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A new acoustic phenomenon has recently been observed in experiments where a bounded beam of 
ultrasound is incident upon a smooth liquid-solid interface. A significant amount of coherent 
radiation is found to be backscattered in the general direction of incidence. The angle of back 
reflection is observed to be equal to the Critical Rayleigh angle or leaky wave angle. Most of these 
observations were made during experiments on the Schoch displacement effect, and therefore it 
has been tacitly assumed that the back reflection is strongly dependent upon the angle of 
incidence, as is the case for the beam shifting in the Schoch effect. We present a theoretical basis 
for this new phenomenon. A two-dimensional incident beam of Gaussian profile is considered. By 
a careful analysis we isolate that part of the field on the interface which has Fourier components 
corresponding to backward propagating waves in the liquid. This subset of the total wave field is 
then considered separately and it is shown to display a maximum in a certain direction, close to 
the critical Rayleigh angle. This peak in the angular pattern of the scattered field corresponds to 
an evanescent reflection boundary. We discuss the dependence of the effect upon certain 
parameters. The amplitude is shown to decrease as the beam width is increased, and it increases 
with increasing Schoch displacement. This backscattering is present for all angles of incidence; 
there is nothing inherently special about the Rayleigh angle. 

PACS numbers: 43.20.Fn, 68.45. -- v, 43.20.Bi 

INTRODUCTION 

Recently a new phenomenon in acoustics has been re- 
ported,•-• though as yet no physical theory has been present- 
ed to support these observations. The phenomenon is the 
backscattering of a beam of ultrasound from a fluid-solid 
interface. The incident beam originates from an acoustic 
transducer in the fluid. At the interface the beam is specular- 
ly reflected back into the liquid and transmitted into the 
solid. In addition, when the incident angie is at the critical 
angle, an effect known as the Schoch displacement occurs. 
This involves the lateral displacement of the reflected beam, 
and its origin is well understood. 6 Experimenters who were 
primarily interested in observing the Schoch displacement 
also noticed that a significant amount of energy is radiated 
from the interface back in the direction of incidence. A 

Schlieren photograph of such radiation may be seen in Ref. 
3. 

In this paper we explain this phenomenon in terms of 
leaky waves propagating along the interface in the backward 
direction. Our approach is to model the reflection coefficient 
by a simplified form which still exhibits the poles corre- 
sponding to leaky waves in either direction along the inter- 
face. We consider a two-dimensional geometry with an inci- 
dent beam of Gaussian profile. In practice, the transducers 
used in experiment produce almost perfectly Gaussian 
beams. Under these assumptions, we are able to calculate 
explicitly the field on the interface. The scattered field in the 
fluid can then be calculated using a representation integral. 
However, this latter step is simplified by noting that only a 
certain part of the interfacial field contributes to backward 
propagating waves. This field, considered in isolation, is 
shown to produce a backward propagating beam effect near 
the critical angle. 

Previously, it has been thought that the backscattering 
depends critically upon the angle of incidence. 4 This may be 
due to some confusion of the effect with that of Schoch dis- 

placement, i n which the angle of incidence is critical. We 
show that the angle of incidence is not important, but the 
radiated energy will only be observed at or near the critical 
angle, which we call the leaky wave angle t9•. Our results 
indicate that the backscattering is due to a leaky wave reflec- 
tion zone. This reflection zone is a new phenomenon and 
complements previous descriptions of evanescent shadow 
and transmission zones occurring in acoustics and electro- 
magnetics. TM We find that the back reflection depends 
mainly upon two parameters. The first is the dimensionless 
beamwidth (kwo), where k is the incident wavenumber and 
Wo is the half-width of the beam on the interface. The ampli- 
tude of the back reflection decreases exponentially as (kwo) 2 
increases. The second critical parameter is the dimensionless 
Schoch displacement (kAs), where As is the Schoch displace- 
ment, known to be inversely proportional to the imaginary 
part of the leaky wavenumber. 6 We find that the back reflec- 
tion increases as (kAs) increases. The above two findings are 
in agreement with experimental observation. 4 

I. THE REFLECTION COEFFICIENT 

Before considering bounded beams of waves, it is useful 
to consider the interaction of a single plane wave with the 
interface. The general problem for a beam or for an arbitrary 
source distribution may then be solved by a Fourier superpo- 
sition. 

