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A flexible membrane is set in-an infinite plane baffle. The plane separates an acoustic field from a
vacuum. A time harmonic wave is incident from the fluid on the membrane. When the frequency
of the incident wave is not close to an in-vacuo resonant frequency of the membrane, the reaction
of the fluid on the membrane is small. However, near a resonant frequency the fluid-membrane
coupling is significant. We use the method of matched asymptotic expansions to obtain an
asymptotic expansion of the scattered field. It is uniformly valid in the incident frequency. The
expansion parameter <1 is the ratio of the fluid and membrane densities. The outer expansion,
valid away from resonance, is O (€). The innér expansion, valid near resonance, is of order unity.
The fluid loading is shown to have the effect of decreasing the resonant frequencies from those of
the in-vacuo membrane. Simple and double resonant frequencies are analyzed. However, the
method is applicable to higher order resonant frequencies. Finally, the method is applied to
normal incidence.of a plane wave on a circular membrane.

PACS numbers: 42.20.Fn, 43.20.Bi, 43.40.At

INTRODUCTION

A thin, tightly stretched membrane is set in an acousti-
cally rigid infinite plane Z = 0. The upper half space is an
acoustic fluid and the lower half space is a vacuum. A time
harmonic wave propagating in the upper half space is inci-
dent on the plane. It scatters in the usual way from the rigid
part of the plane as a specularly reflected wave. However, the
field scattered by the membrane is more complex since the
membrane deflects and oscillates in response to the incident
field. In particular, when the frequency of the incident field
is far from a resonance (natural) frequency of the membrane
in a vacuum, the reaction of the fluid on the membrane is
small. However, when the incident field frequency is close to
a resonance frequency, the fluid and the membrane strongly
couple and the amplitude of the membrane’s motion and of
the scattered field are large.

Such resonant interactions have been observed experi-
mentally in other scattering problems in acoustic, elastic,
and electromagnetic wave propagation.' In addition, they
have been studied for problems in which explicit representa-
tions can be obtained for the solutions, e.g., by “partial
wave” expansions (see Ref. 1 for a review of previous investi-
gations). Thus the previous analytical investigations have
been restricted to simple “separable” geometries. In this pa-
per we employ the method of matched asymptotic expan-
sions to obtain asymptotic approximations of the scattered
field, as the parameter €é—0, that are uniformly valid in the
frequency of the incident field. The small parameter ¢ is de-
fined as the ratio of the field and membrane densities. The
idea of solving scattering problems for fiexible surfaces using
this small parameter is due to Leppington.’ However, he
employed a different method of analysis.
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The outer expansion of the method of matched asymp-
totic expansions, which is O (€), gives the scattered field away
from the resonances. The inner expansions, which are O (1),
give the scattered fields at and near the resonances. The in-
ner and outer expansions are then combined to obtain the
composite, or uniformly valid asymptotic approximation to
the scattered field. This approximation is expressed in terms
of the in-vacuo normal modes of the membrane. The inner
expansion is related to the classical resonant scattering ap-
proximation, for those problems which can be solved expli-
citly (see Ref. 1 and references given there for a discussion of
resonant scattering theory and its applications).

A virtue of our method is that the leading term in the
asymptotic expansion clearly reveals the precise structure of
the solution and its dependence on the incident frequency
without requiring an explicit representation, e.g., by partial
waves. However, for its validity ¢ must be small, or equiv-
alently the membrane must be heavy compared to the fluid.
Furthermore, the results of our analysis suggest efficient nu-
merical methods for evaluating the scattered fields, as we
discuss in Sec. IV. The method is developed in Secs. IT and
III for resonant frequencies which are simple, i.e., there is
only one in-vacuo normal mode of the membrane corre-
sponding to that resonant frequency. Multiple resonant fre-
quencies are analyzed in Sec. VI. The method.is applied in
Sec. V to the normal incidence of a plane wave on a circular
membrane.

The analysis in this paper can be extended to other reso-
nant scattering problems such as the scattering from a mem-
brane that is backed by another acoustic fluid rather than a
vacuum, the scattering from baffled elastic plates, and the
scattering by nearly soft and nearly rigid three-dimensional
acoustic targets. We expect to present the results of these
investigations in future publications.

I. FORMULATION
We assume that the incident and scattered fields and the
membrane’s motion are proportional to exp( — it }, where w
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is the circular frequency of the incident field. This time fac-
tor is omitted in the subsequent analysis. Dimensionless
space variables x=(x,y,z) are defined by dividing the dimen-
sional variables by a characteristic length L of the mem-
brane, such as its maximum “‘diameter.” Then the acoustic
velocity potential & (x) satisfies the Helmholtz equation

4,0+ kD=0, k=ol/c, (1)

in the upper half-space z > 0. Here, c, is the acoustic sound
velocity, k is the dimensionless acoustic wavenumber, and
4, is the Laplacian in x. The acoustic pressure Pis related to
the potential by

P= p,io®d, (2)

where p, is the mass density of the acoustic fluid.

The equation of motion for the lateral deflection w(x,y)
of the membrane, which lies in the region M of the plane
z=0,is

2
L*P(x,y,0) o= Cq . 3)
T c
Here, 4 is the Laplacian in x and y, ¢, =(T /p.,, )"/ p.», is the
density per unit area of the membrane, and T is the tension
applied to the membrane. The acoustic pressure P (x,»,0) acts
as a driving force on the membrane.

