
III. LOVE WAVES 

The discussion of Love waves in Sec. V of the subject 
paper contains several conceptual and typographical mis- 
takes. The corrected equations arc given below. The equa- 
tion of motion should be 

The expressions for m 2 and r • should have been 

m 2 = (c2/• -- 1 -{- I1)k 2 , 

r • = (1 - 12 - c2//• ])k 2 ß 

The dispersion equation should be modified to 

(is) 

(19) 
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where stresses s 12 and s23 should be [ k ]• i it/1(c2/]• • -- I + I 1 ) 11:• 

We then have 
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= • -- •g•/p•, j = 1,2. (17) • P/2•, • -- 
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A homogeneous, isotropic elastic medium having initial axial stresses in two orthogonal 
directions is considered. The dynamic equations for superimposed small deformations are stated. 
The propagation of plane waves in such a medium is discussed. It is shown that pure longitudinal 
and shear waves can propagate only in certain specific directions which are defined. The present 
analysis corrects a fundamental error in a recent paper in this Journal [J. Acoust. Soe. Am. 72, 
255-263 (1982}]. 
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INTRODUCTION 

The problem of small amplitude waves propagating in 
pre-stressed or pre-strained elastic media has been discussed 
in detail by several authors. Two quite different presenta- 
tions of this topic, in Cartesian and tensoffal rotation, may 
be found in Refs. I and 2, respectively. Wave propagation in 
a pre-stressed homogeneous, isotropic, linearly elastic medi- 
um has been considered in a recent paper in this Journal 3 
However, the authors assume a form of solution which does 
not satisfy their equations of motion. Reference 3 is con- 
cerned with the reflection of plane waves from a free surface 
in a half-space. Exactly the same error occurs in two very 
similar papers. 4's As a result, the numerical findings and 
conclusions of Refs. 3-5 are in doubt. 

I. EQUATIONS OF MOTION 

We consider a state of uniform initial stress with princi- 
pal stresses St i and S22 along the x and y axes, respectively, 
and S•e = 0. The material is in plane strain with orthotropic 

symmetry. The principle directions of symmetry are the co- 
ordinate axes. The equations of motion for superimposed 
deformations are given by Blot [Ref. 1, Chap. 5, Eq. (4.5)]. 
Let u and o'be the displacements in the x and y directions, 
then 

02u [A P\ 02U _F Ct2 + Q__• ) 020 

(1) 

020 (Q__)020 02u + axay 
02v 

--p a•t 2' 

Here P = S•2 -- S• •, •d the cl•tic •nstants Q, B• •, B22 , Bi2 
•e al• functions of the initi• stress. •y Q may • ex- 
pr• explicitly in te•s of the finite init•l str• S, •, S•2 
•d inifi• stuns A•, A2 [•f. 1, Chap. 2, •. (7.15)], 
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• 2 2 2 
[Bii -- B12 , = S22. 

{2) 

However, in the limit as $j i and S22 tend to zero, the elastic 
constants reduce to their isotropic, stress free limits: 
Bn = B22 = A -F 2/t, B j2 ----- A and Q = p, where A, p are the 
Lain6 constants. 

The elastic constants are defined through the stress- 
strain relations 

$11 = B11ex• -• Bl2eyy, 

whereB2• = BI2 -- P (Ref. l,Chap. 2, Sec. 8). In tbe paperby 
Chattopadhyay et al. 3 the authors assume an isotropic 
stress-strain relation. Their values of the elastic constants 

are given by Eq. (2) of Ref. 3. 