Let the plane wave be incident from the liquid half 
space z < 0, with the liquid-solid interface in the plane z ---- 0. 
The displacement field within the liquid (assumed to be 
ideal) may be written in terms of a potential •, which is pro- 
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portional to the pressure field. Let the incident partial wave 

•i,c = exp i(kxx + k•z), (1) 
where 

kz--=lk 2 - k 1';2 
and k is the wavenumber of the incident wave. The time 

harmonic factor e - i,o, is suppressed throughout. One reflect- 
ed wave and two transmitted waves are generated at the in- 
terrace. The reflected wave in the liquid is 

= (L)exp i(Lx - Lz), (3) 
where the reflection coefficient is • 

F(kx) - ipk 4 r(k • - k •)• 
= (4) 

F(k•) + ipk • r(k • - k 
In this expression, k• and kr are the wavenumbers of longi- 
tudinal and transverse waves in the solid, p is the ratio of 
liquid to solid mass densities, and F (k•) is the Rayleigh func- 
tion for the solid, 

= - - - _ 

The two transmitted longitudinal and transverse waves 
propagate in directions determined by Snell's law, with am- 
plitudes which follow from the interfacial boundary condi- 
tions.• Since we are only interested in phenomena observed 
in the liquid, we shall not discuss the transmitted waves 
further. 

The interface can support boundary waves which decay 
with distance from the interface. These correspond to poles 
of the reflection coefficient R (k•) in the complex k• plane. 
Since R is a symmetric function of k•, it follows that the 
poles occur in pairs symmetric about the origin. In the loss- 
less case, i.e., k, k•, and kr all real, it may be shown n that a 
pole occurs for k• greater than either k or kr (note, k• < 
The corresponding boundary wave, called the Scholte wave, 
does not decay as it propagates along the interface and has a 
wave speed lower than any other in the problem. For most 
interfaces, we have k > ka, where ks is the Rayleigh wave- 
number for the solid, in which case a complex pole exists 
near ks with positive imaginary part. The so-called leaky 
Rayleigh wave attenuates with distance along the interface 
while shedding its energy into the liquid. 

An inhomogeneous wave in the liquid generates these 
different boundary waves when it strikes the interface. How- 
ever, only the leaky Rayleigh wave is capable of leaking ener- 
gy back into the liquid. We conclude that the phenomena of 
beam displacement and backscattering are due mainly to the 
leaky wave modes. Accordingly, we seek an approximation 
ß to R (k•) which exhibits the leaky wave poles. Bertoni and 
Tamir • modeled the reflection coefficient by isolating the 
pole responsible for the forward propagating leaky waves. 
We are also interested in the effect of the backward leaky 
waves, therefore we assume the following simplified form for 
R: 

- k}). (6) 
Here k• is the complex leaky wave pole ofR (k•) and ko is the 
complex zero of R (k•) which occurs near k•. In most in- 

stances, •2 it tums out/that kn. is very close in value to the 
Rayleigh wavenumber kn, 

k r = k•(1 + •2 + i•,), (7) 
where 0 < • • 1 and e2 = O (•). Particular values of el for 
typical interfaces are given in Refs. 6 and 12. When there are 
no losses present, we have ko = k •', the complex conjugate. 
If losses are present in the media, ko•k • (Ref. 12) and the 
imaginary part of k• is most sensitive to variations in the 
imaginary part of the transverse wavenumber kr. 

The model reflection coefficient Ro(kx) does not have 
poles corresponding to the Scholte surface waves. However, 
as mentioned before, these waves cannot provide the mecha- 
nism for the phenomena considered. Even in the lossy case, 
the Scholte wave becomes leaky in nature but the energy 
radiated back into the liquid is noncoherent. This follows 
from the fact that the Scholte wave speed is less than the 
speed of sound in the liquid. Our approximate reflection co- 
efficient does not display the branch points of R {k•). How- 
ever, as justification for its use we note from Eqs. (4), (6), and 
(7) that Ro{k •) has the correct analytic behavior near the 
poles at q- k•. We mention that Bertoni and Tamir's ap- 
proximate reflection coefficient • is obtained from Eq. {6) by 
removing the squares. It has been shown • that their theory 
gives almost exactly the same results for the forward dis- 
placement whether the exact or approximate reflection coef- 
ficient is used. 

