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The problem of inverse ray tracing in a homogeneous anisotropic elastic solid is considered. The
wave speeds in the solid are assumed unknown, and must be obtained in the course of the
inversion. The specific problem of locating a crack tip in a two-dimensional geometry is
investigated. The data are assumed to be in the form of travel times of diffracted ultrasonic signals
between transducers positioned on an exterior surface of the solid. Both pulse—echo and pitch—
catch data are considered. It is found that travel-time data on the exterior surface suffices to locate
the crack tip only if the material is isotropic. If the material is anisotropic, we must be able to move
the source and/or receiver in the direction normal to the surface. The same problem is considered
with the source and receiver positioned in a surrounding isotropic material, e.g., a water bath. It is
shown that the ray inversion is now possible only if the solid is isotropic, the problem being
underdetermined for an anisotropic solid. This indicates that the problem of inverse ray tracing,
in the context of crack sizing, is not possible in a medium which is both inhomogeneous and
anisotropic. Numerical results are presented for a synthetic experiment in which a finite crack is

present in some transversely isotropic homogeneous elastic solids. It is demonstrated that an
initial presumption of isotropy can lead to very erroneous results.

PACS numbers: 43.20.Bi, 43.20.Fn, 43.35.Z¢

INTRODUCTION

The problem of inferring the size and location of cracks
in metals is of great importance in nondestructive evalua-
tion. Both low- and high-frequency ultrasonic methods have
been considered for the corresponding inverse scattering
problem. In this paper we assume that the scattering is in the
high-frequency regime, i.e., that the scattered signals propa-
gate along rays.'

The ray paths in a homogeneous anisotropic elastic sol-
id are straight lines. However, certain distinctions must be
made between the actual signal velocity and the correspond-
ing phase velocity. (Note: by velocity we mean a vector quan-
tity, its magnitude is the speed.) The signal velocity, also
known as the group velocity or energy propagation velocity,
is the more important quantity, although for linear elasticity
the phase velocity is easier to determine.? Generally the two
velocities are not equal. It may be shown that they are equal
if they are parallel, or if the speeds are equal. We note that
the distinctions of velocities is redundant in isotropic solids.
Additional complications occur when the signal velocity is
locally concave in a given direction, giving rise to the pheno-
menon of conical refraction.? However, even in this case it
can be shown® that discontinuities propagate in straight lines
with the corresponding signal velocity.

The direct scattering of elastic waves by cracks has been
studied extensively. In the high-frequency regime, i.e., when
the incident wavelength is small compared with the charac-
teristic dimensions of the crack, it can be shown that the
major contribution to the scattered field comes from certain
“flash points” on the crack edge. These flash points may be
predicted by the geometrical theory of diffraction as applied
to elastic waves. For more details we refer the reader to Ref.
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5. Ultrasonic experiments on the scattering of elastic waves
by cracks have confirmed the existence of such flash points.

The purpose of this paper is to find the necessary and
sufficient conditions for finding a flash point in an anisotro-
pic elastic medium whose anisotropy is not known a priori.
The experimental procedure envisaged is as follows: a source
transducer S emits a signal, which is diffracted at the flash
point F and subsequently is observed by the receiver trans-
ducer Q. The scattering may be pulse-echo, in which case
the source and receiver are identical, or pitch—catch, when
separate source and receiver are used. It is assumed in either
case that the travel time of the diffracted signal can be mea-
sured.

We begin with the simplest configuration, where the
scattering is pulse—echo and the source-receiver § is posi-
tioned on an exterior surface of the material which is as-
sumed homogeneous. We consider the different situations
where the material is isotropic or anisotropic, and the wave
speeds are known or not known a priori. Next, we treat the
same problem when the scattering is pitch—catch. The situa-
tion is now more complicated than for pulse-echo, since
there are two ray paths present instead of one. We also con-
sider the case when pitch—catch and pulse-echo data are
available simultaneously. Some examples of inverse ray trac-
ing using synthetic data are presented in Sec. IV.

