lll. LOVE WAVES

The discussion of Love waves in Sec. V of the subject
paper contains several conceptual and typographical mis-
takes. The corrected equations are given below. The equa-
tion of motion should be
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The expressions for m? and 7 should have been
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The dispersion equation should be modified to
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A homogeneous, isotropic elastic medium having initial axial stresses in two orthogonal
directions is considered. The dynamic equations for superimposed small deformations are stated.
The propagation of plane waves in such a medium is discussed. It is shown that pure longitudinal
and shear waves can propagate only in certain specific directions which are defined. The present
analysis corrects a fundamental error in a recent paper in this Journal [J. Acoust. Soc. Am. 72,

255-263 (1982)].
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INTRODUCTION

The problem of small amplitude waves propagating in
pre-stressed or pre-strained elastic media has been discussed
in detail by several authors. Two quite different presenta-
tions of this topic, in Cartesian and tensorial rotation, may
be found in Refs. 1 and 2, respectively. Wave propagation in
a pre-stressed homogeneous, isotropic, linearly elastic medi-
um has been considered in a recent paper in this Journal?
However, the authors assume a form of solution which does
not satisfy their equations of motion. Reference 3 is con-
cerned with the reflection of plane waves from a free surface
in a half-space. Exactly the same error occurs in two very
similar papers.*> As a result, the numerical findings and
conclusions of Refs. 3-5 are in doubt.

1. EQUATIONS OF MOTION

We consider a state of uniform initial stress with princi-
pal stresses S, and 5, along the x and y axes, respectively,
and S, = 0. The material is in plane strain with orthotropic

1642

J. Acoust. Soc. Am. 74(5), Nov. 1983; 0001-4966/83/111642-02$00.80; © 1983 Acoust. Soc. Am.; Letters to the Editor

symmetry. The principle directions of symmetry are the co-
ordinate axes. The equations of motion for superimposed
deformations are given by Biot [Ref. 1, Chap. 5, Eq. {4.5)].
Let u and v be the displacements in the x and y directions,
then
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Here P = S,, — S, and the elastic constants Q, B, ;, B,,, B,
are also functions of the initial stress. Only Q may be ex-
pressed explicitly in terms of the finite initial stresses S,,, S,
and initial strains A, 4, [Ref. 1, Chap. 2, Eq. (7.15)),
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However, in the limit as S, and S,, tend to zero, the elastic
constants reduce to their isotropic, stress free limits:
B,,=B,,=A1 +2u,B,; = A and Q = p, where 4, i1 are the
Lamé constants.

The elastic constants are defined through the stress-
strain relations
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where B,, = B,, — P (Ref. 1, Chap. 2, Sec. 8). Inthe paper by
Chattopadhyay et al® the authors assume an isotropic
stress-strain relation. Their values of the elastic constants
are given by Eq. (2) of Ref. 3.

1l. PROPAGATION OF PLANE WAVES

Consider the plane wave
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Here k is the wavenumber, ¢ the phase speed, n the direction
of propagation, and p the displacement vector. For a given
wavenumber and propagation direction, ¢ and p are deter-
mined by Eq. (1). Substituting for u gives the characteristic
equation:
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The secular equation which determines ¢ = ¢(n) is found by
setting the determinant of the matrix to zero. The resulting
quadratic in ¢? can be factored into two sheets: a quasilongi-
tudinal and a quasishear. We note that Eq. (5) is not equiva-
lent to the characteristic equation of a linearly elastic aniso-
tropic solid. This is evident by noting that the Kelvin—
Christoffel stiffnesses of Eq. (5) do not satisfy the required
symmetries (Ref. 6, Sec. 7.2). This is because the incremental
stresses and strains do not have an associated strain-energy
function.'

In his book, Biot' shows that pure longitudinal and
shear waves can propagate in the x and p directions. It is of
interest to see if pure modes propagate in any other direc-
tions. Such directions are known as specific directions. Lon-
gitudinal specific directions are found by putting
n, =p, =cos fand n, = p, =sin @ in Eq. (5). We find that
6 =0, 7/2, and 6,, where
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If the right-hand side of Eq. (6) is real, then 6, is a specific
direction, with longitudinal wave speed

P"2=B|| —(B"—B,Z—ZQ)sinZBO. )

Puttingn, = — p, = cos 0,n, = p, =sin @in Eq. (5)deter-
mines shear specific directions. These are again 0 =0, 7/2,
and 8,, with the shear wave speed in direction 8, given by

pc =Q+ P+ (By — By, — 2Q) cos? 6, (8)

When the initial stresses are equal, we have P=0,
B,, = B,,, and 8, = 7/4. The longitudinal and shear speeds
in the specific directions are (B,,/ p)"/?and (Q / p)'/?, respec-
tively. Away from these directions the speeds vary as in an
orthotropic solid with elastic stiffnesses C;; = C,; = B,;,
C,, = B,,, and C, = @, see Ref. 6, Sec. 9.3.

Since the wave speeds depend upon the propagation di-
rection n, the group velocity of the wave (4) is not, in general,
equal to the phase velocity cn. This is a common pheno-
menon in anisotropy.® The group velocity is important since

- it is the velocity with which the energy is propagated. Let

n = (cos 8,sin 8), then from Eq. (5) we have ¢ = ¢(@). The
group velocity (wave velocity) is c,m, |m| = 1, where

c,m= c(n + %c“'e@). (9)

Here e, = ( — sin 8,cos @). The phase and group velocities
are equal when dc/39 = 0. This oceurs at @ = 0, /2 but not
at g,, in general. :

Finally, we note that the analysis of Sec. 1, Ref. 3 con-
cerning the form of traveling wave solutions is totally incor-
rect. The relevant equations to be solved are in Eq. (4) of Ref.
3. The method of solution would be to consider a wave field
asin Eq. (4) above and determine the resulting characteristic
equation. However, the authors assumed an isatropic solu-
tion defined by two potential functions. Now, the use of po-
tential functions in elastodynamics is not possible under gen-
eral anisotropy, but only in certain special cases, e.g.,
isotropy and transverse isotropy. The errors of their way are
obvious upon noting that their final solution [Ref. 3, Eq. (10})]
does not satisfy the Eq. (4) of Ref. 3.

Note added in proof: The topic of the present letter is
discussed in greater detail in a recent article by 1. Tolstoy,
“On elastic waves in prestressed solids,” J. Geophys. Res. 87
(B8), 68236827 (1982).
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