II. THE INCIDENT BEAM 

In order to demonstrate analytically the reflection and 
backscatter of ultrasonic beams it is necessary to have a par- 
ticular beam profile. The most common one used in the rel- 
evant experiments TM is the Gaussian beam, which may be 
produced by subjecting the transducer face to a Gaussian 
pressure distribution. Consider a two-dimensional trans- 
ducer whose face is centered at the vector position 
Xs = ( - Xo, - h ), whereXo = h tan 0 i and 19• is the angle of 
incidence of the beam at the interface z = 0 {see Fig. 1). The 
transducer face is parallel to the unit vector er and the beam 
direction is that of the unit vector es. One way of expressing 
a Gaussian beam is in terms of a point source in complex 
space.•S Accordingly, we write the incident field as 

where H(o t) is the Hankel function of the first kind, and the 
complex distance D is 

Liquid 
Solid 

FIG. 1. Two-dimensional geometry showing the angle of incidence O• and 
the beam direction es. 
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-0,s + ibe)l. (9) 
Here b is the length characterizing the beam. The branch 
points of D lie at xs + bet in real space. Therefore, the field 
of F_q. (8) is an exact solution of the equations ofmotionin the 
liquid outside the circle of radius b centered at x s. 

Let an arbitrary point x be parameterized by distances 
along the beam axis and normal to it, thus 

x ---- x s +Xer + Z%. (10) 

Near the beam axis, such that X/b• 1, we may expand D as 

D = Z -- ib + iX2/2(b + iZ) + .... (11) 

Assuming that 

k I Z - ib I•l, 112} 

we can use the asymptotic form for the Hankel function of 
large argument to obtain 

= e i'•/'• exp[k{b+iZ)l exp {13} •bi,c (8•r)m x•-(b + iZ) 2(b + iZ ) ! 
on the transducer face Z = 0, and Eq. (13) gives a Gaussian 
profile of half-width w,where 

w, = (2b/k )m. (14) 
Away from the transducer, the beam spreads out but re- 
mains Gaussian. At a distance Z along the beam axis, the 
beam half-width is w, where 

w = w,(1 + ZVb 2)m. (15) 
If the complex point source solution is to model the actual 
transducer profile faithfully, then the field near the trans- 
ducer edges must be small as compared to at the center in 
order to avoid diffraction effects. This implies that a, the 
transducer half-width, is of the same order of magnitude as 
w,. Therefore, by Eqs. (12) and (14) we have the necessary 
condition that 

(ka) 2 = O(kb) (16) 
from which it follows that kb•,ka} 1. Finally we note that 
Eq. (13) may also be derived using the parabolic approxima- 
tion to the wave equation. • 

III. THE FIELD ON THE INTERFACE 

The incident field at the interface follows from Eq. (13) 
by substituting for the beam coordinates X, Z in terms of the 
fixed coordinates Jr, z with z = 0. The term 

[k(b + iZ)] 'n exp[ - kX:/2(b + iZ)] 
does not depend strongly upon Z on the interface, so we 
replace Z by h sec O. its value at the intersection of the beam 
axis with the interface. Thus, we have 

•bi,• (x,0) = .40 exp(ik sin 0•x)exp( - kx 2 cos 20i/2bo), (17) 
where 

.40 = ei•'/'* eta'ø/(81rkbo) •/2, (18) 
and the complex distance bo is 

bo = b + ih sec Oi. (19) 

The Fourier transform of a functionf (x) is defined as•(kx ) 
thus: 

k., )= e - '•'• "f (x) dx. (20) 

From Eq. (17) we obtain 

•i,c (k,,,O) --- (e"•/4/2k )sec Oi 
Xexp[ - bosec 20•{k• - k•)2/2k ], (21) 

where 

k• = k sin 0•. (22) 

The scattered field • in the liquid half-space z<0 is got by 
multiplying •,• by the canonical reflection coefficient R o of 
Eq. (6): 

f •b (X,Z} = - ' - •" •' dk. (23) 

where k: was defined in Eq. (2). 
Let us first consider the field on the interface z = 0. The 

integration in Eq. (23) can then be achieved by rewriting R o 
(k•) as 

Ro(k•,) = Ro(k,) + R,(k•,), (24) 
with 

R,(k•,)=( k:-ko2 )[l + (k: -k•2} k• -kt 2kp 

The constant terms in Ro(k •) reproduce the incident field 
•.• (x,0) while the singular terms can be handled using the 
result •6 