It is common practice in ultrasonic experiments to posi-
tion the transducers in a water bath surrounding the speci-
men. The ray tracing must now account for the fluid—solid
interface. In Sec. III we consider the fluid—solid configura-
tion and note some interesting consequences for the inverse
ray tracing problem in anisotropic inhomogeneous media.
First we state a basic result which will be utilized in later
sections.

© 1983 Acoustical Society of America 421



1. ARESULT BASED ON FERMAT'S PRINCIPLE

In a dispersionless medium, high-frequency signals
propagate along rays which satisfy Fermat’s Principle. Thus
the diffracted rays describe curves in space which make the
travel time from source to receiver stationary with respect to
all neighboring curves. This is just the well-known corre-
spondence between high-frequency signals and wave fronts.

In a homogeneous anisotropic elastic medium the rays
are straight lines and the number of wave speeds in a given
direction p, |p| = 1, is equal to the number of sheets of the
wave surface in that direction, e.g., two if the material is
isotropic. Now suppose that a scatterer (e.g., a crack) is pre-
sent in the material and consider the diffracted ray from the
source.S via the flash point F to the observer Q. The associat-
ed travel time of the ray is

T=|SF|/c, + |FQ|/cy, (M

where ¢, and ¢, are the wave speeds of the rays from S to F
and from F to Q, respectively. The two speeds may corre-
spond to the same sheet of the wave surface or they may be
from different sheets, in which case mode conversion occurs
at diffraction.

Let M signify either one of the points S or Q, the source
and receiver points. Define the unit vector p as direction
vector from M to the flash point F. The signal speed ¢ of the
ray between M and F is dependent on the direction p, thus
¢ = ¢(p). Our basic result is that the spatial gradient VT of the
travel time of the diffracted signal with respect to the posi-
tion M is related to the direction p by

VT =(— 1/¢c)[p — (1/¢)Vc], )

where V is the angular gradient operator for the unit vector
p. For example, if ¢(p) = ¢(0,4 ) where 8,4 are spherical polar
angles, then

s dec de

Vc: €5 EY + csc fe, % (3)
The proof of Eq. (2) can be found in the Appendix of Ref. 6.
We note that if the material is isotropic, Ve=0, and Eq. (2)
has a particularly simple and obvious form. Also, the above
result can be shown to hold for inhomogeneous media,
where the rays are not straight.

If we let the right-hand side of Eq. (2) be — sm,|n| =1,
then sn is the slowness vector corresponding to the wave
velocity cp. The corresponding phase velocity is {(1/s)n. In
geometrical terms, the vectors cp and sn are polar reciprocal
to each other. Also, since p-V=0 by definition, we have

|VT| =s = (1/c)[1 + (1/c3)|Ve]?]1"*> 1/, @
with equality only if the material is (locally) isotropic.

li. RAY TRACING IN A SOLID ONLY

As discussed before, there are two arrangements possi-
ble in order to generate a single piece of scattering data: the
pulse—echo or the pitch—catch arrangement. We first consid-
er pulse—echo data. To further simplify the problem, the ge-
ometry is taken as two dimensional. This could correspond
to a transversely isotropic material in which all rays propa-
gate in a plane containing the axis of symmetry.
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FIG. 1. Two-dimensional pulse-echo arrangement. The flash point is the
crack tip F.

A. Pulse—echo data

Consider a transducer S positioned on the exterior sur-
face of a specimen which contains an interior crack tip F, see
Fig. 1. A signal is emitted from S, diffracted at F, and subse-
quently received at S after a time delay of 2T Let us assume
that the speeds of propagation to and from the flash point are
identical. Thus

T=R/e (5)
where ¢ = ¢(8). Application of Eq. (2) gives
T, = —(1/c)cos 8 + ¥ sin G}, (6)
T, = —(1/c)(sin @ — y cos ), 7N
where
_ 1 de(@)
ne )=; TR

and T,,7, are the derivatives of T at S. Further differenti-
ation of Egs. (6) and (7) gives

