Back reflection of ultrasonic waves from a liquid-solid intertace
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A new acoustic phenomenon has recently been observed in experiments where a bounded beam of
ultrasound is incident upon a smooth liquid—solid interface. A significant amount of coherent
radiation is found to be backscattered in the general direction of incidence. The angle of back
reflection is observed to be equal to the critical Rayleigh angle or leaky wave angle. Most of these
observations were made during experiments on the Schoch displacement effect, and therefore it
has been tacitly assumed that the back reflection is strongly dependent upon the angle of
incidence, as is the case for the beam shifting in the Schoch effect. We present a theoretical basis
for this new phenomenon. A two-dimensional incident beam of Gaussian profile is considered. By
a careful analysis we isolate that part of the field on the interface which has Fourier components
corresponding to backward propagating waves in the liquid. This subset of the total wave field is
then considered separately and it is shown to display a maximum in a certain direction, close to
the critical Rayleigh angle. This peak in the angular pattern of the scattered field corresponds to
an evanescent reflection boundary. We discuss the dependence of the effect upon certain
parameters. The amplitude is shown to decrease as the beam width is increased, and it increases
with increasing Schoch displacement. This backscattering is present for all angles of incidence;
there is nothing inherently special about the Rayleigh angle.

PACS numbers: 43.20.Fn, 68.45. — v, 43.20.Bi

INTRODUCTION

Recently a new phenomenon in acoustics has been re-
ported,’ though as yet no physical theory has been present-
ed to support these observations. The phenomenon is the
backscattering of a beam of ultrasound from a fluid—solid
interface. The incident beam originates from an acoustic
transducer in the fluid. At the interface the beam is specular-
ly reflected back into the liquid and transmitted into the
solid. In addition, when the incident angle is at the critical
angle, an effect known as the Schoch displacement occurs.
This involves the lateral displacement of the reflected beam,
and its origin is well understood.® Experimenters who were
primarily interested in observing the Schoch displacement
also noticed that a significant amount of energy is radiated
from the interface back in the direction of incidence. A
Schlieren photograph of such radiation may be seen in Ref.
3.

In this paper we explain this phenomenon in terms of
leaky waves propagating along the interface in the backward
direction. Our approach is to model the reflection coefficient
by a simplified form which still exhibits the poles corre-
sponding to leaky waves in either direction along the inter-
face. We consider a two-dimensional geometry with an inci-
dent beam of Gaussian profile. In practice, the transducers
used in experiment produce almost perfectly Gaussian
beams. Under these assumptions, we are able to calculate
explicitly the field on the interface. The scattered field in the
fluid can then be calculated using a representation integral.
However, this latter step is simplified by noting that only a
certain part of the interfacial field contributes to backward
propagating waves. This field, considered in isolation, is
shown to produce a backward propagating beam effect near
the critical angle.
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Previously, it has been thought that the backscattering
depends critically upon the angle of incidence.* This may be
due to some confusion of the effect with that of Schoch dis-
placement, in which the angle of incidence is critical. We
show that the angle of incidence is not important, but the
radiated energy will only be observed at or near the critical
angle, which we call the leaky wave angle 6,. Our results
indicate that the backscattering is due to a leaky wave reflec-
tion zone. This reflection zone is a new phenomenon and
complements previous descriptions of evanescent shadow
and transmission zones occurring in acoustics and electro-
magnetics.”'® We find that the back reflection depends
mainly upon two parameters. The first is the dimensionless
beamwidth (kw,), where X is the incident wavenumber and
w, is the half-width of the beam on the interface. The ampli-
tude of the back reflection decreases exponentially as {kw,)*
increases. The second critical parameter is the dimensionless
Schoch displacement (kAs), where 4s is the Schoch displace-
ment, known to be inversely proportional to the imaginary
part of the leaky wavenumber.® We find that the back reflec-
tion increases as (k4s) increases. The above two findings are
in agreement with experimental observation.*

I. THE REFLECTION COEFFICIENT

Before considering bounded beams of waves, it is useful
to consider the interaction of a single plane wave with the
interface. The general problem for a beam or for an arbitrary
source distribution may then be solved by a Fourier superpo-
sition.

