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Crack-Face Interaction
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The interaction between rough crack faces is modeled by nonlinear relations between the
crack-face tractions and the crack-opening displacements. These relations account for crack
closure and for the related resistance to crack-face sliding. The relations are used to
investigate reflection and transmission of an incident pulse by an infinite flaw plane. The
problem statement is reduced to a set of inhomogeneous nonlinear ordinary differential
equations for the displacement discontinuities, [u#] and [v], across the flaw plane. These
equations have been solved numerically. The reflected and transmitted displacement pulses
follow directly from [u] and [v]. Next the Kirchhoff approximation in the time domain has
been used to derive expressions for the specular reflection and transmission of an incident
pulse by a crack with interacting crack faces. Both incident longitudinal and transverse waves
have been considered. The loss of specular reflection as compared to a perfect (traction-free)
crack is exhibited by specific examples.

KEY WORDS: Crack-opening displacement; crack closure; ultrasonics; Kirchoff approximation; NDE.

1. INTRODUCTION

A crack is a surface of displacement discontinu-
ity. The failure processes that result in a crack gener-
ally produce rough crack faces. Once crack opening
has taken place, and the crack faces have undergone
the slightest relative sliding displacement, the crack
will never completely close again due to incompatibil-
ity of the rough crack faces. Under subsequent load-
ing conditions the faces of the crack generally are not
free of surface tractions, as is assumed for a perfect
mathematical crack, nor will there be perfect contact
between the crack faces. Unless the crack faces are
completely separated, a complicated interaction be-
tween the crack faces is to be expected, which will be
different for opening and closing of the crack on the
one hand, and relative sliding of the crack faces on

IThe Technological Institute, Northwestern University, Evanston,
Illinois 60201.

229

the other. The interaction of the crack faces will
generally be a nonlinear process which will depend
strongly on the magnitudes of the tractions trans-
mitted across the contacting crack faces.

The effects of interaction between contacting
crack faces are of particular interest in studies of
crack detection and crack characterization by the use
of the specular reflection and scattering of ultrasonic
waves. A perfect mathematical crack acts as a perfect
screen for reflection and scattering. It may be as-
sumed that scattering results for the perfect mathe-
matical crack-model are valid for a real crack if the
amplitude of the incident wave is smaller than the
average crack-opening displacement prior to wave
incidence, and if the wavelength is much larger than a
characteristic length of the roughness of the crack
faces.

A crack with interacting crack faces may be a
poor reflector, and thus difficult to detect and to
characterize. In this paper we investigate the loss of
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specular reflection due to transmission across the
crack faces by nonlinear crack-face interactions. The
crack is represented by a flaw plane of traction
continuity (the tractions may vanish) but possible
displacement discontinuity. The interaction between
the crack faces is described by nonlinear relations
across the flaw plane between averaged tractions and
averaged displacement discontinuities and their de-
rivatives.

The effects of crack-face roughness and crack-
face interactions on the scattering of ultrasonic waves
have been of concern to several investigators. Ana-
lytical studies have been presented by Haines,®
Thompson et al.,” and Buck et al.®) The approach of
the present paper is comparable to the one of Ref.
(2), except that we take into account both normal and
shear tractions across the flaw plane. In addition, the
emphasis in the present paper is on cracks that are
lightly closed and may experience separation of the
crack faces as well as further closure. Since the resis-
tance to crack closure is very different from the
resistance to crack opening, the problem is then
inherently nonlinear. If the crack should remain
closed at all times a local perturbation about the
closed state can be used as described in Ref. (2), to
yield a linear problem statement. The postulated
nonlinear flaw-plane relations used in this page con-
tain a number of parameters which must be de-
termined experimentally. Experimental investigations
have been carried out by Woolridge™ and Golan,®
as well as by Thompson, et al.”® An analytical study
which takes into account nonlinear interaction effects
at an interface for a one-dimensional configuration
has been presented by Richardson.”

2. CONDITIONS AT THE FLAW PLANE

A schematical depiction of a flaw surface is
shown in Fig. 1 (a). In this paper it is assumed that
for the purpose of computing the fields of stress and
deformation elsewhere in the body, the interaction
between the upper and lower faces of the flaw plane
can be described by appropriate relations between
the tractions and displacement across a perfectly flat
surface. This surface, which is shown in Fig. 1 (b),
may be considered as the median plane of the actual
flaw surface.