Since the plane z = 0 is acoustically rigid outside of M,

we have the condition

PD,(x,,0) =0, x,yeM. (4a)

Here the subscript denotes partial differentiation. In addi-
tion, the acoustic and membrane motions are coupled by the
requirement that their vertical velocities are continuous on
the membrane’s surface. This gives

D.(xy,0) = —iwL Jw(x,y), xyeM. (4b)
We denote the potential of the incident acoustic field by

¢ = &' Itisasolution of (1) and hence it depends on k. Then
we express the total acoustic field in z> 0 by

P (xyz) =P (xpzk) + P'(xp, —zk) + $ (xp.2).  (5)
In (5) @ /(x,y, — z;k ) is the specularly reflected field from the
rigid plane z =0 and ¢ is the field scattered by the mem-
brane. We do not indicate the dependence of ¢ on k. By
inserting (5) into (2) and (4b) and then substituting the results
into (1), (3), and (4a) we obtain, by eliminating w, the scatter-
ing problem for ¢ as

Ap+k*=0, for z>0, (6)

$,(x»,0)=0, for x,peM, (7
A, (x.p,0) + k7’4, (x,p,0)

=€k %*[p (x3,0) + 2@ ' (x,9,0;k )], for x,peM. (8)
In addition, ¢ satisfies the Sommerfeld radiation condition

as z— 0. The dimensionless parameter € in (8), which is de-
fined by

€=(p,/Pm)L, (9)
is the ratio of the volume densities of the fluid and the mem-
brane. For many acoustic fluids and membrane materials € is

small. For example, for air and aluminum e~5 X 10~%,
This formulation of the scattering problem is now sim-

Aw+ k**w =

m
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plified by employing the Green’s function g(x|§;k) of the
Helmbholtz equation (6) for the upper half space that satisfies
the boundary condition ¢, (x,y,0) = O for all x and y and the
radiation condition as z— . Then the scattered potential is
given by

8(x) = Gk o= f fg(xlg,n,o;k WEmdEdn, (10

where  is the vector with components (£,7,£ ), g is given by

gx|&k) = — (™t 2m|x — §)), (11)
and we have employed the notation
vixy)=¢,(x,p,0) for x,peM. (12)

Thus the scattering problem (6)~8) is reduced to solving the
integro-differential equation

Av+ k7 =ek’P[G(k) + 20 (xy,0k)], (13a)
for x, yeM subject to the condition
vix,y) =0, on B, (13b)

where B is the boundary curve of the membrane. The bound-
ary condition (13b) is obtained by continuity from (7) and
(12). The integral operator G (k) in (13a) is defined by

G (k)=G (xp,0;k). (13¢)
It is proportional to the acoustic “back” pressure acting on
the membrane’s surface.

We observe that if the term G is omitted from (13a), the
resulting boundary value problem is for the oscillations of a
membrane in a vacuum driven by a force proportional to the
incident field on the membrane. The dimensionless natural
or resonant frequencies of the free oscillations of the mem-
brane and the corresponding modes are proportional to the
eigenvalues k, c and the corresponding eigenfunctions ¢, of

Av+ k=0, (14)

Consequently, for the driven membrane withk =k, , n = 1,
2,...resonance occurs and the membrane’s amplitude is un-
bounded if @ (x,y,0) is not orthogonal to ¢,. However, for
the scattering problem (13) with k = k, the back pressure Gv
restrains resonance, and the amplitude is bounded. More-
over, if € is small, as we assume, then the back pressure is
small and a “near” resonance occurs.

In this paper we employ the method of matched asymp-
totic expansions* to obtain an asymptotic approximation as
€—0 of the solution of (13) that is uniformly valid in k. The
corresponding acoustic field is then obtained from (10). For
k bounded away from &, (nonresonance) we solve (13) by a
regular perturbation expansion in € which is called the outer
expansion. As k—k, this outer expansion becomes singular,
as we demonstrate. A second asymptotic expansion of the
solution, which is called the inner expansion, is then ob-
‘tained for k near k, (near-resonance). The inner and outer
expansions are then combined to form the composite expan-
sion* of the method of matched asymptotic expansions,
which is the desired uniform asymptotic expansion. We
should mention that in the traditional applications of the
method of matched asymptotic expansions (see e.g., Refs. 5—
7), the singularity, or boundary layer, occurs as the indepen-
dent variables approach critical values. In the present appli-

v=0 on B.
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cation the singularity in the expansion occurs when the pa-
rameter k approaches a critical value. This is similar to the
application of the method to study imperfect bifurcation.®

Il. THE UNIFORM ASYMPTOTIC EXPANSION
A. The outer expansion

For k bounded away from k,, n = 1, 2,..., we seek an
asymptotic expansion of the solution of (13} in the form

v= i v(x.p.k )e’. (15)

The coefficients v; are determined by inserting (15) into (13)
and equating coefficients of the same powers of € in the re-

sult. Thus we obtain
Av, + k2, =k*[Gk;_, +2@ (xy,0k)5; ]
vy =0onB, j=012,.., (16)

where, v_;=0 and §;, is the Kronecker § function. Since
k #k,, we deduce from (16) with j = O that v,=0. Then in-
serting this result into (16) with j = 1, we solve the boundary
value problem for v, by an expansion in the eigenfunctions
¥, of (14). Assuming that the eigenfunctions form a com-
plete orthonormal set, this gives,