T,. =(1/Rc)sin? 8 (1 + ¥ — ¥), (8)
T,, = (1/Rc)cos* 8(1 + ¥* —¥), 9)
T, = —(1/Rcjcos @sin (1 + y* — 7), (10)

where ' = dy/d6. The derivatives T, and T, can be com-
puted by shifting the transducer tangentially on the surface
at.S, to some new point S;. The travel time of the pulse—echo
signal is measured at S,, say T,. Then a finite difference ap-
proximation to T, can be formed. Similarly, a finite differ-
ence procedure can be used to approximate T, if two shifts
are performed. The derivatives in the y direction are more
difficult to handle experimentally. An approximate evalua-
tion of T,, T,,, or T, by any finite difference scheme re-
quires shifting the transducer in the direction normal to the
solid surface. One way of achieving this is by introducing a
thin slab of the same material at S such that the principal
directions of the slab and the specimen are exactly aligned.

We now consider the necessary and sufficient data re-
quired to find the flash point F. Suppose first that the medi-
um is either isotropic or anisotropic and that the speed c(@ ) is
known as a function of angle. Then a knowledge of Tand T,
provides enough information to determine the two unk-
nowns R and @ by Egs. (5) and (6).

Next, suppose that the medium is isotropic but the
speed ¢ {a constant) is unknown. Now there are three unk-
nowns R, 0, and ¢, and we require three pieces of informa-
tion. In Eqgs. (6)(10) we have ¥ = ¢’ = 0. Therefore we may
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use Eqgs. (5) and (6) and either of Egs. (7) and (8). However, use
of Eq. (7) means computing the y derivative of T, which is
much more cumbersome experimentally. Using 7, T,, and
T, we have R = ¢T and

6 =tan~'[ — (TT,,)""¥/T,], (11)
c=[2/(T?),, 1"~ (12)

If the medium is anisotropic with unknown speed ¢(@),
there is no way to avoid using y derivatives of T. By inspec-
tion of Egs. (5)—(10), it is apparent that since ¥ and ¥’ are
nonzero, we must solve for the five unknowns R,c,6,y, and
. Thus we require knowledge of five of the six quantities on
the left-hand sides of Egs. {5)—(10). We choose as our quanti-
tiesT, T,, T,, T,,, and T, since these do not involve sec-
ond derivatives with respect to y. We find that

¢=(Th + TV /T T, — T, T,l, (13)
6= tan="(— T, /T.,) (14
and the other quantities follow simply. ‘

1. Small anisotropy

Let the medium be almost isotropic in the sense that
both ¥ and ¢’ are small quantities. Again, consider the situa-
tion where the speed is not known a priori. If we consider the
three quantities 7, T, and T, , and invert Eqgs. (5), (6), and
(8) neglecting y and y, the results for R, 6 and ¢ are as in Eqs.
(11) and (12), which we call R,, 6,, and ¢,. A more detailed
inversion of Egs. (5), (6), and (8) reveals

R =R,[1 + esin G, cos(b, + ¢) + O (€], (15)
6 =6, + €sin 6, sin(f, + ¢ ) + O (), (16)
¢ =col1+ €sin §,cos(, + ¢ )+ O (Y], (17)

where ¢ = tan~'(¢’/2y) and e=[)* + ('/2)*]"/*<1. Thus, if
the data is inverted using the method for isotropic materials,
the errors in the computed quantities R, &, and ¢ will be given
by Eqgs. (15)17) for small anisotropy.

Now consider the three quantities 7, T,, and T, and
invert Eqs. (5){7) for small |y|. We find

0=tan"'(T,/T,)+ 7+ O0(¥), (18)
c=(T2+TH "*[1+0(¥), (19)

and R = cT. Therefore, if we are willing to use one y deriva-
tive, the error in R and ¢ can be made to be O (¢?) for small
anisotropy. However, whether we use T, or T, the error in
the computed flash point position is of order (€R ).

Finally, before we leave the discussion of the pulse~
echo problem, we remark on the problem when mode con-
version occurs. In this case the signal has different speeds c,
and ¢, as it propagates to and from the flash point. Equations
(5)-10) are replaced by similar equations with the term (1/
2)(1/¢, + 1/c,) substituted for 1/c. Therefore any inversion
of these equations cannot produce ¢, and ¢, separately, but
only in the combination (1/¢, + 1/c,).

