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The problem of inverse ray tracing in a homogeneous anisotropic elastic solid is considered. The 
wave speeds in the solid are assumed unknown, and must be obtained in the course of the 
inversion. The specific problem of locating a crack tip in a two-dimensional geometry is 
investigated. The data are assumed to be in the form of travel times of diffracted ultrasonic signals 
between transducers positioned on an exterior surface of the solid. Both pulse-echo and pitch- 
catch data are considered. It is found that travel-time data on the exterior surface suffices to locate 

the crack tip only if the material is isotropic. If the material is anisotropic, we must be able to move 
the source and/or receiver in the direction normal to the surface. The same problem is considered 
with the source and receiver positioned in a surrounding isotropic material, e.g., a water bath. It is 
shown that the ray inversion is now possible only if the solid is isotropic, the problem being 
underdetermined for an anisotropic solid. This indicates that the problem of inverse ray tracing, 
in the context of crack sizing, is not possible in a medium which is both inhomogeneous and 
anisotropic. Numerical results are presented for a synthetic experiment in which a finite crack is 
present in some transversely isotropic homogeneous elastic solids. It is demonstrated that an 
initial presumption of isotropy can lead to very erroneous results. 

PACS numbers: 43.20.Bi, 43.20.Fn, 43.35.Ze 

INTRODUCTION 

The problem of inferring the size and location of cracks 
in metals is of great importance in nondestructive evalua- 
tion. Both low- and high-frequency ultrasonic methods have 
been considered for the corresponding inverse scattering 
problem. In this paper we assume that the scattering is in the 
high-frequency regime, i.e., that the scattered signals propa- 
gate along rays.• 

The ray paths in a homogeneous anisotropic elastic sol- 
id are straight lines. However, certain distinctions must be 
made between the actual signal velocity and the correspond- 
ing phase velocity. {Note: by velocity we mean a vector quan- 
tity, its magnitude is the speed.} The signal velocity, also 
known as the group velocity or energy propagation velocity, 
is the more important quantity, although for linear elasticity 
the phase velocity is easier to determine. 2 Generally the two 
velocities are not equal. It may be shown that they are equal 
if they are parallel, or if the speeds are equal. We note that 
the distinctions of velocities is redundant in isotropic solids. 
Additional complications occur when the signal velocity is 
locally concave in a given direction, giving rise to the pheno- 
menon of conical refraction? However, even in this case it 
can be shown 4 that discontinuities propagate in straight lines 
with the corresponding signal velocity. 

The direct scattering of elastic waves by cracks has been 
studied extensively. In the high-frequency regime, i.e., when 
the incident wavelength is small compared with the charac- 
teristic dimensions of the crack, it can be shown that the 
major contribution to the scattered field comes from certain 
"flash points" on the crack edge. These flash points may be 
predicted by the geometrical theory of diffraction as applied 
to elastic waves. For more details we refer the reader to Ref. 

5. Ultrasonic experiments on the scattering of elastic waves 
by cracks have confirmed the existence of such flash points. 

The purpose of this paper is to find the necessary and 
sufficient conditions for finding a flash point in an anisotro- 
pic elastic medium whose anisotropy is not known a priori. 
The experimental procedure envisaged is as follows: a source 
transducer S emits a signal, which is diffracted at the flash 
point F and subsequently is observed by the receiver trans- 
ducer Q. The scattering may be pulse-echo, in which ease 
the source and receiver are identical, or pitch-catch, when 
separate source and receiver are used. It is assumed in either 
case that the travel time of the diffracted signal can be mea- 
sured. 

We begin with the simplest configuration, where the 
scattering is PUlse-echo and the source-receiver S is posi- 
tioned on an exterior surface of the material which is as- 

sumed homogeneous. We consider the different situations 
where the material is isotropic or anisotropic, and the wave 
speeds are known or not known a priori. Next, we treat the 
same problem when the scattering is pitch-catch. The situa- 
tion is now more complicated than for pulse-echo, since 
there are two ray paths present instead of one. We also con- 
sider the case when pitch-catch and pulse-echo data are 
available simultaneously. Some examples ofinverse ray trac- 
ing using synthetic data are presented in Sec. IV. 