= Bk
v, = 2k2.2 k_;_? ¥,(xp), (17a)
j=1 j
where the B, are defined by
Bilk)=(@ xy.0:k ) ¢;(xp)), j=12,.. (17b)
and we have used the notation
(18)

/) = [ [rimvistesiix -

for any two functions fand g defined on M. We can obtain
the subsequent coefficients in the expansion (15) by solving
the inhomogeneous problems (16) with j = 2,3,... with analo-
gous eigenfunction expansions, but we do not present these
results. In our analysis we assume that the eigenvalues and
eigenfunctions of (14) are known either explicitly or from
numerical computation.

The coeflicient v, is unbounded as k—k;, j = 1,2,..., as
we observe from (17). Hence, the outer expansion

v=uv,6+ 0(&) (19)

is invalid for k at near the resonant frequencies of the mem-
brane. Of course if B;(k;) = 0 then v, may be bounded as
k—k;. . ‘

B. The Inner expansion
We obtain an asymptotic expansion of the solution of

(13) that is valid for k at and near these resonant frequencies -

by first defining the stretching parameter a by

k=k,(1 + e (20)
for each fixed value of n = 1,2,.... Then by inserting (20} into
(13), we seek a second asymptotic expansion of the solution
in the form

]

v= z Viixp.a)

j=0

(21)
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Then we find, for example, that V, and ¥V, are solutions of the
boundary value problems:

AVy+k2c*Vy=0, ¥,=0 on B;
AV, + kiV,

=R=kic[ — 20V, + Gk, )V, + 29 (x,p,0i,)].
V,=0 on B. (23)

The coefficients V,,V5,... satisfy similar inhomogeneous
boundary value problems. ‘

Assuming that &, c is a simple eigenvalue of (14) with
eigenfunction #,,, the solution of (22) is

Vo= 4,1, (xy), (24)

where the constant amplitude 4, is to be determined. Multi-
ple eigenvalues will be considered in Sec. VI. We deduce
from (23) that V), satisfies an inhomogeneous ejgenvalue
problem. Thus, R, in (23) must satisfy the solvability condi-
tion that it is orthogonal to every solution of the homogen-
eous problem corresponding to (22}, i.e.,

(Ry,) =0. (25)
By inserting (24} for ¥, into the expression for R ;, (25)is then

reduced to a linear algebraic equation for the amplitude 4,,.
Its solution is

(22)

A, =28,k,)/2a+a,), (26)
where the a,, are defined by the fourfold integrals
a,=— <G (kn )¢n !'ﬁn )
= — [[[[sxwoienompuien
MM .
X, (x.y)dE dn dx dy. (27)

Thus, the inner expansion, which is valid for k near &, is
given by

v=A,¥,(x.y) + Ole). (28)

C. The matching conditions

In the method of matched asymptotic expansions it is
assumed that there exists an interval in & near k,, which is
called the overlap interval, and in which the outer and inner
expansions are both valid asymptotic expansions of the solu-
tion. In this interval the outer and inner expansions must
match® in the following sense. Since the overlap interval is
near k,, for small €, we express the outer expansion in terms
of the stretched (or inner) parameter a by inserting (20) into
the outer expansion (19) and then re-expanding the result as

v=Y i{xpal (29)
Jj=0

Here, the §j; are the outer coefficients expressed in terms of

the inner parameter. For k in the overlap interval, we require

that |@|—o0 as €é—0. Then, omitting all details, it can be -

shown that in this interval (29) is reduced to

v=[B,k,)/a]ll+ O(1/a)l¥, + Ofe). (30)
Since in the overlap interval the outer expansion (29)
and the inner expansion (21) are both valid asymptotic ex-
pansions of the solution, their difference must be asymptotic
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to zero. We then deduce that the matching conditions* are
alim [Vixya) —bxpa)] =0, j=12,.. (31)

From the forms of the inner coefficients (28) and (26) and
from (30) it can be shown that the conditions (31) are identi-
cally satisfied. We omit all details of this analysis.

D. The uniform expansion

The composite expansion of the method of matched
asymptotic expansions provides the desired uniform asymp-
totic expansion of the solution for £ in an interval about %,,.
It is given by the sum of the inner and outer expansion minus
the outer expansion in the inner parameter (30} in the overlap
interval. Since in this interval the outer expansion—0 as
a— o, to lowest order the composite expansion is

_ Bulka)au Bk,
o2a +a,) ki —k?
where a equals (k — k,)/¢k,, .
The uniform expansion for the scattered acoustic po-
tential is obtained from (32}, (12), and (10) as
Jo ik,

= k S . 2ek 2B.(k
¢~;(_ B.(k,Ja,b,  2ek?Bk)
’ (33)

a2a +a,) k*—k?
where G(x;k) is defined in (10). In the farfield, where
r = |x|— w0, we find by the standard application of the law of
cosines and the binomial theorem to |x — §| in (11) that (33)

, (32)

becomes
= (k. )e, 6, 2k B.(k ekr

¢~[Z(“B( Ja v ﬁ’(z))F(k )]

i=1 .al2a + a,) kz—kj

(34)
The directivity factors F), / = 1, 2,..., are defined by
R 1 i
Fkfi=— - [ (e~ vy gmpas 35)

Here, f = x/|x| is the unit vector in the direction of observa-
tion, and y = (£,7,0). Thus in the farfield the composite ex-
pansion for the acoustic potential is reduced to a spherically
outgoing wave whose amplitude is given by the sum in (34).
The square of the absolute value of this sum is the differential
cross section of the membrane corresponding to the compos-
ite expansion. The F, are the Fourier transforms of the
modes ¢, with respect to the observation direction.