B. Pitch—catch data

A source S and a receiver  are positioned a distance /
apart on the surface of the specimen, which we have taken as
flat for convenience, see Fig. 2. The total travel time for the
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FIG. 2. Two-dimensional pitch—catch configuration.

diffracted signal from S to Q is
T=R1/CI+R2/C2, (20)

where ¢, = ¢,(6,) and ¢, = ¢,(6,) are the two wave speeds on
the rays. Analogously to Egs. (6}10) we have

T, = —(l/c))cos 6, + 7;sin6), j=12, (2lab)
T, = —(l/c)sin6; —y,co86)), j=1.2, (22a,b)
Tixx = (1/Rycy)sin’ 6,(1 + 7 — ¥1), (23)

T,, = — (1/Rc))sin 8, cos 6,(1 + y3 — ¥1), (24)

where the subscripts 1 and 2 indicate that the derivatives are
evaluated at S and Q, respectively. In addition, we have the
two geometrical identities:

0=R,sinf, — R, sin G,, (25)
I=R,cos6, — R, cos 8, (26)

! being the known distance between source and receiver.

If the constitutive nature of the specimen is known a
priori, i.e., the speeds are known functions of angle, then the
flash point may be found from T and (say) T, . Things be-
come more complicated if the ray speeds are unknown.

First, suppose that the material is isotropic and the
speed on both rays is the same, say c. Then three pieces of
data are required. The three simplest to obtain are T, T7,,
and T,,, involving no normal or second derivatives. We now
have five equations (20), (21a), (21b), {25), and (26) for five
unknowns, R,,R,,8,,6,,c. Equations (21a) and (21b) give

c= —cos 0,/T,,, (27)

cos 8, = (T,, /T, )cos 6,. (28)
While Eqgs. (20), (25), and (26) give

R, =1Isin 6, csc(@, — 6,) (29)

R,=cT—R,, (30)

tan 6, = (1 + a)ja® + 2aT, /Ty, - T 7V% (31)

wherea =IT,,/T.

Next, suppose the material is again isotropic with
speeds unknown, but the diffracted ray is mode converted.
For example, the incident ray might be one of longitudinal
motion, and the diffracted ray of transverse motion. We need
one additional piece of information compared with the pre-
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vious case, since there are now six unknowns: R;,d;, and
¢;»j = 1,2. In order to avoid using normal derivatives, we
choose T, as the extra datum. Thus the left-hand sides of
Eqs. (20), (21a), (21b), (23}, (25), and (26) are all known. The
unknowns are found as follows: Eqgs. (20), (21a), (21b), and
(25) give R,, R,, ¢,, and ¢, in terms of the angles 8, and 8,,
which are determined by the remaining two equations.

We find that

tan @, = tan 6,/(1 + B csc? 8,), (32)
sin” 6, =B85 —p+ (> —B%8)12p—-6-8%) (3
where

B=IT,,,/T\,, 8=(TT\/T;Ty)—-5

2p=561+B)+B(1+T,./T,)

The problem of finding the flash point becomes more
complicated if the material is anisotropic with unknown
speed dependence upon angle. The terms ¥,, ¥,, and ¥; in
Eqs. (21) and (23) are nonzero, and are essentially unknowns.
Thus there are nine unknowns, R, 6,,¢;, ¥;,j = 1,2,and ¥{,
requiring all nine equations (20}+26) to solve them. The min-
imum required data for inversionis 7, T},,T;,,j = 1,2, T,,,,
and T,,,. We note that we could use T, instead of T},;,, but
the latter requires only a first derivative normal to the sur-
face. In either case, it is obvious that normal derivatives are
necessary to obtain a closed system of equations. The unk-
nowns are obtained as follows: from Eqs. (23) and (24) we
may solve for @, and (7 — ¥} )explicitly. Then Egs. (21a)and
(22a) give us ¢, and ¥,. The remaining equations readily give
R, R,, ¥,, and ¢, in terms of 0,, where 6, satisfies
tan 6, = tan 6,(T — IT,, )/(T + IT,,tan 8, — I sec 8,/c,).