It is common practice in ultrasonic experiments to posi- 
tion the transducers in a water bath surrounding the speci- 
men. The ray tracing must now account for the fluid-solid 
interface. In Sec. III we consider the fluid-solid configura- 
tion and note some interesting consequences for the inverse 
ray tracing problem in anisotropic inhomogeneous media. 
First we state a basic result which will be utilized in later 
sections. 
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I. A RESULT BASED ON FERMAT'S PRINCIPLE 

In a dispersionless medium, high-frequency signals 
propagate along rays which satisfy Fermat's Principle. Thus 
the diffracted rays describe curves in space which make the 
travel time from source to receiver stationary with respect to 
all neighboring curves. This is just the well-known corre- 
spondence between high-frequency signals and wave fronts. 

In a homogeneous anisotropic elastic medium the rays 
are straight lines and the number of wave speeds in a given 
direction p, IPl - 1, is equal to the number of sheets of the 
wave surface in that direction, e.g., two if the material is 
isotropic. Now suppose that a scatterer (e.g., a crack} is pre- 
sent in the material and consider the diffracted ray from the 
source $ via the flash point F to the observer Q. The associat- 
ed travel time of the ray is 

T= ISFI/cl + [FQ [/c 2, (1) 
where c• and c2 are the wave speeds of the rays from $ to F 
and from F to Q, respectively. The two speeds may corre- 
spond to the same sheet of the wave surface or they may be 
from different sheets, in which case mode conversion occurs 
at diffraction. 

Let M signify either one of the points S or Q, the source 
and receiver points. Define the unit vector p as direction 
vector from M to the flash point F. The signal speed c of the 
ray between M and F is dependent on the direction p, thus 
c = c(p). Our basic result is that the spatial gradient VTofthe 
travel time of the diffracted signal with respect to the posi- 
tion M is related to the direction p by 

VT= ( -- l/c)[p -- (l?c)Vc], (2) 

where V is the angular gradient operator for the unit vector 
p. For example, fit(p) = c(0,• ) where 0,• are spherical poiar 
angles, then 

Vc, = eo + csc 0% c•' (3) 
The proof of Eq. (2)can be found in the A__ppendix of Ref. 6. 
We note that if the material is isotropic, Vc•0, and Eq. (2) 
has a particularly simple and obvious form. Also, the above 
result can be shown to hold for inhomogeneous media, 
where the rays are not straight. 

If we let the right-hand side of Eq. (2) be -- sn,[n[ = 1, 
then sn is the slowness vector corresponding to the wave 
velocity cp. The corresponding phase velocity is (l/s)n. In 
geometrical terms, the vectors cp and sn are polar reciprocal 
to each other. Also, since p.V•0 by definition, we have 

IVr[ =• = 0/c)[• +(•/c2)Ncl21'•2>•/c, (4) 
with equality only if the material is (locally) isotropic. 

II. RAY TRACING IN A SOLID ONLY 

As discussed before, there are two arrangements possi- 
ble in order to generate a sinDe piece of scattering data: the 
pulse-echo or the pitch-catch arrangement. We first consid- 
er pulse-echo data. To further simplify the problem, the ge- 
ometry is taken as two dimensional. This could correspond 
to a transversely isotropic material in which all rays propa- 
gate in a plane containing the axis of symmetry. 

",,%% I y 
FIG. 1. Two-dimensional pulse-echo arrangement. The flash point is the 
crack tip F. 

A. Pul$c echo data 

Consider a transducer S positioned on the exterior sur- 
face of a specimen which contains an interior crack tipF, see 
Fig. 1. A signal is emitt•l from $, diffracted at F, and subse- 
quently received at S after a time delay of 2T. Let us assume 
that the speeds of propagation to and from the flash point are 
identical. Thus 

T = R/c, 

where c = c(8 ). Application of Eq. (2) gives 

= - (/c)(cos 0 + rsin (6) 