Let the plane wave be incident from the liquid half
space z < 0, with the liquid-solid interface in the plane z = 0.
The displacement field within the liquid (assumed to be
ideal) may be written in terms of a potential ¢, which is pro-
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portional to the pressure field. Let the incident partial wave
¢inc be

¢inc = exP i(kxx + kzz)’ (1)
where
k,=(k*—k2)'"? (2)

and k is the wavenumber of the incident wave. The time
harmonic factor e ~ " is suppressed throughout. One reflect-
ed wave and two transmitted waves are generated at the in-
terface. The reflected wave in the liquid is

beee = R (k Jexp ik, x — k. z), (3)
where the reflection coefficient is'’
F(k,)—ipk (ks —k7)*/k,
Flk,) +ipk 7k — k§)"2/k,
In this expression, k, and &k are the wavenumbers of longi-
tudinal and transverse waves in the solid, p is the ratio of

liquid to solid mass densities, and F (k. ) is the Rayleigh func-
tion for the solid,

Fll) = (%, — k3P —4ik: —k2)kE -T2 (5)

Rik,) = (4)

The two transmitted longitudinal and transverse waves
propagate in directions determined by Snell’s law, with am-
plitudes which follow from the interfacial boundary condi-
tions.' Since we are only interested in phenomena observed
in the liquid, we shall not discuss the transmitted waves
further.

The interface can support boundary waves which decay
with distance from the interface. These correspond to poles
of the reflection coefficient R (k, ) in the complex k. plane.
Since R is a symmetric function of k_, it follows that the
poles occur in pairs symmetric about the origin. In the loss-
less case, i.e., k, k; , and k- all real, it may be shown'? that a
pole occurs for k, greater than either k or k- (note, k, < k).
The corresponding boundary wave, called the Scholte wave,
does not decay as it propagates along the interface and has a
wave speed lower than any other in the problem. For most
interfaces, we have k >k, where k is the Rayleigh wave-
number for the solid, in which case a complex pole exists
near kp with positive imaginary part. The so-called leaky
Rayleigh wave attenuates with distance along the interface
while shedding its energy into the liquid.

An inhomogeneous wave in the liquid generates these
different boundary waves when it strikes the interface. How-
ever, only the leaky Rayleigh wave is capable of leaking ener-
gy back into the liquid. We conclude that the phenomena of
beam displacement and backscattering are due mainly to the
leaky wave modes. Accordingly, we seek an approximation
to R (k, ) which exhibits the leaky wave poles. Bertoni and
Tamir® modeled the reflection coefficient by isolating the
pole responsible for the forward propagating leaky waves.
We are also interested in the effect of the backward leaky

waves, therefore we assume the following simplified form for
R:

R(k,)~Rolk,)=(k: — k3)/ (k3 —k}). (6)
Here k, is the complex leaky wave pole of R (k, ) and &, is the
complex zero of R (k,) which occurs near &,. In most in-
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stances,'? it turns out that k, is very close in value to the
Rayleigh wavenumber &,

k, = kp(l + €, + i€,), (7)

where 0 <€,<1 and €, = O (€}). Particular values of ¢, for
typical interfaces are given in Refs. 6 and 12. When there are
no losses present, we have k, = k }, the complex conjugate.
If losses are present in the media, k,7#k ¥ (Ref. 12) and the
imaginary part of k, is most sensitive to variations in the
imaginary part of the transverse wavenumber k..

The model reflection coefficient R(k, ) does not have
poles corresponding to the Scholte surface waves. However,
as mentioned before, these waves cannot provide the mecha-
nism for the phenomena considered. Even in the lossy case,
the Scholte wave becomes leaky in nature but the energy
radiated back into the liquid is noncoherent. This follows
from the fact that the Scholte wave speed is less than the
speed of sound in the liquid. Our approximate reflection co-
efficient does not display the branch points of R (k, ). How-
ever, as justification for its use we note from Egs. (4}, (6), and
(7) that Rk, ) has the correct analytic behavior near the
poles at + k,. We mention that Bertoni and Tamir’s ap-
proximate reflection coefficient® is obtained from Eq. (6) by
removing the squares. It has been shown'? that their theory
gives almost exactly the same results for the forward dis-
placement whether the exact or approximate reflection coef-
ficient is used.