The asymptotic expansions presented in (32){34) are
uniformly valid in an interval containing a simple eigenvalue
k,. They are valid for any other k£ bounded away from the
other eigenvalues k = k,(j#n). If each eigenvalue is simple,
then we obtain an asymptotic expansion that is valid for all
by replacing a by (k — k,)/€k, in (32)—{34), and then sum-
ming over n. We find for example that the displacement v
becomes )

o~ ( k‘,,,a,,,/.?,,,(k,,,)e'2
m=1\ (k—k,)[2(k —k,)+ €k,a,,]

2k 8, (k)
+T)¢’m( »)-

(36)
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Similarly the composite expansion of the farfield, corre-
sponding to (34), that is valid for all k given by

d~A (B,k)e™/r), (37a)
Alk) = z( — Ebnlkmbank,
2\ =T [2k — k) + eka, ]
2k Bulk) )Fm (k.#), (37b)
k?—kZ

where |4 (£,k)|? is the scattered differential cross section of
the membrane. A similar result holds for (33).

Ill. INTERPRETATION OF THE RESULTS

The inner and outer expansions can be recovered from
the uniform expansions (32}34) by taking appropriate lim-
its in these equations. Thusifk — k, = O(1) as €0, so that
a = O(1/¢), then the first term of (32) is O (¢?). Consequently,
the second term dominates and (32) is reduced to the outer
expansion (19). Similarly, the farfield potential given by (34)
is reduced in the outer limit to

(2ek $ B(k)F,(kr))

i=1 r

(38)

Thus the displacement v and the scattered potential ¢ are
O (€) when the incident frequency is bounded away from all of
the membrane’s resonant frequencies. That is, the acoustic
potential is given essentially by the sum of the incident and
specularly reflected waves because the acoustic fluid density
is much smaller than the membrane density. This qualitative
behavior has already been observed' in other scattering
problems that can be solved explicitly, e.g., by partial wave
expansions and from their subsequent numerical evalua-
tions.

However, when the incident frequency approaches a
resonant frequency, i.e., when k = k,(1 + ae) fora = O (1)
as e—0, the second term in (32) is O (1). It combines with the
first term to yield the inner result (28). Similarly, the farfield
expression (34} for the scattered potentlal is reduced for k
near k,, to

~A,F, (K, fe""/r) (39)

Thisis O (1/¢€)larger than the outer expansion (38) and it
is of the same order as the incident and specularly reflected
waves. Thus the scattering potential contributes to the low-
est order approximation only when k is near a resonant fre-
quency.

The coefficient of the outgoing spherical wave in (39) is
the product of the amplitude 4, and the directivity factor F,
which gives the radiation pattern of the membrane for k near
k,. Furthermore, |4, F, | is the differential cross section of
the scattered acoustic potential for & near k,, and |F, (k,,,f)|?
is the differential cross section of the farfield scattered acous-
tic potential 4, produced by the membrane vibrating with
frequency k, and mode #, (x,y). The amplitude 4, contains
information about the coupling between the acoustic medi-
um and the membrane, which we now describe.

In Appendix A we show that the fourfold integral (27)
which defines a,, is given by
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a, =R+, (40)
where R and I are defined by
R=|[[(1v8.1~ k2ig, Prix dy ds
z>0
(41)

/2 i
I=k, f f \F,(k, )| sin 6" dg " d6">0,
0 JO

Here I /k, is the total cross section of ¢, and R is twice the
corresponding dimensionless Lagrangian. The total acoustic
scattering cross section for k near k, can therefore be written
as

aT =(|An|2/kn)1 (42)
Combining (26) and (40) we obtain
' 418, (k,)|?
P 1A )
. 2a+RP+1 A
The square of the modulus of 4, is sketched as a func-
tion of @ in Fig. 1. Since the maximum occursata = — R /2

and since R > 0, as we show in Appendix B, (20) implies that
the maximum occurs for & slightly less than k,,. Thus R is a
detuning parameter. Furthermore, it follows from (43) that I
is the bandwidth of |4, |. To evaluate |4, |? it is assumed that
k, and ¢, (x,y) are known explicitly or by numerical compu-
tation. Then the integrals that define 8,, R, and I must be
determined similarly.

If &'=0, then B, (k,,) = 0 and the solvability condition
(25) gives

(2@ +a,)4, =0. (44)

A nonzero solution of this equation requires a = — ia,.
From (20), (40), and (41) it follows that the complex eigenfre-
quency of the coupled fluid—elastic system is given by

k~k,,[(1—'§R)— %1] (45)

2
Ia |

/ | | \
: a
-R/2

FIG. 1. A graph of |4, |* for a simple eigenvalue.
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to order O (¢). The negative imaginary part in (45) corre-
sponds to damping because e ~ “* is the assumed time depen-
dence. Since the decay rate is proportional to Z, this param-
eter measures the ability of the membrane vibrating at
frequency k,, to convert motion into acoustic energy.