T, = -- (1/e)(sin 0 -- y cos 0 ), (7) 
where 

r(o)-- l de(O), 
c dO 

and T•,,Ty are the derivatives of T at S. Further differenti- 
ation of Eqs. (6) and (7) gives 

r,•, ----(l/Re)sin • 0(1 + f -- ?/), (S) 

rye, = (1/Re)COs 2 0(1 + f -- y'), (9) 
T o = -- (l/Rc)cos Osin 0(1 + y• - y'), (10) 

where y' = dy/dO. The derivatives Tx and T•, can be com- 
puted by shifting the transducer tangentially on the surface 
atS, to some new point S,. The travel time of the pulse-echo 
signal is measured at S•, say T•. Then a finite difference ap- 
proximation to Tx can be formed. Similarly, a finite differ- 
ence procedure can be used to approximate T= if two shifts 
are performed. The derivatives in the y direction are more 
difficult to handle experimentally. An approximate evalua- 
tion of T•, T•, or Ty• by any finite difference scheme re- 
quires shifting the transducer in the direction normal to the 
solid surface. One way of achieving this is by introducing a 
thin slab of the same material at S such that the principal 
directions of the slab and the specimen are exactly aligned. 

We now consider the necessary and sufficient data re- 
quired to find the flash point F. Suppose first that the medi- 
um is either isotropic or anisotropic and that the speed c(O ) is 
known as a function of angle. Then a knowledge of Tand T• 
provides enough information to determine the two unk- 
nowns R and 0 by F_qs. (5) and (6). 

Next, suppose that the medium is isotropic but the 
speed c (a constant) is unknown. Now there are three unk- 
nowns R, 0, and c, and we require three pieces of informa- 
tion. In Eqs. (6)-00) we have • = V' -- 0. Therefore we may 
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use Eqs. (5) and (6) and either of Eqs. (7) and (8). However, use 
of Eq. (7) means computing the y derivative of T, which is 
much more cumbersome experimentally. Using T, Tx, and 
Txx we have R = cTand 

0 = tan-'[ - (TT,,,,)'/:/T,, ], (11) 
c = ]'/: (12) 
If the medium is anisotropic with unknown speed c(O ), 

there is no way to avoid using y derivatives of T. By inspec- 
tion of Eqs. (5)-(10), it is apparent that since ?' and y' are 
nonzero, we must solve for the five unknowns R,c,O,y, and 
y'. Thus we require knowledge of five of the six quantities on 
the left-hand sides of Eqs. (5)-( I 0). We choose as our quanti- 
ties T, Tx, Ty, T,.•, and Txy, since these do not involve sec- 
ond derivatives with respect to y. We find that 

2 1/2 c=(TL + Tx,) (13) 
8 = tan-'( -- T•/T.•,), (14) 

and the other quantities follow simply. 

I. Small anisotropy 

Let the medium be almost isotropic in the sense that 
both y and y' are small quantities. Again, consider the situa- 
tion where the speed is not known apriori. If we consider the 
three quantities T, T•, and T,•,, and invert Eqs. (5), (6), and 
(8) neglecting y and y', the results for R, 8 and c are as in Eqs. 
(11) and (12), which we call R o, 8 o, and Co. A more detailed 
inversion of Eqs. (5), (6), and (8) reveals 

R =Re[1 +Esin8oCOS(8o+qf)+O(e:)], (15) 
8 = 8o + E sin 8 o sin(8o + •b ) + O (e:), (16) 
c = Co[1 + e sin 8 o cos(8 o + •b )+ O(•)], (17) 

where d = tan- l(?//2y) and e=[y: + (•//2)2] 1/2'• 1. Thus, if 
the data is inverted using the method for isotropic materials, 
the errors in the computed quantities R, 8, and c will be given 
by Eqs. (15)-(17) for small anisotropy. 

Now consider the three quantities T, T•, and Ty, and 
invert Eqs. (5)-(7) for small Irl. We find 

0 = tan-'(T•/Tx')+ •' + 0 (•}, (18) 
2 --1/2 c = (T• + T•) [1 + O(y:)], (19) 

and R = cT. Therefore, if we are willing to use oney deriva- 
tive, the error in R and c can be made to be O {•) for small 
anisotropy. However, whether we use T• or T,•, the error in 
the computed flash point position is of order {eR ). 

