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A method is proposed for the determination of surface waves produced by
a buried source in a half-space. The analytical problem may be divided into
two distinct cases, in which the source region is compact or non-compact.
For a compact source the angular variation of the outgoing field may be
characterized by an analytic function, which we call the ‘emission’ func-
tion. By the use of a representation integral, the surface wave is related to
the value of the emission function at a complex angle. The emission func-
tion may be approximated by the full-space emission function or its ray-
theory representation. As an example of a compact source, a cylindrical
cavity with a concentrated line source on its circumference is considered.
It is shown that the cavity may have an amplifying effect on surface-wave
excitation. Diffraction by a semi-infinite screen is investigated as an
example of surface waves generated by a non-compact source. The emission
function for the screen, as well as its ray-theory approximation, are not
analytic, and the consequent complications are discussed. The general
results of this paper provide a means of analysing the excitation of surface
waves by combining the intuitively simple aspects of ray theory in real
space with a classical integral representation of the wave field.

INTRODUCTION

A surface wave propagates in a direction tangential to a surface, while its amplitude
decays exponentially in the normal direction. The existence of surface waves depends
on the boundary condition. For time-harmonic wave motions governed by the
scalar wave equation, surface waves are possible for an impedance boundary
condition. For a half-space (y > 0), an impedance boundary condition is defined by

ou/oy = —ikZu, y=10,—00 <2,z < 0, (1.1)
where u(x) satisfies the reduced wave equation
Viu+ k2w = 0, (1.2)

kis the wavenumber, and Z the impedance. A condition of the form (1.1)is frequently
used in acoustics and electromagnetic theory to approximate the effect of a surface
layer.

This paper is concerned with the excitation of time-harmonic surface waves by
two-dimensional source mechanisms in the interior of a half-space. For a buried
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line source parallel to the surface y = 0, an expression for the surface wave can be
obtained by the use of Fourier-transform methods. Mathematically, the surface
wave corresponds to the residue from a pole in the plane of the complex Fourier-
transform variable.

For a large class of problems it is not possible to express the field at y = 0 in terms
of Fourier integrals over known functions. Radiation from an interior cavity of
arbitrary shape, either by direct excitation at its surface, or because the cavity acts
as a wave scatterer, is an example. For such problems this paper gives an expression
for the surface wave as a path-independent integral. The surface of integration, 8, is
arbitrary to the extent that the sources must be inside S, and the point of obser-
vation must be exterior to S. An analytic function, called the ‘emission function’,
is introduced. This function completely defines the angular variation of the out-
going field. The surface-wave amplitude is shown to be equal to the value of the
emission function at a complex angle that depends on the impedance Z of (1.1). For
the line source this approach reproduces the result of Keller & Karal (1960).

In practice, the emission function for the half-space geometry is generally
unobtainable. However, it may be approximated by the corresponding full-space
emission function E(6). By using this approximation, only the first interaction
between source and surface is taken into account. As an example, surface waves
generated by the application of a line force along a generator of a buried circular
cavity are investigated. The exact full-space emission function E(6) is derived and
shown to be analytic. Numerical results for the surface waves are presented. The
effect of creeping waves on the generated surface-wave motion is noticeable for
certain combinations of the impedance, the angle defining the position of the applied
force and the dimensionless number ka (the product of wavenumber and cavity
radius). For other combinations of these parameters, it is shown that a simple
‘ray-theory’ form of E(6) gives results that compare well with those corresponding
to the exact emission function. A comparison of the amplitudes of surface waves
generated by a line load on the surface of a cavity and by a point load at the same
location in an homogeneous half-plane shows that the presence of the cavity may
have an amplifying effect.

It is clearly convenient to investigate first the waves radiated from a source
region as if the medium were unbounded, and then to proceed with an examination
of the interaction of these waves with the surface of the half-space. As an alternative
to the use of the integral representation, a formal description of this approach can
be given with the aid of geometrical ray theory. The disturbances generated at the
surface of the cavity propagate along straight rays. Far away (or at high frequencies)
the ray fields can be expressed simply. When rays intersect a boundary at which
(1.1) holds, reflected rays and rays of surface-wave motion are generated. The fields
on reflected rays can easily be analysed. To investigate rays of surface-wave motion,
Keller & Karal (1960) considered the two-dimensional canonical problem of a line
source. They showed that surface-wave motions require the introduction of rays
in complex space. For more complicated sources, the same formalism of complex
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rays can be used. In §4, we consider the two-dimensional canonical problem of an
arbitrary source. The results of that section may be viewed as a justification of the
extension of complex ray theory to include arbitrary sources.