‘IV. NUMERICAL PROCEDURES

When solving the scattering problem numerically by
the method of normal modes, the membrane displacement is
expressed as

vy = S batnalxy) (46)

m=1
Then by substituting (46) into (13) we find that the coeffi-
cients b,, are the solution of the infinite system of linear
algebraic equations
ik.e)b = 2ek *B(k ), ' (47)
where b and ( B are the infinite vectors with components (b,,

b,,...) and (By; B,....), respectively, and 7 is the symmetric
infinite matrix whose components 7; are defined by

rik.€=(k? -k}, + €k>Dy(k), i,j=12,.. (48)

The elements of the complex valued symmetric D;; are de-
fined by the fourfold integrals ‘

p,k)=~ [ [ [ [stzs0i6m ok mien

X, (x.pME dn dx dy, (49)

sothat D, (k) =a,.

To solve (47) numerically we first truncate it to an
N X Nsystem. The value of N that is selected depends upon
the value of k, the desired accuracy, and the size of the com-
puter’s memory. In general, the first ¥ eigenvalues and ei-
genfunctions of the membrane are obtained by solving (14)
numerically. Then the matrix elements D;; are obtained by
numerical integration in (49) using these eigenfunctions.
Since the matrix D is symmetric, only N (N + 1)/2 of the
elements need be computed. The truncated vector B(k }is also
computed by numerical integration from the definition

_(17b). Finally, the truncated version of (47) must be inverted

to obtain the approximate solution vector b = (b,,b,,...,by).
These coefficients are inserted into (46) to yield the approxi-
mate solution. This process must be repeated for each de-
sired value of k. We now show how the asymptotic method
of Sec. II as applied to the algebraic system (47}49) can be
used to substantially simplify and reduce the computations
as compared to the direct numerical method described in
(46)—(49) when € is small. If k is bounded away from k;
(7 = 1,2,...), then the outer expansion given by (17)(19) is
valid. The infinite sum in (17) must be truncated at n = N. To
evaluate this sum, the first ;V eigenvalues, eigenvectors, and .
the truncated vector [ B,(k ),....8x(k )] must be computed nu-
merically for each desired value of k as in the direct numeri-
cal method. However, it is now not necessary to perform the
costly numerical evaluations of the matrix elements D;(k )
and the subsequent numerical inversions for each desired
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value of k because the k dependence of the solution is essen-
tially given by the outer expansion.

If k is close to the simple eigenvalue k,,, then v is given
asymptotically by ¥, in (24). The determination of V, only
requires the numerical calculation of ¢,,, 8, (k, ) which have
_ already have been obtained for the outer expansion, and
D, (k,) = a,. The numerical savings here is even more sub-
stantial than in the outer region because the k dependence
and the resulting matrix inversion are given explicitly by the
inner expansion.

The numerical approximations to v in the inner and
outer regions can now be combined to produce the uniform
result given by (32). This result will become invalid near &,
for I #n. If all the eigenvalues of the membrane are simple,
then (36) holds. Thus, only the matrix elements D, for
I=1,2,...,N need be evaluated numerically at k = k,. Even
in this more complicated expansion a sizable numerical ad-
vantage is gained. This is because the off-diagonal D, , are
not needed and no inversions are necessary.

V. NORMAL INCIDENCE OF A PLANE WAVE ON A
BAFFLED CIRCULAR MEMBRANE

We now apply the asymptotic method to study the scat-
tering of a normally incident plane wave,

Dxk)=e"* (50)
on a circular membrane. Then the membrane displacement
and the scattered acoustic potential vary only with z and the
cylindrical radius p=yx? + y”. The axisymmetric eigenval-
ues and eigenfunctions of the unit circular membrane are®

i ek,
k,,= .c" ] 1// \/_ (c p),

Jold,)
where 4, is the nth root of Jo(4 ) = 0. Since they are all simple
eigenvalues the uniform expansions (36) and (37) are valid.
To evaluate them, we must determine R and I which are

=12,., (5])

defined in (41).

If follows from the Fourier analysis in Appendix B that

R and I can be expressed as

|F(Ly)?

R=[[ o0 dean, (52)

231/2

b (¥ —k3i)
|F, (L) ‘

= J-J- e 4 . (53)

Here vy is the two-dimensional vector with components (£,7)
and y=|y|. We find from the definition of F,, in (35) and the
properties of Jy(ck, p) that

ck, Jolkt sin £2)

Jo (k?t?sin® 2 — c%k2)
where t is an arbitrary vector, =|t|, and £2 is the angle
between t and the z axis. Inserting (54) withk = 1,t = vy, and
2 = 7/2 into (52) and (53) we obtain the one-dimensional

integrals
R =

F,(kt) =

, (54)

2 =/ Jolk h¢)\?
ic J‘; (—:(()s},;zc:)s— cz) ) cosh t dt, (55)
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26‘2
Tk

Thus we have reduced the fourfold integrals in the defini-
tions of R and I in (41) to the one-dimensional integrals (55)
and (56). These integrals are numerically evaluated for a
fixed n and varying ¢, where k,, = 4, /c. They are graphed in
Figs. 2 and 3 for n = 1,...,15 and for ¢<]1.