Finally, before we leave the discussion of the pulse-- 
echo problem, we remark on the problem when mode con- 
version occurs. In this case the signal has different speeds Cl 
and c: as it propagates to and from the flash point. Equations 
{5}-{ 10) are replaced by similar equations with the term {1/ 
2){1/c• + I/c:) substituted for 1/c. Therefore any inversion 
of these equations cannot produce Cl and co separately, but 
only in the combination (1/cl + 1/c2}. 

B. Pitch--catch data 

A source $ and a receiver Q are positioned a distance 1 
apart on the surface of the specimen, which we have taken as 
flat for convenience, see Fig. 2. The total travel time for the 

FIG. 2. Two-dimensional pitch-catch configuration. 

diffracted signal from $ to Q is 

T= R•/c• + R2/c2, (20) 

where c• = c•(O•) and c2 = c:(8:) are the two wave speeds on 
the rays. Analogously to Eqs. (6}-{10} we have 

T=-(1/cj)(cosSj+ysinS), j= 1,2, {21a,b) 

T/• = - (1/c•)(sin 8j - yj cos 8•), j = 1,2, (228,b) 

Ti,• = (1/R,Cl)sin: 8,(1 + • -- ?,; ), (23) 

T• = -- (1/R,c•)sin 81 COS 81(1 "• •1 -- r; ), (24) 

where the subscripts 1 and 2 indicate that the derivatives are 
evaluated at $ and Q, respectively. In addition, we have the 
two geometrical identities: 

0 = R• sin O• -- R 2 sin 8:, (25) 

1 = R 1 cos 0• -- R2 cos 0z, {26) 

I being the known distance between source and receiver. 
If the constitutive nature of the specimen is known a 

priori, i.e., the speeds are known functions of angle, then the 
flash point may be found from T and (say) T•,. Things be- 
come more complicated if the ray speeds are unknown. 

First, suppose that the material is isotropic and the 
speed on both rays is the same, say c. Then three pieces of 
data are required. The three simplest to obtain are T, T•, 
and Tz•, involving no normal or second derivatives. We now 
have five equations (20), (218), (2lb), (25), and (26) for five 
unknowns, R 1,Ra,Sp82,c. Equations (218)and (2lb)give 

c = -- cos O•/T•, (27) 

cos 8: = (T2:/T•x)cos Op (28) 

While Eqs. (20), (25), and (26) give 

R, = I sin 82 csc(O2 -- O•) (29) 

R• = cT-- R•, (30) 

tan 81 _7_ (1 + ct)Jct z + 2ctT•/(T• -- T:,)J -u2, (31) 
where a = ITi•/T. 

Next, suppose the material is again isotropic with 
speeds unknown, but the diffracted ray is mode converted. 
For example, the incident ray might be one of longitudinal 
motion, and the diffracted ray of transverse motion. We need 
one additional piece of information compared with the pre- 
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vious case, since there are now six unknowns: R•,d 1, and 
c•,j = 1,2. In order to avoid using normal derivatives, we 
choose T• as the extra datum. Thus the left-hand sides of 
Eqs. (20), (21a), (2lb}, {23), {25), and {26) are all known. The 
unknowns are found as follows: Eqs. (20), (21a}, (21b}, and 
(25) give Ra, R 2, cn, and c 2 in terms of the angles 0• and 02, 
which are determined by the remaining two equations. 
We find that 

tan 02 = tan 0n/(l +/• csc 2 O•}, (32) 
sin 2 0n =• [6 --p + (02 -- • 2•)1/2]/(•O -- (• __•2), (33) 
where 

I•= !T,,.•/T,,,, • = (TT,,..•/Tu, T•) -- fi, 

= + 

The problem of finding the flash point becomes more 
complicated if the material is anisotropic with nnknown 
speed dependence upon angle. The terms Yv •'2, and Yi in 
Fxls. (21) and (23) are nonzero, and are essentially unit nown•. 
Thus there are nine unknowns, Ri, 01, cl, YI,J ---- 1,2, and •, 
requiring all nine equations (20)-(26) to solve them. The min- 
imum required data for inversion is T, T.•,,T•,,j = 1,2, Tl,•, 
and Tl•,. We note that we could use T• instead of T•, but 
the latter requires only a first derivative normal to the sur- 
face. In either case, it is obvious that normal derivatives ar• 
necessary to obtain a closed system of equations. The unk- 
nowns are obtained as follows: from Eqs. (23) and (24) we 
may solve for 0n and (y• -- • ) explicitly. Then Eqs. (2 la) and 
(22a) give us cl and •'l. The remaining equations readily give 
R n, R2, •2, and e• in terms of 02, where 02 satisfies 

tan 02 = O,(T- + lT,tan O, -- sec 0,/½,). 
(34) 

All of the above problems requiring pitch-catch data 
can be simplified a great deal if we also have simultaneous 
access to pulse-echo data. 