The general results of this provide a means to combine the intuitively simple
aspects of ray theory in real space with a classical integral representation of the
wave field. In particular, for more complicated geometries the approach of the
present paper removes the necessity of tracing complex rays whose geometrical
properties are ambiguous.

In a second example, surface waves induced by the presence of a non-compact
scatterer are investigated. The scatterer is a semi-infinite screen below the im-
pedance surface. An incident surface wave interacts with the screen and generates
a diffracted field radiating from the screen’s edge. The diffracted field induces
forward- and back-scattered surface waves. Although the emission function is not
analytic, the method of this paper is applied. Some deficiencies occur at certain
orientations of the screen. The results apply to diffraction of Love waves by the
tip of a sub-surface crack.

2. WAVE MOTION IN THE HALF-PLANE

First, let us consider surface waves when there are no sources present, and (1.2)
is satisfied in the whole half-plane —00 < 2 < o0, ¥ > 0. The boundary condition
at y = 0 is given by (1.1). There are two essentially different elementary solutions.
The first is the system of incident and reflected plane waves represented by

up = eikwcos afg-ikusina | R(q) elkvsina], (2.1)
where « is the angle of incidence depicted in figure 1, and R(«) is the reflexion
coefficient R(x) = (sina—Z)/(sino + Z). (2.2)
The second non-trivial solution is the surface wave, defined by

uS( +2,y) = tan ¢ exp [ik( + x cos ¢ +ysin )], (2.3)
where the sign (+) indicates the direction of propagation along the z-axis, and
¢ = arcsin (—Z). (2.4)

We include the factor tan ¢ in the definition of u* to simplify expressions later. From
(2.4) it is evident that u* remains bounded only if Z is negative imaginary. If this
is 50, let Y be a positive real number. Then

Z = -iY, (2.5)
in which case by (2.4) ¢ =iarsinh Y. (2.6)

Next we consider forced wave motion generated by a point source at (xy,%,). The
solution is the Green function u®, where

V2uq+k2uq = —d8(x —,) 8(¥ — o), (2.7)
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governs «€ in the half-plane y > 0, while the boundary condition at y = 0 is given
by (1.1). The solution has been given by Keller & Karal (1960) as

uG = uf +ur. (2.8)
Here u! is the full-space solution defined by
ut = HH®(kr) (2.9)
where r = [(@—2)*+ (y —yo)*1}, (2.10)
and u* is the ‘reflected’ wave,
ur = 7411}‘[@ R(o) exp {ik[ | — x| cos ot + ( + y,) sin o]} dex. (2.11)

sz)yo)

Ficure 1. Source region B in the half-plane y > 0, and surfaces of integration.

In (2.11), the contour ¥ is the Sommerfeld contour in the complex a-plane. There is
a pole at a = ¢, where ¢ is defined in (2.4). In deforming to the steepest-descent
contour, we pick up a contribution from the pole only when

(¥ +¥o)/|r— 2| < tan{Re (¢)+arcsin [tanh (Im ¢)]}. (2.12)
The pole contribution is a surface wave denoted by u5,

uG 8 = tan ¢ exp {ik[|x — x,| cos ¢ + (y + o) sin @]}

= uS(|2 — |, ¥ +Yo), (2.13)
where u5(, ) is defined by (2.3). For 4% ® to remain bounded, we must have
ReZ >0, ImZ <0. (2.14)

For a point source, we may have surface-type waves that decay in the x-direction
as well as in the y-direction. These are referred to as ‘leaky’ waves. When Re Z = 0,
we get true surface waves which may propagate indefinitely in the z-direction. In
this case, we have as before that Z = —iY, and the inequality (2.12) reduces to

Y +yo)/|x—2| < Y. (2.15)
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In addition to the pole contribution to ¢ by (2.11), there are contributions from
the steepest-descent integral. The latter effects may be shown to be O[(kr)~1], away
from the source. Also, we see directly that uf of (2.9) is O[(kr)~%]. Thus

u® = u%5 4+ O[(kr)~1]. (2.16)
Now, as || - o, we have that
u® 8= O(exp [ —k |x — xo| Im (cos ¢)]). (2.17)

Therefore ¢ may be approximated asymptotically by u® only if Z = —iY. In
other words, leaky waves are confined to the region of the epicentre (x,, 0), where
they are indistinguishable from the body waves emitted by the sources.