_' [ exp( - • • + i2a• )/(• -- fi )1 d• 
= si•re - •'e • + $•'e•c[ - s(a • i• )], {26) 

where s = s•[Im• )] and e•c ( )is the complemenm• e•or 
function. We find that 

(z,o) = + (27) 

where &o is the sp•ularly reflected be• which would • 
predict• by g•mctfical optics, while • •nt•ns the l•ky 
wave eff<ts. Thus 

•o(•,0) = •,,• (•,0)Ro(•,) (2•) 
and 

= k o 2 
kp-- ß 

X [e +cftc(A+) + e • - cftc(A_}] , (29) 
where 

Wo = (2bdk )ms< 0• (30) 
and 

• • -- 2 w o 
The magnitude of the complex dist•ce Wo is the half-width 
of the incident beam profile proj<t• on the interfax. 
Usually the distance h is small • compared with b [• •. 
{19)], and we may take Wo as real. 
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Let us split •bL as follows: 

•L(x,0) = •,(x,0) + •2(x,0), 
where 

(32} 

[(/, J -/, o )/4/% ] 

X irr' /•Wo e• L erfc(,•_). (33) 
The field $•, which is analogous but not identical to the field 
v• of Be•oni and Tamir, a contorts the fo•ard propagating 
leaky wav•, and can • shown to be the major cause of the 
Schoch displacement. a The backward propagating le•y 
wav• are contain• in $:. Define the real and imagn• 
pa•s ofk• thus, 

k• = kt + ie, kt,e > 0. (34) 
•e ima•n• pa• e has •en shown to • relatM to the 
Schoch displacement As by a 

As = 2/e. (3•) 

If the •gle of incidence is such that k• = kt, then 4 (x,0) has a 
simple representation in te•s of the three p•amete• 

a = x/wo, • = wdAs, V = k•wo. (36) 
We obtain 

+ e{• +e-•ir? effe(a + fl -- ½)] ] . (37) 
•e final te• in this expr•sion represents 42. Numerical 
ex•fiments indicate that the relative ma•itude of •: in- 
creas• as fl increas• and y d<r•. Some exampl• for 
severM values orb and y are shown in Fig. 2. It can • shown 

i/ 

FIG. 2. The incident field and the separate parts of the total field on the 
interface for several values of •? and y: •bl. c -- ---;]•b o + •b,I-- ----; 
1•21'-'-;14 I--- 

quite simply that as y--, oo,•b2 becomes of negligible impor- 
tance and •b 0 and •b• reduce to the quantities Uo and u• of 
Bettoni and Tamir, 6 apart from a multiplicative factor. Let 
us now consider the contribution to •b2 from backward prop- 
agating leaky waves. 

We first note the result for the complementary error 
function of complex argument,•7 that 

-- x • • • -- n•14 erfc(x -- iy) = erfc(x) + e •r _** n•+4x 2 [--2x+e '• 
X [2x ch{ny} + in sh(ny}] } + error. {38} 

This formula is exact ify = 0, otherwise there is a relative 
error of the order 10 -•?. Henceforth we will neglect this 
error and take the right-hand side of Eq. {38} to be an analytic 
representation of erfc 

For an arbitrary angle of incidence, we have by its defin- 
ition in Eq. {31}, that 

where 

p = X/Wo + wo/As, (40} 

q = wo(k, + kt}/2. (41} 

The quantity p is a dimensionless shifted coordinate. We 
note that its zero is at x = -- wo:/As. Combining Eqs. {33}, 
{38}, and (39}, we have 

•b2(x,O) = e- %•ø•bg(p)+ e'•ø•(p), (42) 
where 

r: _ n•+4p • , (43) 

•=.4e.•-•-• • nS-•'• [2•ch(nq)+insh(nq)], (44) 
k,• = k, - ie, (45} 

x exp [ - ,t ,• + (Wo/aS)•(1 - ik,as)], (46) 

and A o is defined in Eq. (18). The form of Eq. (42) suggests 
that •:(x,0) is composed of a backward propagating leaky 
wave with amplitude modulation • {p) and a wave similar to 
the incident field with modulation •. However, the form of 
Eq. (42) is deceptive since both •b• and •b•- are singular at 
p = 0. To overcome this problem, we remove the singularity 
from •/P•, and write 