‘ (34)

All of the above problems requiring pitch—catch data
can be simplified a great deal if we also have simultaneous
access to pulse—echo data.

C. Pulse—echo and pitch—catch data

The same geometry as for pitch—catch problem is consi-
dered, see Fig. 2. The only difference is that now the source
also acts as a receiver, able to measure the time delay of the
diffracted ray from S to F and back to S again. The pulse-
echo diffracted signal is assumed not to be mode converted,
so that it propagates with the same speed on the two rays SF
and FS. We now have two equations,

T,=R/q, j=112, {35a,b)
instead of the single Eq. (20), where T, and T, are the travel
times on the rays SF and FQ, respectively. Measurement of
the pitch—catch travel time gives T, 4+ T, while the pulse
echo time gives 277,. Thus we assume that both T, and T, are
known.

The flash point inversion is now particularly simple if
the material is isotropic, with known speeds ¢, and ¢,. The
flash point is the intersection of two circles centered at S and
Q having radii of ¢, T, and ¢, T,, respectively. If the material
is isotropic with unknown speeds, but the signal is not mode
converted, then the single unknown speed ¢ can be found

424 J. Acoust. Soc. Am,, Vol. 73, No. 2, February 1983

from one additional piece of information. Using the tangen-
tial derivative T),, for example, gives

c=I(T2 - T? —2T,\T,.)" "2 (36)

Similarly, if the signal is mode converted, the two unknown
speeds ¢, and ¢, can be obtained if we know T, as well as
T,,. Wefind that

a=({/T)|(1 —aMa, —a, + 2“102"”2: (37

wherea; = IT,, /T,,j = 1,2, and c, is got by interchanging 1
and 2.

So far we have not required taking normal derivatives.
If the material is anisotropic with unknown speeds, the
quantities ¥, and ¥, in Egs. (21) are nonzero, and thus addi-
tional unknowns. The simplest closed system of equations is
obtained by using the two equations for T, and T,,,. Now we
have eight unknowns, R/, 6,,c;, and ¥;,j=1,2 and eight
equations (21a), (21b), (22a), (22b), (25), (26), (35a), and (35b).
Note that we have not required second derivatives of T, mak-
ing Egs. (23) and (24) redundant. Solving the eight equations

gives the speeds as

¢=—1T,co86,+T,sin6), j=1,.2, (38)
where the angle g, is given by
tan 6, = (@, —a, —a,a,))/(B, — By + Bjas_;), j=12.
(39)

Herea; =IT,./T,,and B; = IT, /T, j = 1,2. Having found
the speeds, the flash point is found as the intersection of the
two circles centered at.S and Q of radii ¢, T, and ¢, T, respec-
tively.

Ill. RAY TRACING THROUGH AN INTERFACE

Ultrasonic experiments are often performed in a water
bath. The ultrasonic signal originates from and is received by
transducers in the water, which are not in direct contact with
the specimen. The signals scattered by flaws in the specimen
must cross the fluid—solid interface twice before they can be
detected by the receiver transducer. Therefore we consider
the fluid—solid configuration as a model for the problem of
ray tracing when an interface is present.

For simplicity, the scattering is assumed to be pulse—
echo and the interface is taken as flat. The geometry is again
two dimensional. The source S'is a distance b from the inter-
face, which is the exterior surface of the material, see Fig. 3.
The pulse-echo diffracted ray makes angles 8, and @ with
the interface in the fluid and in the solid, respectively. Let 2T
be the time taken for the signal to propagate from .S to Fand
back again. Referring to Fig. 3, we have the relationships:

T=R,/C,+R/C, (41)
where subscript findicates a quantity in the fluid. The fluid is
assumed to be homogeneous and isotropic, so that ¢, is con-

stant. The wave speed in the solid, may, because of aniso-
tropy, depend upon 8. Snell’s law at the interface is

cos O,/c; = cos 6(1 + y tan 8 )/c, 42)

where (@) is as before. Equation (42) can be derived from
Fermat’s Principle as follows: the stationary nature of the
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FIG. 3. Pulse—echo arrangement with the source—receiver in water.