Il. THE INCIDENT BEAM

In order to demonstrate analytically the reflection and
backscatter of ultrasonic beams it is necessary to have a par-
ticular beam profile. The most common one used in the rel-
evant experiments'® is the Gaussian beam, which may be
produced by subjecting the transducer face to a Gaussian
pressure distribution. Consider a two-dimensional trans-
ducer whose face is centered at the vector position
Xs = [ — Xo — k), where X, = h tan 6, and 6, is the angle of
incidence of the beam at the interface z = 0 (see Fig. 1). The
transducer face is parallel to the unit vector e, and the beam
direction is that of the unit vector e, . One way of expressing
a Gaussian beam is in terms of a point source in complex
space.'* Accordingly, we write the incident field as

Binc(X) = YHG(KD), (8)

where H )’ is the Hankel function of the first kind, and the
complex distance D is

er
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FIG. 1. Two-dimensional geometry showing the angle of incidence 8, and
the beam direction eg.

Andrew N. Norris: Reflection from interface 428



D =|x — (x5 + ibeg)|. : 9)
Here b is the length characterizing the beam. The branch
points of D lie at xg + be- in real space. Therefore, the field
of Eq. (8) is an exact solution of the equations of motion in the
liquid outside the circle of radius & centered at x;.

Let an arbitrary point x be parameterized by distances
along the beam axis and normal to it, thus

X = X5 + Xer + Zep. (10)
Near the beam axis, such that X /6«1, we may expand D as
D=Z—ib+iX*/2b+iZ)+ - (11)

Assuming that
k|Z-1ib|>»], (12)

we can use the asymptotic form for the Hankel function of
large argument to obtain

- _ €™ explk(b+iZ)) —kX?
Pne = 72 b+ iZ) ex(2(b+i2))

on the transducer face Z = 0, and Eq. (13) gives a Gaussian
profile of half-width w,, where

w, = (2b /k )2 (14)

Away from the transducer, the beam spreads out but re-
mains Gaussian. At a distance Z along the beam axis, the
beam half-width is w, where

w=uw,(1+Z2%b*}"2 (15)

If the complex point source solution is to model the actual
transducer profile faithfully, then the field near the trans-
ducer edges must be small as compared to at the center in
order to avoid diffraction effects. This implies that a, the
transducer half-width, is of the same order of magnitude as
w,. Therefore, by Eqs. (12) and (14) we have the necessary
condition that

(ka)* = O (kb) (16)
from which it follows that k&> ka» 1. Finally we note that

Eq. (13) may also be derived using the parabolic approxima-
tion to the wave equation.'’

(13)

fil. THE FIELD ON THE INTERFACE

The incident field at the interface follows from Eq. (13)
by substituting for the beam coordinates X, Z in terms of the
fixed coordinates x, z with z = 0. The term

[k(b+iZ)]"? exp[ — kX?/2(b +iZ)]

does not depend strongly upon Z on the interface, so we
replace Z by A sec 6,, its value at the intersection of the beam
axis with the interface. Thus, we have

& (%,0) = A, explik sin 9, x)exp( — kx? cos® 6,/2by),  (17)
where

Ay = e™*e*/(8mkb,)' /%, (18)
and the complex distance b, is
 bo=b+ihsec,. (19)

The Fourier transform of a function f/(x) is defined as f (k)
thus: :
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flk, )Efm e " f(x) dx. (20)
From Eq. (17) we obtain
Binc Kk, ,0) = (€™*/ 2k Jsec 0,
Xexp[ — b, sec’ 0;(k, — k,)/2k ], (21)
where
k; =ksing,. (22)
The scattered field ¢ in the liquid half-space z<0 is got by

multiplying ;.. by the canonical reflection coefficient R, of

Eq. (6):
b (x2) = if Rofle e e O™ 5 dk,,  (23)
2r J - »

where k, was defined in Eq. (2).

