e), (70a) 
where IS (k,,i}]2 is the differential cross section of the mem- 
brane corresponding to the inner expansion. It is defined by 

$ (k,,•)--.-•4,,F• (k,,•) + B,,F• (k,,•), (70b) 
where F•, is defined by (35) with •, replaced by •. The 
farfield inner potential given in (70) is a generalization to the 
double eigenvalue of the farfield potential given in (39) for 
the simple eigenvalue. It is a linear combination of the far- 
field inner potentials corresponding to e•ch of the eigenfunc- 
tions of the double eigenvalue. The differential cross section 
(70b), is, in general, a complicated function of • because it 
depends upon the Fourier transforms F•. 

By employing the results in this section, we can show 
after a lengthy analysis (all details are .omitted) that the total 
cross section •r corresponding to (70) is given by 

(71) Er(a) = 4Pz(a}b 2 
The amplitude ratio P• is defined by 

p•(a)=k z ,( (2a + x )A•(a) + FAMvt) ) a • (a) +,• ,•(a) ' 
where F is defin• by 

F •lm(T•)lfi I(k.)l • + 

(72a) 

(72b) 

We observe that Pz(a) has the same mathematical structure 
as P (a), because it is the ratio of quadratic to quartic polyno- 
mials. 
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FIG. 8. Total scatto-ing cross section of a unit amplitude plane wave near 
the k•s resonance of a unit square membrane with c -- 5 and ß = 0.1. The 
incident direction makes an angle of 5' with the membrane normal and its 
projection on the plane of the membrane makes an angle of 30' with a side. 

We have evaluated Pz{a) for the eigenvalue, 
knc = k3•c = x/T-'o•r of the unit square membrane for several 
values of the sound speed ratio c, and for an incident plane 
wave. For the square membrane, Tu ---- T22 for all double 
eigenvalues and T•2 ---- T:• = 0 when m + n is odd, as we can 
show from (62). Furthermore, when m -I- n is odd, the re- 
sponse is similar to the simple eigenvalue case. Thus the low- 
est "true" double eigenvalue for the square is kc = k,3c. The 
integrals required to determine the quantities in (72} were 
determined numerically. The results suggest that for c < 1, 
i.e., for co <c,,, Pz(a) has a single maximum as in Fig. 1. 
However, for c•, 1, Pz(a) may have either one or two maxi- 
ma. The results also depend on the angle of incidence of the 
plane wave. A typical result is shown in Fig. 8, for k close to 
k• -- k•. There is a relatively broad single maximum with a 
narrow, spiked second maximum superimposed upon the 
broad minimum. The condition c, 1 implies that the mem- 
brane material is "soft." 

A uniform asymptotic expansion corresponding to the 
double eigenvalue can be constructed for k in an appropriate 
interval about k, by employing the inner expansions {58}, 
(69), and (70) and the outer expansions given in Sec. II. Simi- 
larly, uniform asymptotic expansions that are valid for all k 
can'be obtained by combining inner and outer e•pansious 
t•king into account the possible multiplicities of each k,. 

APPENDIX A 

The scattered acoustic potential q• (x) produced by the 
membrane vibrating with frequency kn and mode •. (x•v} is a 
solution of the boundary value problem: 

A• +k•. =0, z>0, (Ala) 

• -- O, xo•M, (Alb} 

= •,(xJ•), xO•--M, (AIc) 

and the radiation condition as •[x[--• oo. The solution to 
(AI) is given by 

where the integral operator G is defined in (10). In the far- 
field, r--•oo, this expression simplifies to 

wbere F. (k.,•) is defined by (35) and • is the unit vector in the 
direction of observation. 

Since k. is real, •. and •. both satisfy (Ala). Hence we 
have 

v.vd. - IV. 12 + 12 = 0. {A4) 
Integrating this expression inside the closed surface S. com- 
posed of the large hemisphere r = R, z > 0, and the circular 
region x 2 + • = R :(z = 0), and applying the divergence 

2•r •r/2 

R2ffq•. •---•-' sin • d• dO •r 
oo 

= f f f{ IV. 12 - 12}d x dY 

By inserting (A3} into the left side of (AS), and (AIb)-qAlc) 
into the second integral on the right, and then letting 
we obtain 

oo 

Finally, we substitute (A2} evaluated at z = 0 for •, (xd,,0,k• 
into {A6} and recall the definition of a,, given by (27), to 
arrive at (40) and (41}. 

We now prove a similar result which will be used in 
Appendix C. Let • and • be two eigenfunctions of the 
membrane corresponding to the same eigenfrequency k, ½. 
Let • • and • • be the corresponding solutions of (A1) with 
•= replaced by • and •, respectively. It then follows from 
(A la) that 

I --2 --2 I 
(A?) 

We first integrate this expression over the interior of $ and 
then let R--•oo to obtain 

•r/2 2• 

(AS) 
oo 

where the F• are defined by (3•) with • replaced by •. 
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APPENDIX B 

To show that R >0, where R is defined in (41), we first 
employ the plane-wave expansion of g(xy,0[•,•/,0;k.). It is 
given by 

_--i • exp{i[a(x--•)+•'O•--•l)]k.} dadr ' 2•r (k • -- a 2 -- r2) 

where the branch of the square root function is defined by 
x/-- 1 -•i. When (B1) is inserted into the definition of a.giv- 
en in (27) and the limits of integration are interchanged, we 
obtain 

2•r ' (k• -- 0 2 -- •)•/2 

In (B2) •. is the finite Fourier transform of • defined by 

It follows directly from (B2) that 

+ 

•d have R = Re(a,) is •itivc. 

APPENDIX C 

The quantity A (a), which we now show does not vanish, 
is the determinant of the system (60). That is 

A (a) = det(T + 2ctl), (C1) 

where I is the 2 X 2 identity matrix and Tis the 2 X 2 ma- 
trix with components T• defined by (62). Since a is real, it 
follows from (C1) that A (a)y/0 if and only if T has no real 
cigenvalues. 

To demonstrate that T has no real cigenvalues we first 
denote any cigenvalue of Tand a corresponding unit eigen- 
vector by p and x = (Xl,X2}, respectively. It then follows 
from the Rayleigh quotient for p that 

p = Tl,lX,[ 2 + T=lxd 2 + 2T,2 Re(x,,22). (C2) 

ß Rewriting xt in polar form, x t = rte "ø•, 1 = 1,2 and inserting 
this into (C2), we obtain 

b'r2cøs6\Z b2(l (b' cøs •)2 ) •. Imp = b•(r• + • ] + b•b2 
(c3) 

In (C3) we have used the following notation: b• = Im(Tu), 
b2 = Im(T22), b• = Im(T•2 ), and//= 0• -- 02. However, it 
follows from the definition (62) of T• and from the analysis of 
Appendix A [see (A6)], that 

•'/2 2tr 

b, = f f IF•.(k.,f)12sin•at)dO, /= 1,2. (C4) 
oo 

Here, F t, is the directivity factor given by (35) with •, re- 
placed by •//,. Thus b• and b2 are both negative. From (AS) we 
have 

n'/2 2•' 

b• = k nff Fn•sin • dd? dO, (C5) 
oo 

which is a real quantity. The Cauehy-Schwartz inquality 
applied to (C5) gives 

lb ] I < lb,l lbd-----b,b2 (C6) 
from which we deduce that the factor multiplying b2• in 
(C3) is positive. This implies that Img <0 and hence T has 
no real eigenvalues. 
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