3. PATH-INDEPENDENT INTEGRALS

Consider a region of volume ¥ bounded by a closed surface S. From the divergence
theorem it follows that two scalar functions u(x) and v(«) satisfy the Green second
identity
L(u,v;8) =f (wV—ovV2)dV, (38.1)

14

where the operator Z(u, v; S) is defined as
L (u,v; S) =f (wVo—ovVu)-ndS. (3.2)
5

The functions % and v, and their first- and second-order derivatives are continuous,
and n is the unit outward normal to S.

In the interior of a half-space we now consider a region B that emits wave motions.
The region B may contain volume sources, or it may be a cavity whose surface Sp
is subjected to excitations. The region outside the source region B is denoted V. The
geometry is shown in figure 1. The wave field generated by B, uy(#), satisfies the
boundary condition (1.1) at y = 0, the reduced wave equation (1.2) in V3, and
appropriate conditions inside B or on the boundary Sg.

Now let us select closed surfaces S and Sy such that B is interior to the space
bounded by S, and 8 is interior to the space bounded by Sy (see figure 1). For v we
choose the Green function, 4% (), for the half-space. For the two-dimensional case
this function was discussed in § 2, (2.7)-(2.11). Application of (3.2) to uz and uC in
the region bounded by S and Sy, yields )

up(%) = ZL(up,u®; 8)—L(up,u?; Sg). (3.3)
By virtue of the Sommerfeld radiation condition the integral over S, vanishes as
B~ co. Hence up(%) = L (g, u®; ). (3.4)

Clearly the integral in (3.4) is path-independent, since 8 is arbitrary, as long as B is
located in the space interior to S and «, is located outside S.
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Let us now examine the nature of u;. We define as up, , the field produced if the
same source region were situated in a homogeneous full space. The difference
between uy and up o comes from the multiple reflexion and scattering between the
surface of the half-space and B. The primary wave up , interacts with the surface
y = 0, producing reflected waves; and surface waves; these reflected waves interact
with B, producing scattered outgoing waves from B, and so on. Thus, in addition to
up, o, the radiated field up is equal to an infinite sum of reflected waves and surface

waves, defined as up 1o, plus an infinite sum of scattered outgoing waves from B,
defined as up ;.. We may write

Up = Upg o+ Up,gc+Up, re (3.5)

In general it is possible to define up ,, and up . uniquely. For example, suppose B
is a void with surface Sp, subjected to prescribed values up = %p ,. Let us consider
the following problem for the half-space y > 0:

Viu+k*u =0, —o0<2,z2<0, y>0, (3.6a)
ou/oy+ikZu =f, —oo<wx,z<00, y=0. (3.6b)
In operator form the solution is denoted by
u = M(f). (3.7)
We also consider a problem for the full space outside the region B:
V¥ +kv =0, xe#*/B, (3.8a)
v="o, &elSp (3.8b)
The operator form of the solution is denoted by
v = N@). (3.9)
Both solutions  and v also satisfy radiation conditions. Let us now define
uy = M{—[Qup, o/y +ikZup, olyo}; (3.10)
v;=N(-1%), j=1, (3.11)
Uy = M{—[00;/0y +ikZv;),_o}, j > 1. (3.12)
Then Up, re =j§ Uj;  Up ge = élvj. (3.13a,b)

This iterative procedure has been used by Thiruvenkatachar & Viswanathan (1965)
in considering the response of an elastic half-space to a loaded spherical cavity in
its interior.

Substitution of the representation (3.4) into (3.5) yields up(#,) as

up(%) = g(uB,\o,uG; S)""g(uB,sc’ uq; ) +$(“B,re’ ul; 8). (3.14)

The term & (up o, u%; S) can be converted into a volume integral over the region
interior to S by the use of (3.1). Since both up ,, and u& satisfy a homogeneous wave
equation inside S, this term vanishes, and thus

uB(xo) = g(’“B, 0+uB,sc’ uG; S). (3.15)
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4. EXCITATION OF SURFACE WAVES BY COMPACT SOURCES
In the remainder of this paper we consider a two-dimensional geometry. Let us
take a new origin at some point P(%, %) which is in or near B. With respect to this
origin we define a polar coordinate system, (r,60), 0 < r < 0, — < 6 < =, as shown
in figure 1, i.e.
x—% =—rsinf, y—y=—rcosb. (4.1)

Consider the outgoing field up (. This field is regular outside some surface Sg
that encloses B and P. It is known that any such field may be expressed as