Let us first consider the field on the interface z = 0. The
integration in Eq. (23) can then be achieved by rewriting R,
(k) as

Rofk) = Rolky) + Rylk), (24)
with
(kK3 k2 —k?)
Rl(k,)—(—k: — )[1 o Lt
1 1
| e

The constant terms in Ry{k,) reproduce the incident field
&inc (x,0) while the singular terms can be handled using the
result's

|7 texst— g7+ i2ag e - p11ag

= sie ~ “el® * BVerfc] — sla + iB)], (26)

where s = sgn[Im(8 )] and erfc ( ) is the complementary error
function. We find that

 (x,0) = o(x,0) + 4. (x,0), (27)
where @, is the specularly reflected beam which would be

predicted by geometrical optics, while 4, contains the leaky
wave effects. Thus

Po(x,0) = B (x,0)R (k) (28)
and
k: — k3 kf, —k2\.
@, (x,0) = #;c (x,O)[ k; s +( 4kp 0 )nrl/za)o
X [e'1 l*erfc(/{+) +é - erfc(/l_)] ], (29)
where
w, = (2by/k )M %sec o, (30)
and
__ i Lok X
A, = 2wok,,i(2 wek; ” ) (31

(]
The magnitude of the complex distance w, is the half-width
of the incident beam profile projected on the interface.
Usually the distance 4 is small as compared with b [see Eq.
{19)], and we may take w, as real.
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Let us split ¢, as follows:

$.(x,0) = ¢,(x,0) + ¢,(x,0), (32)
where
P:x,01=¢;, (x,0) [(k » —ko)/ak, ]
xim!! woe erfc(/l ). (33)

The field 4,, which is analogous but not identical to the field
v, of Bertoni and Tamir,® contains the forward propagating
leaky waves, and can be shown to be the major cause of the
Schoch displacement.® The backward propagating leaky
waves are contained in ¢,. Define the real and imaginary
parts of k, thus,

kp = kl + ié', kl’€> 0. (34)
The imaginary part € has been shown to be related to the
Schoch displacement As by®

As =2/ (35)
Ifthe angle of incidence issuch that k; = k,, then ¢ (x,0) hasa
simple representation in terms of the three parameters

a=x/w, B=uw/ds, y=kuw, (36)
We obtain

¢ (woa,0) =A0e"ar—a‘[1 — ( =2 )[e“’ 87 erfe(B — a)

v+ 26
+ o= et +6— . (37)

The final term in this expression represents ¢,. Numerical
experiments indicate that the relative magnitude of ¢, in-
creases as £ increases and ¥ decreases. Some examples for
several values of #and y are shown in Fig. 2. It can be shown

FIG. 2. The incident field and the separate parts of the total field on the
interface for several values of 8 and ¥: ¢,,.,—— sl + Sy|———;

|65] ;¢ |—
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quite simply that as y— «,¢, becomes of negligible impor-
tance and ¢, and ¢1 reduce to the quantities v, and v, of
Bertoni and Tamir,® apart from a multiplicative factor. Let
us now consider the contribution to ¢, from backward prop-
agating leaky waves.

We first note the result for the complementary error
function of complex argument,'” that

—x! » — /4

€

erfe(x — iy) = erfe(x) + eﬂ ) e [ —2x + ™
X [2x ch(ny) + in sh(np)]} + error. (38)

This formula is exact if y = 0, otherwise there is a relative
error of the order 10~ 7. Henceforth we will neglect this
error and take the right-hand side of Eq. (38) to be an analytic
representation of erfc (x — iy).

For an arbitrary angle of incidence, we have by its defin-
ition in Eq. (31), that

A_=p—ig, (39)
where

P =Xx/wy + wy/ds, (40)

q = wolk; + k,)/2. (41)
The quantity p is a dimensionless shifted coordinate. We
note that its zero is at x = — w?/4s. Combining Eqs. (33),
(38), and (39), we have

$x,0) = e~ Py ) + € Y3 ), “2)
where

1 n/4

vy = > (erfc(p) L,-» _zm e ) (43)

—p’ a0 e—n/4

'/'(1)-'=Ane z

[2p ch(ng) + in shing)], (44)

27 24 4p?
k. =k, — e, (45)
Ay = Agim" [ (k2 — k2)/2k,) )
Xexp[ — ¢° + (wo/4s(1 — ik, A5)], (46)

and A, is defined in Eq. (18). The form of Eq. (42) suggests
that ¢,(x,0) is composed of a backward propagating leaky
wave with amplitude modulation 9% (p) and a wave similar to
the incident field with modulation ¥%. However, the form of
Eq. (42} is deceptive since both ¢9 and 2 are singular at
2 = 0. To overcome this problem, we remove the singularity
from ¥2., and write

$ax.0) = e ~ PPy p) + e*“Py(p)