•-$s(p) + •br(p), (47) 
where now 

•b e = • + e'2•'qda(4•'p) - •e -P, (48) 
• = • - •{•)-'e-•: (49) 

The $• te• in •. (47} repr•ents a smooth m•ulation of 
the incident Gaussian bern. As p g•s from -- • to + •, 
the phase of St changes gradually from; to 0 in a cl•kwise 
sense. Therefore 4f is •sentially the same • 4• mentioned 
above, and can be negl•t• • far as backscattering eff•ts 
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are concerned. The field •B is now smooth and bounded, but 
due to the addition of the term in Eq. (48} it is not strictly a 
modulated backward propagating leaky wave. The choice of 
the term added to •b• is quite arbitrary as long as it has the 
proper singular behavior near p = 0 and possesses no other 
singularities. We choose the term in Eq. (48) so that the addi- 
tional field •r can be discounted. 

We now examine •B in more detail. The asymptotic 
{ •o[--* oo) nature is easily seen by using the alternate form for 
•ø s, (see Appendix A) 

e efc(p + p > o, = 2 (50) 
- 

This, combined with Eqs. (47) and {48) shows that as 
x-• -- oo, qb a and •2 tend to.4 a exp( - ikpwop ). 

Thus d a is the amplitude of the backward traveling 
leaky wave. We note that ,4B = O [exp( -- q2)]. Therefore, 
the amplitude decreases rapidly as either the beamwidth or 
the frequency is increased. As x--, + oo, both •a and qfi• tend 
to zero like exp(--p•). For finite values of x, i.e., near zero, 
we see from Eqs. (43) and (44) that •a = O(,4a), while 
•F = O (1). Thus the forward effect by far exceeds the back- 
ward propagating effect, as one would expect. In Fig. 2 the 
contribution from qb a is so small as to be indiscernible. In 
Fig. 3 we have plotted the magnitude of the quantity 
•B (P)/•4a for several values of q. 

IV. THE BACKSCATTERED FIELD 

The total scattered field away t/rom the interface is given 
by Eq. (23). However, this integral cannot be evaluated in 
closed form for arbitrary x and_z. Instead of using the trans- 
form of the total field, Ro(k•k•i,•(k,,), we will simplify the 
integral by considering only that part of the interfacial field 
•s which produces backward propagating leaky waves. The 
transform of this field •s is composed of all plane-wave con- 
tributions, but possesses a maximum near the real wave- 

,•(a) 
, ,L (b) 
•,•_ (c) 
-2 0 p 

FI G' 3. The magnitude of the backward 
propagating potential •s(p)/.4s on the 
interface. as a function of the shifted x 
coordinate p. (a} q = 4; (b} q = 8; (c} 
q= 16. 

'Xr •Z 

FIG. 4. Coordinate system for the back reflected field. 

number -- kt defined in Eq. (34). In Appendix B we have 
explicitly calculated •s. In the fluid, z < 0 we have 

•s{x,z} = • •B(k•)e•n'•-n'•dk•. {51} 
The branch ofk• is defined in accordance with the radiation 
condition, i.e., k• = i(k • -- k •)• ifk• < -- k or k• > k. 

•t us intr•u• a .pol• •rdinate system 
(r,O), Oe( -- •/2,•/2) such that x + w•/As = -- r sin O, z 
= -- r cos •. Thus the angle • is dcfin• in •c •me •nse • 
the incident angle 0• but the origin r = 0 is at ( -- w•/As,O), 
see Fig. 4. Putting k• = -- k sin v, we have 

•(r,0) = •fc•s(-ksinv)e'•r•-ø'cosvdv ' (52) 
where the contour Cin the complex v plane g• from -- •/ 
2 + i• to --•/2, then to •/2 and fin•ly to •/2- i•. 
A•o, 

•a( -- k sin •) • •s( -- k sin v)e •as•in•. (53) 
The •l• in the v pl•e •e given by v=v•, n =0, • i, 
• 2 .... such •at 

sin v.= sin • + i(ewo + •n)/kwo, (54) 
where 

k•k sin Ot (55) 

defin• the r• lc•y wave •gle. For •ge kr, the st•t 
d•nts path (SDP} is defin• by 

v=R+arcsin[th(u)]--iu, --•<u<•. (56) 

In defo•g the path of inflation to the stee•t d•ts 
path •me pol• may • crosS. •e •1• are at v = v., 
where n are thee integer, •itive or negative, such that 
(•Wo + 4•n)/kwo is •tw•n 0 •d 

• •(1 -- sin • sin •)(sin • -- sin •) 

X(I + sin 20t -- 2 sin Osin Or) -'/2. 