Upo= (rtets T B HP(or)enerin, (42)

n=—o
for some set {E,}. In other words, the eigenfunctions {H{)(kr) e!#%} are complete for
the solutions of (V2+ k2)u = 0 in #2/Sp that are outgoing.
Let d be the maximum distance from P to the surface Sz. We use the asymptotic
result for Hankel functions of large order,

Inl
HPQA) ~ - (1?%)% (z—:) . (4.3)
At the point on Sy a distance d from P, the field as given by (4.2) must be bounded.
Therefore, by (4.3) we require that, for |»|large and |n| > kd,

E, = o[|n|} (2n/ekd)~"]. (4.4)
Let us now define the far-field emission function E(6) as

E(6) = lim [(kr)te~trug ]. (4.5)

From (4.2) and the result that, as |A| > o0,
HPQ) = (2/nd)teld—in—d0[1 4 0(1/A)], (4.6)

we get E@©6) = E‘, E, e (4.7)

n=—ow

Thus the constants E, are the Fourier coefficients of E(6):
2
E, = (2n) f " B(6) e-1n d6. (4.8)
0

It follows from (4.4) that E(6) is analytic for any finite complex 6.

Equations (4.2) and (4.8) show that E(6) defines up , in %#2/8p. Similarly, with
respect to the same origin, the field up g is uniquely determined by an analytic
function Esc(6) or its Fourier coefficients.

Now we return to the integral expression (3.15). Suppose we wish to investigate
the surface motion at (x,, 0) produced by excitation in B. The point source will then
be located at (x,,0). For the boundary condition given by Z = —iY, i.e. in the
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absence of leaky waves, the dominant part of 4@ sufficiently far from (x,, 0) is given
by u%:8, We define u%(x,, 0) as
UB(%9, 0) = L(up o+ up, g0, u*#; S). (4.9)

The surface § is arbitrary, provided that S surrounds B and (x,, 0) is outside S. To
express the surface wave u®8 at (x,, 0) due to a point source at (z,y) in the polar
coordinate system (4.1), we assume first that for all points in B

Tog—2 > Y. (4.10)

Then (2.13) can be written
uG8 = Usexp [ikrsin (6 —¢)], (4.11)
where Us = tan ¢ exp {ik[(xy— Z) cos ¢ + 7 sin ¢1}. (4.12)
Let u, = HP (kr)eln?. (4.13)

Then
2
Lty 03 8) = Uty [ G (s (0 )~ [HD )]}
0
x expi[krsin (0 — ¢) +n0]d0, (4.14)
where the prime denotes differentiation with respect to the argument. Explicit
integration yields Bessel functions of the first kind. Further simplification is obtained
by using the result for the Wronskian of Bessel functions:
() Y(2) — Jy(2) Y, (2) = 2/re. (4.15)
The final result is L (U, u%8; 8) = 4Us eltg-m—im), (4.16)
Substitution of up 4 as given by (4.2), together with the corresponding expression
for up g, in (4.9), yields upon the use of (4.16)
u (0, 0) = (8m)} e~ Hr[B(P —§m) + By (¢ — §m)] U™ (4.17)

This result is exact to the extent that only the surface-wave part of the Green
function has been used. Thus the expression in (4.17) does not take into account the
effect of body waves on the surface displacement, but this effect is asymptotically
negligible in the far field. From (4.10) it is evident that (4.17) corresponds to the
forward-scattered surface wave, i.e. the wave propagating in the positive x-direction.
The back-scattered surface wave may be considered similarly. We find, for z, > 0,

th
w uls( +20,0) = (8m)t e M [E(+ (¢ —4m)) + B £ (P —4m)] US(£ ). (4.18)
We now apply this result to two examples of two-dimensional compact sources.

The first example is the trivial case of an isotropic point source.

Two-dimensional point source
The outgoing field for a point source at (Z, 7) is given by (2.9). By (4.5) and (4.6)

we have E(6) = (8m)-}elin, (4.19)
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Since the source is a point source, the multiply scattered field u B, sc 18 zero. Hence
E,, = 0 and from (4.17) we derive the expected identity

4 uB (%o, Yo) = uS5(Z, 7), (4.20)
where u® s is given by (2.13). Thus (4.17) predicts the correct surface wave due to

a point source.
Line force on a circular cylindrical cavity

Next, we consider a two-dimensional problem for a half-space containing a
circular cylindrical cavity with the cavity axis parallel to the surface. A line force
parallel to the axis is located on the circumference of the cylinder. The two-
dimensional geometry is depicted in figure 2.