=¢p(p) + ¢£(0), (47)

where now
Y = Y3 + €Uy (4np)~le =7, (48)
Yr =Y§ — Apldup)~le 7. (49)

The ¢ term in Eq. (47) represents a smooth modulation of
the incident Gaussian beam. As p goes from — o t0 + oo,
the phase of ¢, changes gradually from 7 to 0 in a clockwise
sense. Therefore ¢ is essentially the same as ¢, mentioned
above, and can be neglected as far as backscattering effects
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are concerned. The field ¢, is now smooth and bounded, but
due to the addition of the term in Eq. (48} it is not strictly a
modulated backward propagating leaky wave. The choice of
the term added to ¥, is quite arbitrary as long as it has the
proper singular behavior near p = 0 and possesses no other
singularities. We choose the term in Eq. (48) so that the addi-
tional field ¢ can be discounted.

We now examine ¢, in more detail. The asymptotic
(lp|—> ) nature is easily seen by using the alternate form for
Y%, (see Appendix A)

- iA 5 Z e*™Perfcp + 2mn), p>0,

Bo={ > oo (50)

An_lﬁ%(—p)’ p<0.
This, combined with Egs. (47) and (48) shows that as
x— — o, ¢ and @, tend to A, exp( — ik, w, p)-

Thus A4, is the amplitude of the backward traveling
leaky wave. We note that 45 = O [exp( — ¢%)]. Therefore,
the amplitude decreases rapidly as either the beamwidth or
the frequency is increased. As x— + oo, both ¢ and ¢, tend
to zero like exp( — p?). For finite values of x, i.e., near zero,
we see from Egs. (43) and (44) that ¢, = O(Ay), while
@r = O(1). Thus the forward effect by far exceeds the back-
ward propagating effect, as one would expect. In Fig. 2 the
contribution from ¢, is so small as to be indiscernible. In
Fig. 3 we have plotted the magnitude of the quantity
¢5(p)/A5 for several values of ¢.

IV. THE BACKSCATTERED FIELD

The total scattered field away from the interface is given
by Eq. (23). However, this integral cannot be evaluated in
closed form for arbitrary x and z. Instead of using the trans-
form of the total field, Rk, .. (K, ), we will simplify the
integral by considering only that part of the interfacial field
¢ which produces backward propagating leaky waves. The
transform of this field §; is composed of all plane-wave con-
tributions, but possesses a maximum near the real wave-

(@

2 .
(b) FIG. 3. The magnitude of the backward
propagating potential ¢,(p)/4; on the
interface, as a function of the shifted x
coordinate p. (a) g=4; (b) g=8; (c}
g=16.
3
©)
-2 0 P 2

431 J. Acoust. Soc. Am., Vol. 73, No. 2, February 1983

FIG. 4. Coordinate system for the back reflected field.

number — k, defined in Eq. (34). In Appendix B we have
explicitly calculated ¢,. In the fluid, z <0 we have

_ 1 =< itk x — Ky 2)
daleal= o= [ Bl Mk (51

The branch of k, is defined in accordance with the radiation
condition, i.e., k, = ik2 — k)" 2ifk, < —k ork, >k.

Let us introduce a .polar coordinate system
(r,8), Oc{ — w/2,m/2) such that x 4+ w?/As= —rsin 6,z
= — rcos 8. Thus the angle 8is defined in the same sense as
the incident angle 6, but the origin » = O is at { — w} /45,0),
see Fig. 4. Putting &, = — k sin v, we have

$s(rf)= Z—I:T-J;tfin(—ksin v) e =Ocos v dv,  (52)

where the contour Cin the complex v plane goes from — n/
2+iw to —@/2, then to 7/2 and finally to 7/2 —ic.
Also,

$sl — k sin v) = B, — k sin v)e<eo/Askin (53)

The poles in the v plane are given by v=v,, n =0, + 1,
4 2, ... such that

sin v, = sin 8, + ilew, + 4mn)/kw,, (54)
where
ky=k sin 6, o (59)

defines the real leaky wave angle. For large kr, the steepest

descents path (SDP) is defined by
v=0+arcsin[th(u)] —iu, — o <u< . (56)