In the analytical model we consider averaged
tractions and averaged displacement discontinuities
per unit area, with respect to coordinates in the flaw
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(b}
Fig. 1. Schematic depiction of flaw plane.

plane. The averaged tractions are continuous, which
implies that at y = 0:

o =0, =0, oL =0,=0% (1)
where the + and — signs refer to the upper and
lower sides of the flaw plane as shown in Fig. 1 (b). It
should be noted that Eq. (1) includes the conditions
for a perfect mathematical crack, which are

o =07 =0, o¢.=0,=0 (2)
In the present model for a crack with rough crack
faces, Eq. (1) will be supplemented by relations be-
tween the stresses of, 0, and the displacement dis-
continuities [v] and {u], respectively.

We will first consider the opening mode of the
crack. It is reasonable to assume that in the unloaded

state (i.e., when ¢ =0) the crack will be slightly

‘open: [v] = 4 > 0. In the closing mode we have o* <0,

and the required stress will increase rapidly as [v]— 0.
In fact we assume that an infinite flaw-plane stress
o is required to close the crack completely ([v]=0)
(Le., to completely flatten out the roughness of the
crack faces). The crack opening displacement cannot
be negative since that would imply overlap of the
crack faces. To open up the crack, [v]> A, a slight
resistance has to be overcome. The behavior de-
scribed here can be represented by the relation

€)

Here T is the maximum tensile traction (very small)
that can be transmitted across the crack faces. For an
unbounded flaw plane the resistance to separation of
the faces should decrease as [v]— A increases. This
behavior is not represented by Eq. (3) since o* —> T as
[v]— oc. Thus, for that case Eq. (3) is not valid when
[v]— A may assume large positive values. To model a
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Fig. 2. Relations between averaged flaw-plane tractions o and

0%, and averaged flaw-plane displacement separations [v] and [u].

crack, a residual resistance to separation of the crack
faces is, however, a desirable feature since it may be
thought of as representing the constraint on the
crack-opening displacement by the presence of the
crack tips. Equation (3) represents a nonlinear spring.
The relation between o,* and [v] is shown in Fig. 2
(a).

We have assumed that opening of the crack is
independent of sliding of the crack faces. The oppo-
site can, however, not be assumed. The resistance to
sliding depends very much on the extent of crack
opening, specifically on the magnitude of o*. When
o) >0 there will be very little resistance to sliding,
while for ¢* <0 there will be considerable resistance.
A convenient relation between o)), and [«] is that we
require [0} < S, and

[a]l=6%/C forlof|<S$ (4)

The critical value S depends on o). Here we assume
the relation

S= Soexp( - aoy*) (%)

Equation (5) satisfies the condition that § is small for
o*>0, while S increases rapidly as o, becomes
negative (i.e. as the crack faces are pressed together).

With the arrival of a pulse at the flaw plane at
t=0, we have [#]=0. As ¢ increases Eq. (4) holds
until [Ju]] = S/C. If [#] is non-zero at this point, the
motion is altered abruptly to frictional sliding, in
which o}, is equal to Ssgn[iz]. The frictional sliding
ceases when [#] changes sign or when S exceeds
Cllu]), say at [u]=[u;] and o} =S,. Equation (4)
then takes over again in the form

o), = C([u]=[u )+ 5, (6)

until a later time at which ¢} again reaches the
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critical value S. This occurs when

loil=s, [a]#0 ()
A simple displacement history is illustrated in Fig. 2
(b). The key point to observe is the possibility of
displacement hysteresis.

The parameters 7, A, C, @ and S, have to be
determined from the crack geometry and from ex-
perimental data.

In the next Section the reflection and transmis-
sion of plane pulses at an unbounded flaw plane will
be investigated for arbitrary relations between trac-
tions and displacement discontinuities at the flaw
plane. The specific relations of Egs. (3-7) will be
applied in Section 5.

3. REFLECTION AND TRANSMISSION AT A
FLAW PLANE

We will consider the reflection of an incident
plane pulse at an unbounded flaw plane in an other-
wise homogeneous unbounded solid. With reference
to the coordinate system shown in Fig. 1 (b), the
incident pulse is of the general form

u'=d, (&) H(é + ), a=L,T
(3)

where o= L and a =T define an incident longitudi-
nal and transverse wave, respectively, and H( ) is the
Heaviside step function. The unit vector d, defines
the displacement direction:

d, = (sinf,,cos;), d;=(cosf,—sinb;)

©)
Also
§,=1—(x/c,)sinb,,  m,=—(y/c,)cos¥,
(10)
where
ca=(\+2p)/p, ct=p/p (11)

Thus, the pulse arrives at x =0, y = 0 at time ¢ = 0.
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The incident wave generates reflected and trans-
mitted waves, which are indicated by w” and u”,
respectively. We may write

we=di f{ (& - np)Hdrfr(§r—mp)  (12)
u” = df fE (& 4y ) Hae (& k) (13)
In (12) and (13)
d7 = (—cos by, —sinf})

(14)

d; = (sinf;, —cosb;),

d; = (sinﬁi,cosﬂi), d, = (cosH’T, —sinO’T)
(15)

np=— (y/cﬂ)cos 0; (16)

= - (y/cﬁ)cos 0 (17)

g =1—(x/cg)sinby,
§p=1— (x/cﬁ)sin%,

where 8 = L, T. Here we have taken into account that
the material is the same on both sides of the flaw
plane.