(x010)

F1eUuRrE 2. Buried cylindrical cavity with a line force on its eircumference.

The emission function E(6) for the full-space problem can be determined explicitly.
The multiply scattered emission function E,, will be non-zero, but we assume that
it can be neglected. Thus we are concerned only with the first mutual interaction
between source and surface. From the view of superposition of harmonics to obtain
a pulse in the time domain, this approximation implies that attention is restricted
to the surface waves arriving first. An alternative interpretation follows from the
work of Gregory (1970). He considered the response of an elastic half-space with a
cylindrical cavity present. For arbitrary loading on the cavity, he derived a low
frequency (ka -> 0) asymptotic representation for the field. A similar analysis for
the present scalar problem shows that our surface-wave approximation is the first
term in a low frequency asymptotic series.

With respect to a polar coordinate system whose origin is at the centre of the
cavity of radius a, the boundary condition on the cavity surface is

ou/or =kdé0—-6,), r=a. (4.21)

Here 4( ) is the Dirac é-function and 6, € [0, 2rn) defines the position on the circum-
ference at which the point force is applied (see figure 2). Since we are interested in
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the emission function Z(#) for the full-space problem, we may take , = 0 for con-
venience of notation. At a later stage we shall give numerical examples for the full
range of §,. For the boundary condition (4.21), the solution of the reduced wave
equation (1.2) with an appropriate radiation condition in the exterior of the circle is
©  H®D(kr)
% = (2r)! e 4.22

Cm= 2 TP (ka)] (:22)
where, as earlier, the prime denotes differentiation with respect to the argument.
The emission function Z(6) follows by use of (4.5) and (4.6) as

© —3inn
= _% _ii" ___e-__ .
E@6) = 2(2n)-te n§06" AOGa)] cos nb, (4.23)
where =1 ¢,=2 n>0. (4.24)

An alternative form for E(6) can be deduced by applying the Poisson summation

formula to (4.23) (see for example Morse & Feshbach 1953). The result is
B0 (91~ ot © © eiv(@—%ﬂ—m'm)d 495

= % eo—ilm e rivr ey .

Or=20me X ) Gy (429

The integration may be performed by changing the contour of integration to enclose

the roots +v,s=1,2,..., of [HP(ka)]’ = 0. The roots v, all lie in the first quadrant.

Therefore the summation over n can also be performed (see for example Jones

1979). We obtain

O = § B, (4.26)
s=1
(2 /n)t etin [elrs@=4m 4 eivstEn—0)]
where E\0) = [AD(ba)] (1—ov) (4.27)
e AR (Rka)) = LHD (k)] [0, (4.28)

It should be noted that Re € [0, 2r) is understood in (4.27).

For real 6 and ka > 1, the emission function possesses an aymptotic approxi-
mation, valid for 6 not near }r or 3n. In the region 6 € (4n, $x), it is seen that the
E(0) of (4.27) are rapidly convergent functions. The terms E, are often referred to as
‘creeping waves’, and the region 6 € (n, 3n) is known as the ‘shadow region’. In the
high frequency range, ka > 1, theroots v, s = 1, 2, ..., are approximately (see Jones
1979)

v, ~ ka— (3ka)t edin (4.29)
where a, are the roots of [Ai(x)] =0, (4.30)

and Ai( ) is the Airy function. These roots are all real and negative. So, when
Oe(in, §n) we may approximate E(0) by the first term of the creeping-wave
expansion. Also, we can use the approximation

[AD(ka)] ~ 4o, Ai (o) /ka (4.31)
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to simplify the expression for E,(8). Thus, in the shadow region,
E(0) ~ E,(0)
~ ka(8n)-t elin[eini6—1n) 4 elndn-0)] /o Ai (a;) (4.32)
where a, =—1.0188, Ai(e,) = 0.5357,

and v, follows from (4.29).
The high frequency approximation to E(f) on the ‘illuminated’ side 0 ¢ [}r, §n],
follows from (4.25). For |x—v| > a%, we have that

(HO@)]) ~ 21 2/n)t (22— 12)} eltdn+a2 -t —varesec @/v)], (4.33)

Substitution of this approximation in (4.25) gives

E(0) ~ kan—te-tir :{‘, [(ka)? — v2]% cos [¥(0 — 2n)]
n=—0w,0

X e—iv{in-&—[(ka/u)ﬂ—llé—arcsec (&a/v}} dp. (4 34)