The monostatic cross section of the scattered acoustic
field is given by the value of |4 |? in (37) in the backscattered
direction. It is obtained by setting t = £ = (0,0,1) in (54) and
inserting this result into (37). We have summed this series
using the numerical values of R and I given in Figs. 2 and 3
and the fact that for the circular membrane

B.k)= —2{m/ck,, for allk. (57)

The square root of the monostatic cross section is graphed in
Fig. 4 for ¢ = 0.5 and for & in the range 0 < k < 20. For this
range of incident frequencies there are three resonant fre-
quencies k), k,, and -k, as is clearly indicated in the figure.
The maxima occur at approximately k = k,, k,, and k; be-
cause the R are relatively small. In addition, the cross section
issmall [O (€] between the resonant peaks and only one mini-
mum occurs between each pair of maxima. These minima,
which are called antiresonances,!® occur close to the reso-
nant frequencies as seen in Fig,. 4.

The antiresonances do not occur in monostatic cross
sections computed from either the inner or outer expansions
separately. They apparently occur at frequencies where
neither of these expansions is valid separately so that the
uniform expansion must be employed. In fact, an analysis of
the uniform expansion, which we do not present, shows that
the antiresonances occur when Re 4 = 0. In addition, the
analysis shows that at the antiresonance points [4 | = O (€?).

We have also computed numerically the total scattering
cross section of the circular membrane for the same range of
incident frequencies using the uniform expansion (37). The
logarithm of this quantity is graphed in Fig. 5. We observe
that the local minima are located nearly symmetrically
between the maxima, and antiresonances do not occur. This
is in contrast to previous results'® where antiresonances in

I

72f J(k 6)\2
( Jolk, s 8) ) cos 6 do. (56)
o cos’d — ¢

.5
n=1
AT
St
I(kn)
21
A1
0 S — + + + + + \
0 5 10 15 20 25 30 35 40 45 50
) A k
1 2 n

FIG. 2. A graph of the first 15 J as a function of k,, = 1, /¢, for ¢<1.
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FIG. 3. A graph of the first 15 R as a function of k, = 4, /c, for c<1.

the total scattering cross section were obtained. This dis-
crepancy in the qualitative features of the solution may re-
sult from the different values of € employed in evaluating the
cross section in this paper (¢ = 0.1) and the values used in
Ref. 10, where €>0.5. However, it may also result from inac-
curacies in the variational method'® where only two trial
functions (modes) were employed. If the antiresonances oc-
cur in a region where the uniform expansion is required, as
our results suggest, then many modes may contribute to val-
ues of the cross section as is suggested by the uniform expan-
sion.

VI. MULTIPLE EIGENVALUES

The inner expansion obtained in Sec. I1is for kc near the
simple eigenvalue &, c. However, membranes typically have
eigenvalues with multiplicities greater than one, as well as
simple eigenvalues. For example, the eigenvalues k,, ,¢ and
eigenfunctions ¢,,, of the unit square membrane are,
k,.c=mm?+n2, o . =2sinmrx sinnmy, mn

= 1,2,.... The lowest eigenvalue is k, ;¢ = 2 and it is simple.
However, the second eigenvalue k,,¢ = k,,¢ = /57 has mul-
tiplicity two because ¢,, and ¢,, are linearly independent
and they are the only eigenfunctions corresponding to this
eigenvalue. Larger eigenvalues may have multiplicities > 2.

fal

0O 2 4 6 8 10 12 14 16 18 20

k

FIG. 4. Magnitude of the backscattered amplitude A for normal incidence
on a circular membrane with ¢ =0.5 and € =0.1.
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-3 + + + ————t t + + -
o 2 4 6 8 10 12 14 16 18 20
k

FIG. 5. Total scattering cross section 2, forc =0.5 and e = 0.1.

We now obtain the inner expansion (21) for k,c, an
eigenvalue of multiplicity two. A similar analysis which we
do not present applies to eigenvalues of higher multiplicity.
Denoting the corresponding orthonormal eigenfunctions by
¥, and 7, the solution of (22) gives the inner expansion,

v="V,+O0le) = [4,4} +B,12] +Ole), (58)

where the constant amplitudes 4, and B, are to be deter-
mined. The solvability condition for (23) yields

Ry =0, i=12. (59)

By inserting ¥, from (58) into the expression for R, (59} is
reduced to the following linear algebraic equations for 4,,
and B,

(2a + Tll)An + Tl2Br| = Zﬂrl;(kn)l

(60)
T4, + (2a + T5,)B, =281 (k,),
where
Bk, /=45, (63,0, ), i=12, (61)
and the T; are defined for i, j = 1, 2 by the fourfold integrals
Ty={¢,.G (k. }¥7)- (62)

It follows from (62) that T, = T5,.
Thedeterminant 4 (a) of the system (60) is the quadratic
function given by :