The relations at the flaw plane are taken in the
general form, discussed in Section 2. Thus, the stresses
o, and o, are continuous across the flaw plane, and
these stresses are related to the displacement discon-
tinuities [v] and [u] by specified relations.

The displacement discontinuities follow directly
from (8) and (12)-(13). The relevant stresses follow
by substituting u’”, u” and u” in

du  dv
- ik 18
Oy M( dy 8x) (18)

o,= (A +2u)[% +(1—2/x2)%] (19)

where
kr=ct/cz=(N+2p)/n

The conditions on the flaw plane subsequently yield
relations between f3(£,), f{(£5), fi(¢5) (B=L,T),
and the derivatives of these functions. Because of the
infinite extent of the flaw plane, the functions f,(£,),
fg(&p) and f5(&p) will have translational invariance
with respect to their arguments, which implies that

§ =&r=¢&=&r=¢, (20)
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By employing (16)—(17) it then follows from (20) that
(1/cg)sinfy = (1/c,)sind, (21)

which is Snell’s law. In (21) we have left out the
superscripts 7 and ¢, which are no longer required
since =g = ;. We limit this paper to the case
(¢y/cp)sinfy <1 (i.e., subcritical incidence of trans-
VETse waves).

' By the use of (20) and (21) the displacement
discontinuities can now be expressed as

(u] =sind, [ £/ (&)~ f£(£)]
+cos Oz [ ££(£)+ 1 (£)] = F1(£,) du
(22)
(0] =cos8, [ f{(£.)+ fi(£)]
—sinf [ f1 (&)~ fF(E)] ~ F1(4a) doy
(23)
From continuity of o, it follows that
= Cpof'(2)+x'sin26, f7 (£,)—cos20,f7(£,)
=~ 1sin20, f/(£,)—cos20,f1(,)
(24)

where a dot denotes a derivative with respect to the
argument, and

Cpr=x"1sin20;, C,r=cos20, (25)
Continuity of normal stress o, yields
= Crof'(£,)—c0s28,f7(£,) — k" 'sin20,/7.(£,)
= — 008207/ (£,)+ k" 'sin20f7(£)
(26)
where
Cr.=Crp, Crp=—x"'sin20, (27

Equations (24) and (26) may now\be integrated to
yield

CLLAZ +CrrAr = CLufi(Ea) (28)
CrrdL + Crrd7 =Cr f(£,) (29)
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where
P ACHESMEN (30)

Equations (28) and (29) can be used to solve for
A7 (§,) and AZ7(£,). Substitution of the results in the
expressions for [u] and [v], (22) and (23), vields

[#]=cos 0T(A; Ja aT)/CLT (31)

[v]=cos b, (A} = £:8,.)/Cur (32)

The stresses at the flaw plane at the side of trans-
mitted waves may be written as

2¢ ) . . .
- }\+§’u0y*=CLT(Az +AZ)+CTT(A; +A})
(33)
——%o* =C (A + A7)+ Cp (A% + A7)

(34)

where, as before, a dot denotes differentiation with
respect to the argument. We can next eliminate A7
and A7 from these expressions by using (28) and
(29). Subsequent elimination of A7 and A} by the
use of (31) and (32) yields

[0]+2Cn fu(8a)  (39)

o
pc; 7 ~ cos 0

2 ., D . Ny
;)_C—- yx COSBT[u]+2cLafﬂ(£a) (36)
where
D=Cip—C Crr>0 (37)

Substitution of (35) and (36) into the relations be-
tween 0%, 0% and [u], [v] yields a set of inhomoge-
neous nonlinear ordinary differential equations for
[u] and [v], which in general must be solved numeri-
cally.