The lack of an upper limit on the integral indicates that we assume the dominant
contribution to the integral occurs for » such that the approximation (4.33) is valid.
A point of stationary phase occurs only if 6¢ [in, $n], i.e. the point of observation
is on the ‘illuminated’ side. The stationary-phase point is at

v = ka|sin 6. (4.35)
The steepest-descents approximation yields
E(0) ~ ka(2m)~} e-idntkacosd) = F (4.36)

Equations (4.32) and (4.36) give us two distinct approximations to E(6). We refer
to (4.32) as the ‘creeping-wave’ approximation, and to (4.36) as the ‘ray-theory,
approximation. We reiterate that they are only valid for 0 real and not near the
angles ir or §r.

Now let us return to the problem of evaluating the surface wave produced by
the point force on the buried cavity. Neglecting the multiply scattered emission
function E,, we have by (4.17) that the magnitude of the surface wave at the point
(%4, 0) on the surface is

uly = (Sn)te 1 E(3n — 6,4 ¢) Us. (4.37)

Thus % is equal to the amplitude of the forward-scattered surface wave. In (4.37)
Us is the amplitude of the surface wave produced by a point force at the centre of
the cavity, if the cavity were not present. The emission function E(6) is given in two
forms in (4.23) and (4.26). In the following numerical examples we have used the
expression of (4.23) since it does not require the computation of the roots of the
Hankel functions, which depend on ka. The angle ¢ is taken as that for a pure surface
wave. Thus it isimaginary and given by equation (2.6) as a function of the impedance
magnitude Y. '
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Rather than calculate the magnitude of u% in (4.37), which depends on the depth
of the cavity below the surface, we have computed the function E defined by

E = |EGn—6,+9))|. (4.38)

The function £ depends on the impedance Y, the product ka, and the angle 6, at
which the point force is applied. In figure 3 we have plotted lg E as a function of 6,
forka = 5and Y = 0,0.5,1and 2. For Y = 0 we have ¢ = 0 and there are no surface
waves. However E(Y = 0) has physical meaning for the full-space problem. It is

\\ P
/
4 \\ //
\\ Y=2 /
- T /
i ~ \\\\ /’
" 2 \\\1\ \\\\\\ ///
w L~ ~ =~ -
oF 0 S %
\/-\/
—‘2 1 1 1 ] 1 1 1 1 i 1 )
0 120 240 360
6,/deg

Ficure 3. Surface-wave amplitude factor E plotted against the angle of
application, 8, of the line force; ka = 5.

related by (4.5) to the far field in the direction § = §rx. We note that it possesses a
local maximum at @, = 3n. For Y > 0, we observe two distinct types of behaviour
from figure 3. Consider for example the curve for ¥ = 2. As 6, increases from 0 to
ca.60°, E decreases approximately as exp[—kaY (1 —cos6,)]. This suggests that
the interaction between the point force and the surface is ‘direct’, since the magni-
tude decreases in the same manner as for a point source in the absence of the cavity.
As 6, goes from ca. 60° to ca. 270°, K suffersalinear logarithmicdecay, suggesting the
presence of creeping-wave effects. Measurements of the amplitude and slopes in
figure 3 tally very well with the clockwise creeping wave in (4.32). Similar measure-
ments for other values of ka suggest the interpretation that in this creeping-wave
region the surface wave is generated by a creeping wave traversing the cavity
circumference in the clockwise direction until it reaches a certain point, dependent
on Y and ka, where the interaction is ‘direct’. When 6, is greater than about 280°
(for Y = 2) the interaction is again seen to be direct.

In figure 4 we have compared the exact value of £ with a ray-theory approxi-
mation, formed by using the approximate form of E(f) given by (4.36) in the equation
defining E, (4.38). In figure 4 the point force is located at the angle ¢, while the
direction of observation is fixed at the (complex) angle $r + ¢. The expression given
by (4.36), where the point force is fixed at & = 0 and the observation direction is
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arbitrary, was adjusted accordingly for plotting in figure 4. The analysis for (4.36)
is only strictly valid for real ¢ [3n, §n]. However, for complex angles it appears
from figure 4 to approximate the exact E(f) in the ‘direct’ regions. A similar com-
parison with the use of the creeping-wave solution of (4.32) gives good agreement
in the range of , where creeping waves are important.