A (@) = Q2a + T, )2a + T,,) — (T, =4, +i4;,
(63a)
where A, and 4, are defined by
Apla)=4a’ +2a Re(T, + T;) + Re(T, T, — T
(63b)
4,(a)=2aIm(T\; + Ty;) + Im(T,, Ty, — T3,).
Since we prove in Appendix C that A (a)70 for all values of
a, the solution of (60) is .
A, = (28K, )2a+ Ty) — 2T\, B k,)] /4 (@),
(64)
B, = [28 (k. )2a + Ty) — 2T\,B (k)] /4 (a).
To analyze the qualitative features of the inner expan-

sion (58), we consider the magnitude (v,u). Then we obtain
from (58),
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ol =7 + B%) + Ole) =Pla)p> + Ofe), (65)
where
Pla)=4[(4a® + 4a + VA% + 4],
b’=|B . (k,)|> + 1Bk,
(66)

Y=[TuBk,) — T, B2k, )| + |T.,B2 k,)
— T8 (k)*) 63

A =([Re(T;,)|B 1 (k,)I* + Re(T,)|B2 (k,)|?
—2Re(TRe[B1L(k,) B2 (k,)] )67

The overbar denotes the complex conjugate. The quantity b
is proportional to the projection of the energy of the incident
wave into the null space of (22). Thus P (a) is an “amplitude
ratio” of the inner response (58), to lowest order in €.

From (63) and (66) we deduce that

Pla) = Nyla)/D fa), (67)

where N,(a) and D,(a) are quadratic and quartic polynomi-
als, respectively. Both polynomials have real coefficients and
are positive because (v,v) > 0. The stationary points of P (o)
are the roots of the quintic equation

D3P’ =D,a)N;(a) — NyalD i(a) = 0. (68)

The quintic is not readily solved because it is a complicated
function of T; and B/ (k,). However, (68) has real coeffi-
cients, so that it has either one, three, or five real roots. If it
has one real root, the sketch of P () is similar to that of Fig. 1
which is the inner response for a simple eigenvalue. We have
sketched P (a) in Figs. 6 and 7 when (68) has three and five
roots, respectively. The maxima of P(a) and their corre-
sponding local bandwidths may differ substantially, depend-
ing on the membrane’s shape and on the incident field. In
some cases, the local bandwidths may be narrow so that it

a

FIG. 6. A graph of P (a) for a double eigenvalue showing two relative maxi-
ma.
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a

FIG. 7. A graph of P (a)for adouble eigenvalue showing three relative maxi-
ma.

may be difficult to detect the double and triple maxima of the
response in an experiment.

The inner expansion for the scattered acoustic potential
corresponding to (58) which is obtained from (10}+12) and
(58)is

¢ =G (x,k,)A, ¢, + B.r) + Ole). (69)
In the farfield as 7o (69) is reduced to
¢ =Sk, Be™/n + Ole), (70a)

where |S (k,,,f)|? is the differential cross section of the mem-
brane corresponding to the inner expansion. It is defined by

S (fenst)=A,F (k) + B, F (K, 8) (70b)

where F/ is defined by (35) with ¢, replaced by /. The
farfield inner potential given in (70) is a generalization to the
double eigenvalue of the farfield potential given in (39) for
the simple eigenvalue. It is a linear combination of the far-
field inner potentials corresponding to each of the eigenfunc-
tions of the double eigenvalue. The differential cross section
(70b), is, in general, a complicated function of ¥ because it
depends upon the Fourier transforms F,.

By employing the results in this section, we can show
after a lengthy analysis (all details are omitted) that the total
cross section 3 corresponding to (70) is given by

2 (@) =4P;(a)b’. (71)
The amplitude ratio Py is defined by
Pyla)—=k - 1( 2a+A)4,(a)+ I'dg(a) ) (72a)
A%(a)+ 4 j(e)
where I" is defined by
I =Im(T,,)|8 ,(k,)* + Im{T,)|B (k,)I*
—2Im(T,)Re[B(k,) B7 (k,)]- (72b)

We observe that Py (a) has the same mathematical structure
as P (@), because it is the ratio of quadratic to quartic polyno-
mials.
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FIG. 8. Total scattering cross section of a unit amplitude plane wave near
the k,, resonance of a unit square membrane with ¢ = 5 and € = 0.1. The
incident direction makes an angle of 5° with the membrane normal and its
projection on the plane of the membrane makes an angle of 30" with a side.

We have evaluated P;(a) for the -eigenvalue,
k3¢ = ky,¢ = \10m of the unit square membrane for several
values of the sound speed ratio ¢, and for an incident plane
wave. For the square membrane, T, = T,, for all double
eigenvaluesand T, = T, = Owhenm 4+ nisodd, as we can
show from (62). Furthermore, when m + n is odd, the re-
sponse is similar to the simple eigenvalue case. Thus the low-
ést “true” double eigenvalue for the square is k¢ = k,,c. The
integrals required to determine the quantities in (72) were
determined numerically. The results suggest that for ¢ < 1,
ie, for ¢, <c,,, Ps(a) has a single maximum as in Fig. 1.
However, for ¢» 1, P () may have either one or two maxi-
ma. The results also depend on the angle of incidence of the
plane wave. A typical result is shown in Fig. 8, for & close to
k3 = k,,. There is a relatively broad single maximum with a
narrow, spiked second maximum superimposed upon the
broad minimum. The condition ¢» 1 implies that the mem-
brane material is “soft.”