Finally, the reflected and transmitted amplitudes

are given in terms of [u] and [¢] by

Cer
cos b,

O3 ol o el ()

cos
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71O =3 | o o1+ o L)) (39)
76 = 3| soH[o] - (o (w1 + 8., i(6)
(40)
71O = 3| o)~ L0+ 81 (6)
(1)

4. SPECULAR REFLECTION BY A FLAT CRACK

In this section we consider a flat crack as a flaw
plane of finite dimensions with the reflection and
transmission properties that have been discussed in
Section 2. Under the influence of an incident wave
the tractions are continuous across the faces of the
crack, but the displacement components may suffer
discontinuities. For a surface of displacement discon-
tinuity in an unbounded body, the radiated eclas-
todynamic field may be expressed in terms of a
well-known representation integral (see e.g. [8, p.
103]). The representation integral employs the basic
singular solution, which is the field generated by a
point load per unit volume applied at position x =§,
and pointing in the x, direction with time depen-
dence g(1), i.e.,

fi=8,8(1)8]x | (42)

The generated diéplacement field may be expressed
in the form

dmpufl (x,6;§) = D}{& g(1)} (43)
where (see Ref. [8], Eq. (3.96))

DH(%: 5(1)) =~ (3%,
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In (44)
x= (xi - gi)/" (45)

Note that here we have taken the point load per unit
volume, whereas in Ref. (8) it was taken per unit
mass. Hence p does not appear in the right hand side
of the corresponding expression in Ref. (8). The
stress components follow from Hooke’s Law:

Sk(8 8(0)) (46)
SK[ 11is given by Eq. (3.98) of

F=|x-g|,

4mpr (%, ,8) =

where the operator
Ref. (8).

Now consider a surface 4 of displacement dis-
continuity [u,(x, ¢)]. It then follows from the repre-
sentation integral given by Eq. (3.105) of Ref. (8) that

dmpu (8.0) = [ S5 {6 [ (x.0]}aa() (97)

where summations over the indices i and j are im-
plied,

[u(x,0)] = v —u; (48)

and n is the normal on the plus face of the surface A.
Equation (47) simplifies substantially in the far
field (i.e., when r > |x|). It can then be shown that

‘L

DF{¢; (1)) = ~’—" Cng(t—L)

1 sy 1 r
+7(6ik—xixk)c%g(t CT)

(49)

provided that g(s)=0(Q) for s =0(1) and g(s)=
o(1/r) for s = O(r). The corresponding stress is then
obtained as

ng;, k = Tig‘;;’lf + 7-1‘5';;’13w (50)
where
1 r
Ga_ _ . pGa_—_ _ =
Tijik CaB'j;k47rr (t Ca)’a LT (51)
BGE=(2%2x "2 +8,(1-2k 7)) (52)
BE: L =08,k + 8, %, —2%,%,%, (53)
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and
re|x|-(%§), x=x/|x| (54)

Equation (50) reduces to the corresponding expres-
sion for a time-harmonic force, given as Eqgs.
(1.64)-(1.68) in Ref. (9), by the substitution g(s—
r/c,)=exp[—iw(t —r/cy)}, where w =k c,.
Substitution on (50) in (47) yields in the far field

1
“k("’t)z‘mrzﬁZ
=L,T

L BS:EnUP(1,R) (55)

where

UF(¢,R) =fA[ai(§, - f;p + g;i-K)}dA(U
(56)

For convenience we have taken the origin in the
plane of the crack, R =|x|, and { and x have been
interchanged.

Equation (55) would give the radiated field if the
crack-opening displacement were known a priori. This
is, however, not the case. In an actual scattering
problem the crack-opening displacement is part of
the solution being sought. It is, however, possible to
obtain an approximate solution to the scattering
problem by making a judicious a priori estimate of
[u;]. A simple and useful estimate, which has validity
at higher frequencies, is obtained by assuming that
[u;] is the same as for an infinite flaw plane. This
approximation ignores the effect of the crack edge on
the crack-opening displacement.

The value of [u,] for an infinite flaw plane
follows from the results of Section 3. Let the vector p,
be in the incident wave direction and |p,|=1/c,.
Then [u] = [u(z —p, {)]. We also define the vector qg
in the scattered wave direction by X = q4cz, and thus
|gg| =1/cg- Then we may write

o]

lui(t—%ﬂqg—pa){)} (57)

Iff

Now, consider the integral

1=fAf‘<a-§>dA(c> (58)
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Let us define the new crack-plane coordinates &, 5 by

_.nA(aAn) nAa
$=¢ |n A al |nAaj (59)
Thus
a-{=|nAal¢ (60)
and
I= [ j(nAajg) dtdy
4
B Ly DAa
- fa SO (61)

where dA is the edge of the crack. By identifying
a=qp —p,, we can then write (56) as

uﬁ(z,R>=j;A[ui(t—§+<q5—pa>-;)}

n/\(qﬁ —pa)

InA(ag —pa))? & (62)

Note that the edge integral is taken in the counter-
clockwise sense.