C. Pulaa-•ho and pitoh-catch data 

The same geometry as for pitch-catch problem is consi- 
dered, see Fig. 2. The only difference is that now the source 
also acts as a receiver, able to measure the time delay of the 
diffracted ray from S to F and back to $ again. The pulse- 
echo diffracted signal is assumed not to be mode converted, 
so that it propagates with the same speed on the two rays $F 
and F•. We now have two equations, 

instead of the single Eq. (20), where T• and T• are the travel 
times on the rays $F and F•, respectively. Measurement of 
the pitch-catch travel time gives T• + T 2, while the pulse 
echo time gives 2T v Thus we assume that both T• and T• are 
known. 

The flash point inversion is now particularly simple if 
the material is isotropic, with known speeds c• and c•. The 
flash point is the intersection of two circles centered at S and 
Q having radii of c• T• and c2 T2, respectively. If the material 
is isotropic with unknown speeds, but the signal is not mode 
converted, then the single unknown speed c can be found 

from one additional piece of information. Using the tangen- 
tial derivative Tl•, for example, gives 

c = I(T] -- T• -- 21T•Tv,} -u2. (36) 
Similarly, if the signal is mode converted, the two unknown 
speeds en and c• can be obtained if we know Tz• as well as 
T•. We find that 

c• = (I/TO](I -- Q•2)/(t'l• 2 -- a I "• 2•1t'1•2)[112, (37) 
where ctj = lT•/T•d ---- 1,2, and c• is got by interchanging 1 
and 2. 

So far we have not required taking normal derivatives. 
ff the material is anisotropic with unknown speeds, the 
quantities •,• and y• in Eqs. (21) are nonzero, and thus addi- 
tional unknowns. The simplest closed system of equations is 
obtained by using the two equations for Tl• and T•. Now we 
have eight unknowns, R•, •1,cl, and •,j = 1,2 and eight 
equations (21a), (2lb), (22a), (22b), (25), (26), (35a), and (35b). 
Note that we have not required second derivatives of T, mak- 
ing Eqs. (23) and (24) redundant. Solving the eight equations 
gives the speeds as 

c 1 = - l/Ir, cos + sin = 1,2, 
where the angle 01 is given by 
tan 01 = (al - a2 - J = 1,2. 

(39) 

Here a• = 1T•/T•, and •i = IT•,/T•,j = 1,2. Having found 
the speeds, the flash point is found as the intersection of the 
two circles centered at $ and/2 of radii c• Tn and c2 T•, respec- 
tively. 

III. RAY TRACING THROUGH AN INTERFACE 

Ultrasonic exper/ments are often performed in a water 
bath. The ultrasonic signal originates from and is received by 
transducers in the water, which are not in d/rect contact with 
the specimen. The signals scattered by flaws in the specimen 
must cross the fluid-solid interface twice before they can be 
detected by the receiver transducer. Therefore we consider 
the fluid-solid configuration as a model for the problem of 
ray tracing when an interface is present. 

For simplicity, the scattering is assumed to be pulse- 
echo and the interface is taken as fiat. The geometry is again 
two dimensional. The sources is a distance b from the inter- 

face, which is the exterior surface of the material, see Fig. 3. 
The pulse-echo diffracted ray makes angles O! and 0 with 
the interface in the fluid and in the solid, respectively. Let 2T 
be the time taken for the signal to propagate from S to Fand 
back again. Referring to Fig. 3, we have the relationships- 

b = 0!, (4o) 
T---- R!/c! + R/c, (41) 

where subscriptf'mdicates a quantity in the fluid. The fluid is 
assumed to be homogeneous and isotropic, so that c! is con- 
stant. The wave speed in the solid, may, because of aniso- 
tropy, depend upon 0. Snell's law at the interface is 

cos Or/c ! = cos 0(1 + rtan O)/c, (42) 
where •(0) is as before. Equation (42) can be derived from 
Fermat's Principle as follows: the stationary nature of the 
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FIG. 3. Pulse-echo arrangement with the source-receiver in water. 