A uniform asymptotic expansion corresponding to the
_ double eigenvalue can be constructed for k in an appropriate
interval about &, by employing the inner expansions (58),
{69), and (70) and the outer expansions given in Sec. I1. Simi-
larly, uniform asymptotic expansions that are valid for all &
can’ be obtained by combining inner and outer expansions
taking into account the possible multiplicities of each k,,.

APPENDIX A

The scattered acoustic potential ¢, (x) produced by the
membrane vibrating with frequency &, and mode ¥, (x,p)is a
solution of the boundary value problem:

Ap, +kod, =0, 2>0, (Ala)
% 0, xypeM, (A1b)
dz
e — ol e, (Al

and the radiation condition as r=|x|— «. The solution to
(Al)1s given by
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$a(x) = G (5K, 5, (A2)

where the integral operator G is defined in (10). In the far-
field, r— 0, this expression simplifies to

o ~F, (K, )™ /1), (A3)

where F,, (k,,t) is defined by (35) and # is the unit vector in the
direction of observation.

Since k,, is real, ¢,, and ¢, both satisfy (A 1a). Hence we
have

V-4.V4, — V4, > + k1 |8,]>=0. (A4)
Integrating this expression inside the closed surface S, com-

posed of the large hemisphere r = R, z> 0, and the circular
region x> + > = R}z =0), and applying the divergence

theorem gives us ,
2nrw/2 a_
R? Jf«ﬁ,, % sin ¢ d¢ dO
ar
00
r=R
= [[[uvs.r - k2igPraxdy e
<R
2>0

ap
2 dxdy. AS
+f 80 2 dx dy (A5)
r<R
z=0

By inserting (A3) into the left side of (A5), and (A1b}{Alc)
into the second integral on the right, and then letting R— oo,
we obtain

2m /2

— ik, ” |F,(k,,£){sin ¢ d d6

@ o0 0

= [[] .2 -rzpp.prax v

— oo — o

‘+fuf¢"(xw.0.k,. W, b dy. (A6)

Finally, we substitute (A2) evaluated at z = Ofor ¢, (x,»,0,k,,)
into (A6) and recall the definition of a,, given by (27), to

arrive at (40) and (41).

We now prove a similar result which will be used in
Appendix C. Let ¥} and ¢ be two eigenfunctions of the
membrane corresponding to the same eigenfrequency k,,c.
Let ¢} and ¢ 2 be the corresponding solutions of (A1) with
¥, replaced by ¢, and ¢, respectively. It then follows from
(Ala) that

V{4.V$: —8iV8,)=0. (A7)
We first integrate this expression over the interior of S and

then let R to abtain
/22w

Im(yl, Gk, W2) = —k, ”F; FZsingdpde, (AS)

where the F! are defined by (35) with ¢, replaced by /.
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APPENDIX B

To show that R > 0, where R is defined in (41), we first
employ the plane-wave expansion of g{xy,0|£,7,0;k,). It is
given by

8lx.p:0(5.m,0%,)
_ =i ([ exolilotx—£)+ry—nlk,}
2 _J[ (k2 —o®— )2 do dr
(B1)

where the branch of the square root function is defined by
V — 1==i. When (B1) s inserted into the definition of a,, giv-
en in (27) and the limits of integration are interchanged, we
obtain

e I W

—® —®

(B2)
In (B2) ¢,, is the finite Fourier transform of i, defined by

Fulov) = f ¥, cylexplilox + ik, |dodr.  (B3)

It follows directly from (B2) that

I f [k2 M(j;d:‘::)] 172

a’+r’<k2
J‘ J‘ |¢,, |’do dr (B4)
21r (@ + 72 — k22
&+ Pkl

and have R = Re(a,,) is positive.

APPENDIX C

The quantity 4 (@), which we now show does not vanish,
is the determinant of the system (60). That is

A (@) = det(T + 2al), (C1)

where I'is the 2 X 2 identity matrix and T is the 2 X 2 ma-
trix with components T; defined by (62). Since a is real, it
follows from (C1) that A {a)#0 if and only if T has no real
eigenvalues.

To demonstrate that T has no real eigenvalues we first
denote any eigenvalue of 7 and a corresponding unit eigen-
vector by g2 and x = {x,,x,), respectively. It then follows
from the Rayleigh quotient for  that

i =Ty |x, ) + Tylx,|* + 2T, Re(x,,X,). (C2)
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‘Rewriting x, in polar form, x, = r,e””, 1 = 1,2 and inserting
this into (C2), we obtain

2
Im#:bl(rl+ M) +b2(] —

(b3 cos 5)2
b, ) -

bb,

(C3)
In (C3) we have used the following notation: b, = Im(T,),
b, = Im(T>,), b, =Im(T},), and 8 = 6, — 6,. However, it
follows from the definition (62) of T;; and from the analysis of
Appendix A [see (A6)], that

/22w

b = —k, fj |FL(k,.#)*sinpdpdB, 1=12. (C4)

Here, F/ is the directivity factor given by (35) with 1, re-
placed by ¢},. Thus b, and b, are both negative. From (A8) we
have

/22w

b, =k, ff F!F2sin ¢ d¢ db, (C5)
00

which is a real quantity. The Cauchy-Schwartz inquality
applied to (C5) gives

|b§ |<|b1||b2|5b1b2 (C6)

from which we deduce that the factor multiplying 4,72 in
(C3) is positive. This implies that Im p2 <0 and hence T has
no real eigenvalues.
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