ray paths can be shown to imply that the tangential deriva-
tive of travel time T be continuous across the interface. This,
in conjunction with Eq. (2) gives Eq. (42). The spatial gradi-
ent of T at the source-receiver S is by Eq. (2),

VI= —p/, 43)

since the fluid is isotropic. Here p = (cos 8,,sin 8,). Assum-
ing ¢, known, the angle 8, is determined from Eq. (43) by any
single component of VT. Having found 4/, the distance R, is
got from Eq. (40). Thus a knowledge of T and a single first-
order derivative of T (two if ¢ is not known a priori) deter-
mines the quantities R /cand (cos @ + ¥ sin 8)/cbyEqs. (41)
and (42). This is analogous to ray tracing in a solid only, in
which we know the left-hand sides of Egs. (5) and (6).

Now consider second-order derivatives of T with re-
spect to the position S. If n is any direction vector, we have
that

(0-V)’T = [nAp|*/¢c,a, (44)

where a is the radius of curvature of the wave front at S. It is
straightforward to show that

sin 6, tan 6,)(1 + y tan 0)
sinftand \1+p>—¢/

where (@} is as before. Assume that g is known by measure-
ment of some second-order derivative of T. Also, the quanti-
tyz=(cos 8 + ¥ sin 8)/cisknown from first derivatives. We
note from Eq. (45) that the quantity z sin 6, tan 6,/(a — R/}
is precisely the right-hand side of Eq. (8). Thus we have re-
duced the ray inversion problem in the fluid—solid to a simi-
lar problem in the solid only, where the quantities T, T, and
T, of Egs. (5), (6), and (8) are known. But, as discussed
above, this information is sufficient for finding the flash
point only if the solid is isotropic, see Eqs. (11) and (12). If the
material is anisotropic, further information is required, spe-
cifically the left-hand sides of Egs. (7) and (9) or (10). These
quantities all involve normal derivatives of the travel time at
the interface. However, according to Eq. (42), (Snell’s law or
Fermat’s Principle) on traversing the interface, the ray trans-
mits only information concerning the tangential derivative.
Allinformation about the normal derivatives in one medium
is lost as the ray enters a different medium. We conclude that
the general problem of ray inversion in unknown anisotropic
media is underdetermined if the measurements are made
only within some other medium.

This result has important ramifications for the problem

a=&+R( (45)
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of inverse ray tracing in an inhomogeneous anisotropic solid.
For we may generalize the result to a stratification of
piecewise homogeneous anisotropic layers. By letting the
number of layers become infinite, we obtain a stratified ani-
sotropic inhomogeneous body. Hence, ray inversion in its
present context is not possible in an anisotropic inhomogen-
eous body. We note that inverse ray tracing is possible in an
inhomogeneous stratified half-space which is isotropic, as in
the Wiechert-Herglotz problem of geophysics.” Therefore
inverse ray tracing is possible in the presence of either aniso-
tropy or inhomogeneity, but not in the presence of both si-
multaneously.

IV. A NUMERICAL EXAMPLE USING PITCH-CATCH
AND PULSE-ECHO DATA

We now consider the inversion of synthetic data for the
two-dimensional configuration in which bgth pulse—echo
and pitch—catch signals are measured on the surface of an
anisotropic solid. The constitutive nature of the anisotropy is
taken to be that of several different transversely isotropic
elastic materials. Both exact and approximate inversion
schemes are considered, and their accuracy is investigated in
terms of the finite difference scheme employed.