of inverse ray tracing in an inhomogeneous anisotropic solid. 
For we may generalize the result to a stratification of 
piecewise homogeneous anisotropic layers. By letting the 
number of layers become infinite, we obtain a stratified ani- 
sotropic inhomogeneous body. Hence, ray inversion in its 
present context is not possible in an •nisotropic inhomogen- 
eous body. We note that inverse ray tracing is possible in an 
inhomogeneous stratified half-space which is isotropic, as in 
the Wiechert-Herglotz problem of geophysics. ? Therefore 
inverse ray tracing is possible in the presence of either aniso- 
tropy or inhomogeneity, but not in the presence of both si- 
multaneously. 

ray paths can be shown to imply that the tangential deriva- 
tive of travel time Tbe continuous across the interface. This, 
in conjunction with Eq. (2) gives Eq. (42). The spatial gradi- 
ent of Tat the source-receiver S is by Eq. (2), 

VT= --p/c/, (43} 

since the fluid is isotropic. Here p ---- (cos 0/,sin 0/). Assum- 
ing c/known, the angle 0 s is determined from Eq. (43) by any 
single component of VT. Having found 0s, the distance R s is 
got from F_q. (40). Thus a knowledge of T and a single first- 
order derivative of T (two ifcF is not known apriori) deter- 
mines the quantitiesR/c and (cos • + y sin 0 )/c by Eqs. {41 
and (42). This is analogous to ray tracing in a solid only, in 
which we know the left-hand sides of Eqs. 15} and 

Now consider second-order derivatives of T with re- 

spect to the position $. If n is any direction vector, we have 
that 

(n-V)2T = I n ̂  plY/c/a, (44) 
where a is the radius of curvature of the wave front at $. It is 
straightforward to show that 

a = Rs + R (.sin-O-/ tan Os •i l + yta--n O• (45) \ sinOtan• /\i+y•--y'/' 
where •(0 ) is as before. Assume that a is known by measure- 
ment of some second-order derivative of T. Also, the quanti- 
tyz-•=(cos 0 + y sin 0 )/c is known from first derivatives. We 
note from Eq. (45) that the quantity z sin 0 s tan Off(a - 
is precisely the right-hand side of Eq. (8}. Thus we have re- 
duced the ray inversion problem in the fluid-solid to a simi- 
lar problem in the solid only, where the quantities T, Tx, and 
T• of Eqs. (5), (6), and (8) are known. But, as discussed 
above, this information is sufficient for finding the flash 
point only if the solid is isotropic, see Eqs. (11} and (12). If the 
material is anisotropic, further information is required, spe- 
cifically the left-hand sides of Eqs. (7) and (9} or {10). These 
quantities all involve normal derivatives of the travel time at 
the interface. However, according to Eq. (42), (Sne!l's law or 
Fermat's Principle) on traversing the interface, the ray trans- 
mits only information concerning the tangential derivative. 
All information about the normal derivatives in one medium 
is lost as the ray enters a different medium. We conclude that 
the general problem of ray inversion in unknown anisotropic 
media is underdetermined if the measurements are made 

only within some other medium. 
This result has important ramifications for the problem 

IV. A NUMERICAL EXAMPLE USING PITCH-CATCH 
AND PULSE-ECHO DATA 

We now consider the inversion of synthetic data for the 
two-dimensional configuration in which bQth pulse-echo 
and pitch-catch signals are measured on the surface of an 
anisotropic solid. The constitutive nature of the anisotropy is 
taken to be that of several different transversely isotropic 
elastic materials. Both exact and approximate inversion 
schemes are considered, and their accuracy is investigated in 
terms of the finite difference scheme employed. 