In deforming the path of integration to the steepest descents
path some poles may be crossed. The poles are at v=1v,,
where n are these integers, positive or negative, such that
(ewy + 4mn)/kw, is between 0 and

sec @ (1 — sin @ sin 8;)(sin @ — sin 8,)
X (1 + sin® @, — 2 sin @ sin 9,) /2

The residue at v = v, is

$p= iAge"™ ", (57)

The net result after deforming the contour is
dg(r.0)= —k—f J5( — k sin vjeikroostv—8) oaq gy
27 Jsop
+ X, (58)
where the sum is over all eligible n. The pole contributions
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are easily shown to be evanescent. However the least evanes-
cent term in the sense that Im[cos(v, — 6)] is minimum,
corresponds to the pole n = 0, which is the backward propa-
gating leaky wave pole. The integral in Eq. (58) may be ap-
proximated at large values of kr by the first term in its
asymptotic expansion:

k /2ar)''? cos 0 @5 — k sin @ )e"" ™9,
(

We note that ¢,( — k sin 8) remains fairly constant for 6
between — 6, and 6, but decreases rapidly outside this
range. The steepest descents path crosses the leaky wave pole
v, when 6~0, + e/k (assuming e<k). Near this angle
greater care must be taken in approximating ¢4(r,0). We
now discuss a uniform approximation valid in this transition
region.

Let us define the complex angle 6, such that
k, =ksin6,. (59)

Thus 6, =v, and for small (¢/k) we have Re(6,)
= 6, + O (€*/k *). We note the result that '®

[ {5 ) e

1

. . 6,—6
= 2arie™" % = e’erfc[e = im/302kr)! /2 sin( £ > )]
(60)

The uniform contribution to ¢, from the pole at v = 6, may
be extracted from Eq. (58) using Eq. (60). The result is
é,(r,0), where

8,(r,0) = 4 pe™ 40 =0
Xerfc{e ™ ""%2kr)"*sin[(6, — 6)/2]}. (61)

The remainder of ¢,(r,6 ) follows from Eq. (58) as

$5(r0) — 8,(r0) = i f DP[ng,( — ksin vjcos v

+i4,(0,6 )cos( 4 ; 9 )[sin( 1d ; 0 )

6, —06\1"1 . )
—sin( P2 )] ]exkrcos(v—O)dV

+ 2 i&ﬂ'" eikr cos(v, — &} (62)
n#0

and the sum is over all eligible n, excluding n = 0. The steep-
est descents integral has no pole at v = 8,. Therefore, for 8
near ,, the SDP integral will be O [4,(kr)~"/2].

V. DISCUSSION

The field ¢,(r,6 ) of Eq. (61) has the same form as that
exhibited by a wavefield near a shadow or reflection bound-
ary.!® In this case we have a boundary defined roughly by
6 = 6,. For 0 less than 8,, such that (k7)'/?|sin [ (6, — 6)/2] |
is large, we have
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@,(r,0)~(8mkr)~"?dycsc[(6, — 6)/2] e+ 4, (63)
which is a diffracted wave that decays with increasing radial
distance. However, for @ near or greater than 8,, the comple-

mentary error function in Eq. (61) is of order unity. If 8> 6,
and (kr)'/?|sin[(6, — 6)/2]| is large, then

¢p (T,B ) ~ABeikr cos(0p - 8)' (64)

This is the backward propagating leaky wave, which we have
observed previously on the interface.

We refer to the boundary as a reflection boundary, since
the phenomenon is essentially a reflection process, though
not specular. The boundary is defined exactly by 6 = Re(d,)
which, as mentioned above, is equal to 6, correct to order
(€2/k ?). Right on the boundary the amplitude is approxi-
mately

b, e erfe[ e re?/2K )" sec 6 ]. (65)

The amplitude decreases as the observer goes further into the
reflection zone. This is best seen by using Eq. (64) and noting
that the imaginary part of rcos (6, — @) is equal to
x,sh[Im(6,)], where the reflection coordinates x, and z, are
defined by Fig. 4. Therefore, the wave is evanescent inside
the reflection zone, decaying exponentially with increasing
normal distance from the boundary. Hence, for a given 7,
there must be an angle near 8, at which the back-reflected
field is a maximum.