•e r•idue at v = v, is 

•c net r•ult after dcfo•ing the contour is 

•B(r,O ) = •Dp•B ( -- k sin v• n•- o) • dv 
• .• ikr•v n -- O) 

where the sum is over all eligible n. •e pole •nt•butions 
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are easily shown to be evanescent. However the least evanes- 
cent term in the sense that Im [ cos(v n -- 0 ) ] is minimum, 
corresponds to the pole n -- 0, which is the backward propa- 
gating leaky wave pole. The integral in Eq. (58) may be ap- 
proximated at large values of kr by the first term in its 
asymptotic expansion: 

(k /2*rr) •/2 cos 0 e3s( - k sin 0 
We note that •s ( - k sin 0 ) remains fairly constant for 0 
between -0• and 0• but decreases rapidly outside this 
range. The steepest descents path crosses the leaky wave pole 
v o when 0•0• + e/k (assuming e4k ). Near this angle 
greater care must be taken in approximating q•s(r,O ). We 
now discuss a uniform approximation valid in this transition 
region. 

Let us define the complex angle 0• such that 
k• = k sin 0•. (59) 

Thus 0p = %, and for small (e/k) we have Re(0p) 
= Ot + 0 (•/k 2). We note the result that 

(60) 

The uniform contribution to •s from the pole at v = 0r may 
be extracted from Eq. (58) using Eq. (60). The result is 
q•(r,O ), where 

qb•,(r,O ) = •,/lse ikrcøa(Ot' - O) 
Xeffc{e-"•/4(2kr) '/2 sin [(0 v - 0)/2] ]. (61) 

The remainder of •(r,0) follows from Eq. (58) as 

1 •s {k•s(-ksinv)cosv q•B(r,O)--q•,(r,O) = •-• oP 

+ iqb v (0,0)cos( v -- 0 '•[sin( 

- sin( Ov - 0 - • - 
• .% ikr•o•(v n -- O} 

+ 2, t•z. "e (62) 
n-•0 

and the sum is over all eligible n, excluding n = 0. The steep- 
est descents integral has no pole at v = Op. Therefore, for 0 
near 0•, the SDP integral will be O [.,i s (kr)-1/2]. 

q•p(r,O )•(8•rkr)-l/2/l•csc[ (Op -- O )/2 ]e i(•" + '/41, (63) 
which is a diffracted wave that decays with increasing radial 
distance. However, for 0 near or greater than 0t, the comple- 
mentary error function in Eq. (61) is of order unity. If 0 > Ot 
and (kr) •/2[sin [ (Op -- 0 )/2 ] ] is large, then 

•p .... ikr cos(Op -- 0 ) •r,o •/• ze (64) 
This is the backward propagating leaky wave, which we have 
observed previously on the interface. 

We refer to the boundary as a reflection boundary, since 
the phenomenon is essentially a reflection process, though 
not specular. The boundary is defined exactly by 0 = Re(O•) 
which, as mentioned above, is equal to O• correct to order 
(calk •). Right on the boundary the amplitude is approxi- 
mately 

•v =[v4a e'•' cftc [e'*/a(rea/2k ),/2 sec 0, ]. (65) 
The amplitude decreases as the observer goes further into the 
reflection zone. This is best seen by using Ecl. (64) and noting 
that the imaginary part of r cos (0 v -0) is equal to 
x,sh [ Im(0 v)], where the reflection coordinates x, and z, are 
defined by Fig. 4. Therefore, the wave is evanescent inside 
the reflection zone, decaying exponentially with increasing 
normal distance from the boundary. Hence, for a given r, 
there must be an angle near 0t at which the back-reflected 
field is a maximum. 