Let a transversely isotropic elastic solid occupy the 
half-space y•0, with its symmetry axis in the y direction. 
Define the dimensionless numbers •j and •2 by 

•, = (C33 -- CH)/2C,,, {46a) 

where C,,, ½33, C•, and ½,3 are the usual elastic constants, 
see for example, Ref. 2. If•mmax([•l,l•2D is small, then it 
may be shown that the fastest wave speed c(O ) in the direction 
0 is given by 

c(O )/c(O) = 1 + (•, sin 2 0 + • cos 2 • )sin20 + O (•), (47) 
where 0 is the angle between the surface• = 0 and the propa- 
gation direction. s We note that in an isotropic solid, 
• = •2 = 0 and c(O) = c•, the longitudinal wave speed. Val- 
ues of• and •2 for some solids with hexagonal crystal struc- 
ture are given in Table I. These were obtained from the val- 
ues for the corresponding elastic constants given in Ref. 2. In 
the following examples we have used the expression in Eq. 
(47) with terms of order • neglected to calculate the wave 
speed as a function of angle. The value of the wave speed has 
been nondimensionalized by taking the speed tangential to 
the surface, i.e., ½(0), equal to unity. 

A fiat crack is assumed to lie in the (xO•) plane with one 
tip located at the point (0,1) and the other tip at (0,1) 
+ d (cos •,sin •}, where d = 0.5 and • = 45'. We have cho- 

TABLE I. Values of the dimensionless numbers • and •2 for several materi- 
als with hexagonal crystal structure (from Musgrave•). 

Material 

Beryl -- 0.08 -- 0.25 
Beryllium 0.08 O. 16 
Magnesium 0.02 -- 0.25 
Zinc -- 0.30 -- 0.19 
Cadmium -- 0.28 -- 0.30 
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FIG. 4. Error (A f) in the estimated flash point position versus the shift dis- 
tance h for various anisotropic solids: (a) isotropic, (b) beryllium, (c) zinc, 
and (d) cadmium. Method (A) , method (B} 
method (C) ........ . 
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FIG. 5. Estimated crack length d and orientation • versus shift dis'tance 
(correct values 0.5 and 45ø), (a) isotropic, (b) beryllium. Method 

; method (B) ..... ; method (C) .......... 

sen the source and observer locations on the surfacey = 0 to 
be at x = 0 and x = 1, respectively. Thus the first diffracted 
signals are from the flash point at (0,1 ). 

A "synthetic" experiment is performed as follows: for a 
given material, the pulse-echo and pitch-catch travel times 
Tl and T2 are computed using Eq. (47) with c(0)= 1. The 
observation point is shifted a distance h in the x direction, 
and the new pitch-catch time T• is computed. The quantity 
(T• - T2)/h is then used as the "experimental" value of 
c•T•/a•x. Similarly 8T•/Sx, 8T•/ay, and aT•/ay are approxi- 
mated by finite differences, with the shift being equal to h in 
each case. The position of the flash point at (0,1) is estimated 
by three different methods and the dependence of the error 
on the shift distance h is checked. The three methods em- 

ployed are those described in Sec. IIC: 
(A) The exact solution, Eqs. (38) and (39). For this we 

require all four partial derivatives a•T•/3x,aT•/ay,j = 1,2, 
and we would expect exact agreement as h--•0. 

(B) The isotropic solution, with two different wave 
speeds, Eq. (37). This uses the two x derivatives only. 

(C) The isotropic solution with only one wave speed, Eq. 
(36), for which only one x derivative is needed. 

In Fig. 4 we have plotted the error, defined as the dis- 
tance between the estimated tip and the actual tip (0,1), as a 
function of shift distance h for four different anisotropies. 
Beryllium was chosen as an example of slight anisotropy, 
while zinc and cadmium are highly anisotropic. The isotrop- 
ic case is shown for comparison. We note that the exact 
method exhibits a linear error growth in all examples. It is to 
be noted that method C, which uses the least amount of 
information, gives almost the same results as method B. 

In Fig, 5 we have plotted the estimated crack length and 
orientation, the exact values being 0.5 ø and 45 ø, respectively. 

The curves in Fig. 5 were calculated by estimating the second 
flash point in a similar manner to that used for the near flash 
point. The results shown for beryllium were typical of the 
materials considered. Thus an initial assumption of isotropy 
can lead to relatively large errors in the crack size and orien- 
tation, even when we have exact travel times and derivatives 
(h-,O) available. 
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