Y=0
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FicUure 4. Comparison of the ray-theory amplitude, E,, from (4.36),
with the exact result; ka = 5.
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FI1cURE 5. Relative amplitude of the surface wave produced by the line force on the cavity
and that produced by a line force in the absence of the cavity; (a) (b) ka = 0.5; (c), (d)
ka = 5.

Consider the point force at some angle 6, on the cavity (see figure 2). Now suppose
we remove the cavity and replace the point force by a point source as in (2.7). We
define the cavity amplification factor A = A(6,, Y, ka) as the ratio of the amplitudes
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of the surface wave produced with the cavity present and when the cavity is
removed. In figure 5 we have plotted lg A for the same values of ka and Y asin
figures 3 and 4. We observe that the amplification is almost constant in the ‘direct’
regions, but that it is very large when the creeping waves are influential. We note
that in general the amplification increases as Y increases.

5. SCATTERING OF A SURFACE WAVE BY A SEMI-INFINITE
SUB-SURFACE SCREEN

The theory is now applied to the following problem: a semi-infinite screen is
present in the half-space as shown in figure 6. The tip of the screen is at a depth 7.
A surface wave is incident from = —oc0. We wish to determine the surface waves
on the surface y = 0 induced by the presence of the screen.

F1cURE 6. Geometry of semi-infinite sub-surface screen.

In contrast to the examples of the previous section, the scatterer is now non-
compact. The analysis leading up to (4.17) is not valid since the surfaces of inte-
gration encountered in § 3 cannot be made to enclose the screen. It is not difficult to
show that instead of (4.9) we may write

© {1
w1, 0) = — f =

; [up(r, Oy + 0F) —ug(r, Gy + 0~)]0us:8(r, 6,) /00 dr, (5.1)
0

where 6, = $n — 6, is the angle defining the screen (see figure 6). We shall consider
only the first mutual interaction between the slit and the surface. Then, uz in (5.1)
is replaced by up o, the outgoing field for the corresponding full-space problem. The
expression for the discontinuity of up o across the slit, which occurs in the integrand
of (5.1), can be deduced from the solution for the classical Sommerfeld diffraction
problem. Also, the Green function appearing in (5.1) may be replaced by the
expression in (4.11). The integral in (5.1) can be performed explicitly, and the
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resulting surface-wave amplitude agrees formally with the expression in (4.17);
the emission function E(f) in (4.17) is discussed below. It turns out that the emission
function is not analytic, possessing a simple pole off the real axis. This contrasts
with the result of § 4 that the emission function is analytic for compact scatterers.
To determine the emission function E(6), we use the results of Deschamps et al.
(1979) concerning the diffraction of an evanescent plane wave by a semi-infinite
screen. Evanescent plane waves are a generalization of homogeneous plane waves to
include waves with complex propagation vectors. Deschamps et al. discuss the
analytic continuation of the Sommerfeld solution for homogeneous plane waves
incident upon a semi-infinite screen. Their results are summarized here for
convenience.
Let the incident surface wave be
wl = Aus(x,y), (5.2)
where %# is defined in (2.3). Thus the incident surface wave propagates in the
positive z-direction. Let us assume for simplicity that the surface waves are pure
surface waves, i.e. the impedance Z is given by (2.5). The angle 6, < (0, n) describes

the orientation of the screen with respect to the surface (see figure 6). The boundary
conditions on the faces of the screen are

Ou/on = 0, (5.3)

where n is the normal direction to the screen. The total field for the full-space
problem can be written explicitly in terms of Fresnel functions. Far away from the
tip, the total field may be written in the approximate form

U ~ uo+ud, (5.4)

where u° is the ‘geometrical optics’ field and 4 the field determined by the geo-
metrical theory of diffraction. The geometrical optics field is illustrated in figure 6.
The lines Ly and Ly represent the shadow and reflexion boundaries respectively.
For zero impedance, i.e. Y = ¢ = 0 (see (2.6)), they are the equivalent boundaries
Bg and By, for the incident body wave propagating in the positive z-direction. For
Y > 0, they are displaced from the body wave boundaries towards the screen by

an angle 0y, where secly = cos @. (6.5)