Let a transversely isotropic elastic solid occupy the
half-space y>0, with its symmetry axis in the y direction.
Define the dimensionless numbers ¢, and €, by

€, =(Cs3 — Cpy)/2C,,, (46a)
€,=(C;3+2C, — C\,))/Cyy, (46b)
where C,,, C;3, C,,, and C,; are the usual elastic constants,
see for example, Ref. 2. If e=max([¢,|,|€,|) is small, then it
may be shown that the fastest wave speed ¢(@ ) in the direction
@ is given by
c(0)/cl0) =1+ (¢, sin’ @ + €, cos? G )sin’d + O(e), (47)

where @ is the angle between the surface y = 0 and the propa-
gation direction.®” We note that in an isotropic solid,
€, = €, = 0and ¢(@) = ¢,, the longitudinal wave speed. Val-
ues of €, and ¢, for some solids with hexagonal crystal struc-
ture are given in Table I. These were obtained from the val-
ues for the corresponding elastic constants given in Ref. 2. In
the following examples we have used the expression in Eq.
(47) with terms of order €* neglected to calculate the wave
speed as a function of angle. The value of the wave speed has
been nondimensionalized by taking the speed tangential to
the surface, i.e., ¢(0), equal to unity.
A flat crack is assumed to lie in the (x,p) plane with one
tip located at the point (0,1) and the other tip at (0,1)
+ d (cos ¢,sin ¢f), where 4 = 0.5 and ¢y = 45°. We have cho-

TABLEL. Values of the dimensionless numbers €, and €, for several materi-
als with hexagonal crystal structure (from Musgrave?).

Material €, €
Beryl —0.08 —-0.25
Beryllium 0.08 0.16
Magnesium 0.02 - 0.25
Zinc —0.30 —-0.19
Cadmium —0.28 -—030
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FIG. 4. Error (4f) in the estimated flash point position versus the shift dis-
tance 4 for various anisotropic solids: (a) isotropic, (b) beryllium, (c) zinc,
and (d) cadmium. Method (A) ——————; method (B}—— ——;
method (C) - - —--——— .

sen the source and observer locations on the surface y = 0 to
be at x = 0 and x = 1, respectively. Thus the first diffracted
signals are from the flash point at (0,1).

A “synthetic” experiment is performed as follows: for a
given material, the pulse—echo and pitch—catch travel times
T, and T, are computed using Eq. (47) with ¢(0) = 1. The
observation point is shifted a distance 4 in the x direction,
and the new pitch—catch time 7'} is computed. The quantity
(T35 — T,)/h is then used as the “experimental” value of
dT,/3x. Similarly 3T, /dx, dT,/dy, and dT,/3dy are approxi-
mated by finite differences, with the shift being equal to 4 in
each case. The position of the flash point at (0,1) is estimated
by three different methods and the dependence of the error
on the shift distance A is checked. The three methods em-
ployed are those described in Sec. IIC:

(A) The exact solution, Eqgs. (38) and (39). For this we
require all four partial derivatives dT;/9x,d7T;/dy,j = 1,2,
and we would expect exact agreement as A—0.

(B) The isotropic solution, with two different wave
speeds, Eq. (37). This uses the two x derivatives only.

(C) Theisotropic solution with only one wave speed, Eq.
(36), for which only one x derivative is needed.

In Fig. 4 we have plotted the error, defined as the dis-
tance between the estimated tip and the actual tip (0,1), as a
function of shift distance h for four different anisotropies.
Beryllium was chosen as an example of slight anisotropy,
while zinc and cadmium are highly anisotropic. The isotrop-
ic case is shown for comparison. We note that the exact
method exhibits a linear error growth in all examples. It is to
be noted that method C, which uses the least amount of
information, gives almost the same results as method B.

In Fig. 5 we have plotted the estimated crack length and
orientation, the exact values being 0.5° and 45°, respectively.
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FIG. 5. Estimated crack length 4 and orientation ¢ versus shift distance A
{correct values 0.5 and 45°%), (a) isotropic, (b) beryllium. Method (A)
; method (B) —— —— —— ——; method (C) - -~ ——— - ———

The curves in Fig. 5 were calculated by estimating the second
flash point in a similar manner to that used for the near flash
point. The results shown for beryllium were typical of the
materials considered. Thus an initial assumption of isotropy
can lead to relatively large errors in the crack size and orien-
tation, even when we have exact travel times and derivatives
{h—0) available.
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