These observations are made concrete by introducing 
dimensionless coordinates •, •, and • equal to kx,,kz,, and 
kr, respectively. In addition, let Im(0v)•$; then we have 

- sgn(•)e-"•/•(• - •)'/2ch(•5/2) ]l' (66) 
For the particular combinations of water-aluminum and 
water-stainless steel, the value of•J is approximately 0.0173 

. and 0.0064, respectively. 6 We have considered these two 
cases for different values of Z in Fig. 5. The back reflection 
beam effect is obvious, whereby the field displays a maxi- 
mum inside the reflection zone (•> 0). It is also apparent 
that the effect increases as •5 decreases. Now, •5 is approxi- 
mately equal to a/k, and so 5 is inversely proportional to the 
Schoch displacement, see Eq. (35). Therefore, we would ex- 
pect the effect to increase with increasing Schoch displace- 
ment, in agreement with experimental observation. 4 Also, 
the quantity ,4 a is essentially proportional to exp 
[ -- [ wo(k• + k•)/2 ] 2 ], since k.4s)• 1 (Ref. 6). Thus the effect 
decreases with increasing beam width w o, also in agreement 
With experimentfi The above dependence of the backscat- 
tered amplitude upon the incident angle [see Eq. (22)] indi- 
cates that there is nothing special about the Rayleigh angle of 
incidence. ' 

v. DISCUSSION 

The field (b•(r,O) of Eq. (61) has the same form as that 
exhibited by a wavefield near a shadow or reflection bound- 
ary? In this case we have a boundary defined roughly by 
0 = 0•. For 0 less than Or, such that (kr)•/21sin [(0v - 0 )/2] I 
is large, we have 

VI. CONCLUSION 

We have shown that a back-reflected wave exists when 

a Gaussian beam is incident upon a fluid-solid interface. The 
reflected wave is due to the backward propagating leaky 
wave. The reflection boundary is defined by the real part of 
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FIG. 5. Magnitude of•p/A s for water-stainless steel (solid line) and water- 
aluminum (dashed line). (it} • -- 50; (b) • = 100; (c) • -- 200. 

the complex angle 0 r and the wave is evanescent inside the 
reflection zone. In addition, the reflection boundary inter- 
•ects the interface at a point distant U•o/As from the incident 
beam center in the backward direction. This type of evanes- 
cent zone has not been discussed before and agrees with re- 
cent experimental findings. We note that recently described 
numerical techniques, ]9 which have been applied to the for- 
ward reflection problem, might also be useful for the back 
reflection. 
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APPENDIX A: AN INFINITE SERIES 

Using the Poisson summation formula 2ø we have 

e - n214 

!------. • p2 d- n2/4 
• p2 + x2/4 dx. (A1) 

By a change of variable, t = x/2, and by splitting the de- 
nominator into the sum of two simple fractions, we obtain 

/ = •.(ip)-! e -"-'•="' I I dt 
2• e *•"• effc• + 2•n), (A2} 

where the integration h• been eff•t• using •. (26). •is 
r•ult is v•id forp r•l and not equal to zero. Combining this 
with the definition of • in •. (43) we •ve at •. (50)'. 

We are inter•t• in finding 

wherep = x/w o + •2, and &s is defin• by •. (47}. •t 

f= wo(k, + k, ), (B2) 
then by •. (47), 

From •s. (48) and {50) we have, 

• • - 2 •)sin•p•p 

•)•'e-f sin[•--Z•] 
where 

f, = + 
The final integral in Eq. (B4) is (Ref. 21, Eq. 3.896.4) 

The second integral in Eq. (B4) can be done by substituting 
from Eq. (50) for •} and using the result 

oøøSin(fp) [e 2ø erfc(p + g} + e- 2• erfc(p --g)]dp 
= [2f/•f 2 + 4g•)](1 -- e - • +f/41}, (B7) 

which can be verified by partial integration. Combining Eqs. 
(B3)-(B7), we obtain 

X {1 -- exp -- [(2•rn): +f2/4] } 

- left[ {f-f•)/2 ]). (BS) 
This can be further simplified by noting that 

_ X 2 +/;2 = •r coth(•rx) {B9) 
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and observing that the exponential sum in Eq. (BS) is negligi- 
bly small. Thus 

• (kx ) = •i wod se'•k•- 2 { cothOt / 4) - erf[0r-f•)/2] } 
(BlO) 

with a relative error or Ne -•ø. 
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