In the shadow zone u° = 0, while in the reflexion zone, u° = u! +u*, where the
‘reflected’ field ur is

w* = ui(0,y)exp [ —ikrsin (6 + 20, — ¢)]. (5.6)
This expression is equivalent to a surface wave below a surface at 6 = §n—26,, i.e.
propagating along By, in the direction away from the tip, with an amplitude of
ui(0,%) on this imaginary surface. It may happen that 6y > 6,, in which case the
lines Lg and Ly, of figure 6 are on the incident and ‘shadow’ sides of the tip respec-
tively. In this case there is no reflexion zone. However, u® = 0in the region between
the screen and Lg, implying a ‘shadow’ zone on the illuminated side of the screen.
We note that 6, < 4= is a necessary condition for this peculiar event,.
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The diffracted field ud of (5.4) is formally the same as that for a homogeneous
plane wave incident upon the screen. The only difference is that the angle of incidence
is now complex. We have

ud = ui(0,y) (kr)3e*" DO +in+0,; 0, — ), (5.7)
where D( ; ) is the usual acoustic diffraction coefficient:
D(6; 6,) = (2/m)t edir(cos O — cos 6,)~! cos 10 sin 16,. (5.8)

For homogeneous incidence, the relation (5.4) is not a uniformly asymptotic
approximation. If the incident wave is evanescent, i.e. ¥ > 0, then the term u° is
exponentially smaller than u4. In this case, (5.4) becomes a uniformly valid approxi-
mation. The correct form is

= (u°+ul) [1+0(1/kr)] = ud[1+O(1/kr)], (5.9)
as kr - co. Therefore the radiation function E(0) of (4.5) may be expressed as
E(9) = ui(0,%) D(0+3n +0,; 6,— $) = (8n)~} edimul(0,7) £(6). (5.10)
The fact that D(; 6,) blows up at 6 = 6, implies that E(0) is not analytic at the
complex angles 0 = 2nn —4n — @, 2nn + ¢ —in — 20, wheren = 0, + 1, +2,.... For
homogeneous plane wave incidence, the singularities correspond to the shadow and
reflexion boundaries, respectively.

Substituting the expression (5.10) for E(f) in (4.18) and putting E,, = 0, we
obtain for the magnitude of the scattered surface wave in the + z-direction the

quantities wi(0,7)f[ + (¢ —3n)], (5.11)

where f(6) was defined in (5.10). Let us examine the forward- and back-scattered
surface waves separately.

Forward-scattered surface wave
We have f(¢—4n) = cosec b, — cosec ¢. (5.12)

Thus the magnitude of the forward-scattered surface wave blows up if either ¢ — 0
or 6, - 0 or n. The singularity at ¢ = 0 corresponds to the shadow boundary for
homogeneous incidence. When 6, — 0 or rr, the singularity of f (¢ — =) isattributable
to the reflexion boundary of evanescent waves. All of these singularities stem from
the fact that the function E(6) is not analytic for a semi-finite screen. For a screen
of finite length, E(0) is analytic, although it cannot be expressed in closed form. See
Williams (1982) for a full discussion of the emission function in this case. Finally,
we note from (5.11) that f (¢ — 4n), as a function of 6,, is symmetric about 6. = in,
at which angle its magnitude is a minimum.

Back-scattered surface wave
By definition of f(6) we have

fGn—¢) =sec(d,—¢)—1, (5.13)
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and | f (3 — )| = (cosh |@| —cos b¢)/(cos? 6, +sinh? |@|)3. (5.14)

The quantity f(3n—¢) blows up only if 6, > in and simultaneously |@| — 0;
otherwise it remains bounded. This singularity corresponds to the shadow boundary
for homogeneous incidence on a screen perpendicular to the free surface.

The graph of | f(3n — ¢)| as a function of 6. € (0, r) is monotone increasing if

cosh |¢p| > g2 (Y >9) (5.15)
where g% = (1 +4/5). (5.16)
Otherwise, there is a maximum located at 6, = 0, 1), Where
€08 0, nmax = —sinh |@| tanh |@|. (5.17)
Thus, n < 0, yax <, and
JF BT —B)|0:=0, wex = (14 coth?|g|)2. (5.18)
3r 2r
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Ficure 7. Magnitude of back-scattered surface wave from sub-surface screen
for (@) Y = 0.5 and (b) Y = 2.0.

Therefore, if the impedance is small, i.e. Y < g, there exists an angle of inclination
0. = 0., max €(0,7), such that the back-scattered surface wave is maximized. The
dependence of the back-scattered magnitude upon the inclination 6, is illustrated
in figure 7.

It is of interest to note that the results of this section give the surface waves
generated by the diffraction of incident Love waves by the tip of a sub-surface
crack. For this application u(z, y) is identified as the displacement in the z-direction
in an elastic solid.

This work was carried out in the course of research sponsored by the U.S. Army
Research Office under grant DAAG29-80-C-0086 to Northwestern University.
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