II. PROPAGATION OF PLANE WAVES 

Consider the plane wave 

u =.4pc .... m, Inl = 1. (4) 

Here k is the wavenumber, c the phase speed, n the direction 
of propagation, and p the displacement vector. For a given 
wavenumber and propagation direction, c and p are deter- 
mined by Eq. (1). Substituting for u gives the characteristic 
equation: 

Bnn, • + {Q + P/2)n• - pc 2, (B,2 + Q -p/2)nln2] 
(B,z + Q - P /2}nln2, (Q - P /2)n• + B22n • - pc•J 

2 

(5) 

The secular equation which determines c = c(n) is found by 
setting the determinant of the matrix to zero. The resulting 
quadratic in c 2 can be factored into two sheets: a quasilongi- 
tudinal and a quasishear. We note that Eq. {$} is not equiva- 
lent to the characteristic equation of a linearly elastic aniso- 
tropic solid. This is evident by noting that the Kelvin- 
Christoffel stiffnesscs of Eq. (5) do not satisfy the required 
symmetries (Ref. 6, Sec. 7.2). This is because the incremental 
stresses and strains do not have an associated strain-energy 
function. • 

In his book, Bit0 shows that pure longitudinal and 
shear waves can propagate in the x and y directions. It is of 
interest to see if pure modes propagate in any other direc- 
tions. Such directions are known as specific directions. Lon- 
gitudinal specific directions are found by putting 
n, = Pl= cos 0 and n2 = P2 -- sin 0 in Eq. (5}. We find that 
0 = 0, •'/2, and 0o, where 

tanOo=(B,,--B2,--2Q• 1/• •.B22 Bi2--2Q/ ' (6) 

If the fight-hand side of Eq. (6) is real, then 0o is a specific 
direction, with longitudinal wave speed 

P c2 = all -- (•11 -- BI2 -- 212 ) •n 200. (7) 

Puttingnl = -- P2 = cos •,n• = Pl= sin 0inEq. (5}deter- 
mines shear specific directions. These are again 0 = 0, •r/2, 
and 0o, with the shear wave speed in direction •o given by 

= 12 + P + (&, - z,2 - 212) cos 2 Oo. (8) 

When the initial stresses are equal, we have P= 0, 
B, = B22, and 00 = rr/4. The longitudinal and shear speeds 
in the specific directions are {Bl•/p) l/2 and (12/p)l/2, respec- 
tively. Away from these directions the speeds vary as in an 
orthotropic solid with elastic stiffnesses C, = C22 =Baa, 
el2 = B•2, and C6• = Q, see Ref. 6, Sec. 9.3. 

Since the wave speeds depend upon the propagation di- 
rection n, the group velocity of the wave (4) is not, in general, 
equal to the phase velocity cn. This is a common pheno- 
menon in anisotropyfi The group velocity is important since 
it is the velocity with which the energy is propagated. Let 
n = (cos 0,sin 0 }, then from Eq. (5) we have c = c(O ). The 
group velocity (wave velocity) is % m, ]m I: 1, where 

c, m = c(n+ oqc c-'eo). (9) 090 ß 

Here eo = ( -- sin O, cos 0 }. The phase and group velocities 
are equal when 8c/30 = 0. This occurs at 0 = 0, •'/2 but not 
at 0o, in general. 

Finally, we note that the analysis of Sec. 1, Ref. 3 con- 
cerning the form of traveling wave solutions is totally incor- 
rect. The relevant equations to be solved are in Eq. (4} of Ref. 
3. The method of solution would be to consider a wave field 

as in Eq. (4) above and determine the resulting characteristic 
equation. However, the authors assumed an isotropic solu- 
tion defined by two potential functions. Now, the use of po- 
tential functions in elastodynamics is not possible under gen- 
eral anisotropy, but only in certain special cases, e.g., 
isotropy and transverse isotropy. The errors of their way are 
obvious upon noting that their final solution [Ref. 3, Ec 1. 
does not satisfy the Eq. (4) of Ref. 3. 

Note added in proof.' The topic Of the present letter is 
discussed in greater detail in a recent article by I. Tolstoy, 
"On elastic waves in prestressed solids," J. Octphys. Res. 87 
(BS}, 6823-6827 (1982}. 
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