These observations are made concrete by introducing
dimensionless coordinates X, Z, and R equal to kx,,kz,, and
kr, respectively. In addition, let Im(6,)=6; then we have

¢
Ap

- i e - X sh($)

> erfc [ ehr/-t(RT + 2)”2511( /) )

2

—sgn(X)e 4R — Z)"*ch(8 /2)] . (66)

For the particular combinations of water—aluminum and
water—stainless steel, the value of § is approximately 0.0173

.and 0.0064, respectively.® We have considered these two

cases for different values of Z in Fig. 5. The back reflection
beam effect is obvious, whereby the field displays a maxi-
mum inside the reflection zone (X > 0). It is also apparent
that the effect increases as § decreases. Now, & is approxi-
mately equal to €/k, and so § is inversely proportional to the
Schoch displacement, see Eq. (35). Therefore, we would ex-
pect the effect to increase with increasing Schoch displace-
ment, in agreement with experimental observation.* Also,
the quantity A, is essentially proportional to exp
{ — [wolk; + k;)/2]?}, since kAs> 1 (Ref. 6). Thus the effect
decreases with increasing beam width w,, also in agreement
with experiment.* The above dependence of the backscat-
tered amplitude upon the incident angle [see Eq. (22)] indi-
cates that there is nothing special about the Rayleigh angle of
incidence. '

VI. CONCLUSION

We have shown that a back-reflected wave exists when
a Gaussian beam is incident upon a fluid—solid interface. The
reflected wave is due to the backward propagating leaky
wave. The reflection boundary is defined by the real part of
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FIG. 5. Magnitude of 4, /4, for water—stainless steel (solid line) and water—
aluminum (dashed line). (a) Z = 50; (b) Z = 100; (c) Z = 200.

the complex angle 8, and the wave is evanescent inside the
reflection zone. In addition, the reflection boundary inter-
sects the interface at a point distant w? /4s from the incident
beam center in the backward direction. This type of evanes-
cent zone has not been discussed before and agrees with re-
cent experimental findings. We note that recently described
numerical techniques,'® which have been applied to the for-
ward reflection problem, might also be useful for the back
reflection.
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APPENDIX A: AN INFINITE SERIES
Using the Poisson summation formula?® we have
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- nl/4

€

IEi

n= o PP+ n*/4

— x*/4 — 2wnx
n =2_ ,,I p + x2/4

By a change of variables, ¢ = x/2, and by splitting the de-
nominator into the sum of two simple fractions, we obtain

I= i(zp)—lf:e-"—“"'(;, - L )dt

t—ip t+ip
217' 4mrnp
= ( - ) z '™ erfc(p + 2mn), (A2)
where the integration has been effected using Eq. (26). This
result is valid for p real and not equal to zero. Combining this
with the definition of ¥$ in Eq. (43) we arrive at Eq. (50).

(A1)

APPENDIX B: FOURIER TRANSFORM OF ¢,
We are interested in finding

Balkel=| e 4,0p)dx, B
where p = x/w, + €wy/2, and ¢ is defined by Eq. (47). Let

f=wdk, +k,), (B2)
then by Eq. (47),

" 5(p) dp. (B3)

From Egs. (48) and (50) we have,
“ i idp N .
[~ e muatoro = 22 —2i[ ipsinigrap

(B4)

Balk,) = woe < f " e

— @

where
Ji = wolk; + k,)- (B5)
The final integral in Eq. (B4) is (Ref. 21, Eq. 3.896.4)

fe-ﬂ’ sin[(f—£Ip] %P - (-;i)erf(f_Tf) (B6)

The second integral in Eq. {(B4) can be done by substituting
from Eq. (50) for ¢ and using the result

fwsin(fp)[e“" erfclp + g) + e~ % erfclp — g)1dp

=[S/ +487))(1 —e~ &+ 174, (B7)

which can be verified by partial integration. Combining Eqs.
(B3}<B7), we obtain

- — iekud2f 1 = 2f
¢B(kx) ’wOABe (f +nZl f2+(41m)2
X {1 — exp — [(27n)* + f%/41}

— lerf[(f — f,.)/z]). (B8)
This can be further simplified by noting that
- x
_2 w =1 COth(ﬂ'X) (Bg)
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and observing that the exponential sum in Eq. (B8) is negligi-
bly small. Thus

Balk,) = Y wod ¥ (cothif /4) — exf[(f — £;)/2]}
(B10)

with a relative error of ~e~%.
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