Equation (62) has been derived for arbitrary
angles of observation. Comparisons with exact solu-
tions for analogous problems have, however, indi-
cated that the approximation gives the best results in
the shadow zones and in the zones of specular reflec-
tion. In these zones we have either qz —p, =0 or
(qg —p,) is normal to the plane of the crack, and
hence (qz —p,)-§ vanishes. Substitution of this result
in (57) and (56) yields

UP(t,R) = Al (1 = R /cg) (63)

where A is the area of the crack face, and we have
used the notation

[i‘i(t_R/CB)] =[i‘i](t—R/Cﬁ) (64)

Thus the discontinuity in the particle velocity across
the crack faces, computed at the origin, radiates as a
spherical wave.

Let the crack lie in the plane y = 0. The crack
normal n is then equal to i,. If the incident wave
motion is in the plane of x and y, then the scattered
longitudinal and transverse fields in the specular and
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shadow directions are

—A
L - “2g ,
u”(x, t) 47chL{+K sin24, [i]
dz
+cos20.[0]}(¢r = R /cy) J (65)
L
u(x,1)= — 4 {cos28,[u]
’ 47Rcy T

r

d
+sin20,[0]} (1 - R/cT){ d; (66)
u and v are the displacement components in the x
and y directions, the notation defined by (64) has
been used, and the displacement vectors for the re-
flection and shadow fields (superscripts r and ¢, re-
spectively) are given in Egs. (14) and (15).

It is of interest to compute the reflection and
shadow fields when the crack faces are stress free
(0, = o}, = 0). The reflected field of type 8 due to an
incident wave of type a is found to be

A cos

B 913 a £ r
uf(x, 1) = 5— » R§fi(1— R /cg)dy (67)

where Rg. are the reflection coefficients from a trac-
tion free surface

R[ai = (CET + CLLCTT)/D: :B =a (68)
2C,Crr/D, B#a

The shadow fields are found to be zero when B # a,
and when B8 = « they are

A cosb,
ui(x, 1) = 5= ——fa(t = R/c,)d;  (69)

Now consider the case when the crack faces do
interact and transmit tractions. Let u?” and u?’,
B=L,T be the reflected and shadow fields for the
stress-free crack, defined by Eqgs. (67) and (69), re-
spectively. The corresponding fields in the presence
of tractions follow from Egs. (65), (66), (35), and (36)
as

Acost;

ul(x, =l ¢ Z20L
(1) =, 27RpciD

X {CLToy* + &Crro } (t—R/c, )dg: (70)
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27RpciD

X { + lc_lC'LLoy* + CLToy";}(t - R/cT)dQ:
(71)

where the notation 6,*(z — R /cg) and o)5(f — R /cp)
is analogous to (64).

S. NUMERICAL RESULTS AND DISCUSSION

In this Section we apply the general results of
Sections 3 and 4 with the interface stresses o,* and )%,
as given in Section 2. In all the numerical examples
we have taken the following values of the parameters
in Egs. (3)-(5)

A=5, T=1p, C=pu/A
S, =3, a=15/p, (72)

where A and all subsequent displacements are nor-
malized with respect to the maximum displacement
of the incident pulse, which is of magnitude unity. A
Poisson’s ratio of 1/3 is taken. The results for this
choice of parameters illustrate the salient features of
the model. Other parameters have been considered,
but the corresponding results do not add much to the
understanding of the problem, and they will not be
discussed here. The shape of the incident profile f; is
the same in all examples, and is shown in Fig, 3(a).

We first consider the pulse of finite duration
incident upon an unbounded flaw plane. If the inci-
dent pulse is of type a, a= L, T then the displace-
ments ", 0" and u~,v” on the upper and lower
faces follow from Section 3 as

wt= 2 Hu)— (0] - 2) 222 0)

2cosf,
+(sin8,8; , +cos0..87,) f. (73)
vi=1 Z[U]+[u] 2kcos by
+(cos 8,8, —sin0;8,) /) (74)

The displacements v* and u * are shown in Figs.
3(b) and 3(c) for normally incident L and T waves,
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0 =

-1

Fig. 3. () Profile of the incident pulse. (b) Displacements v* and
v~ for an L-wave normally incident on the flaw plane. The dashed
line is v~ in the absence of flaw-plane tractions. (¢) Displacements
u™ and u ~ for a normally incident 7-wave. The circles indicate the
regions of frictional sliding, and the short-dashed line represents
u~ for a traction-free plane.

respectively. We have also plotted the displacements
u~ and v~ for the stress free interface defined by
o = o), = 0. Figure 3(b) shows that v~ is the same as
for a stress-free interface until the two faces become
very close together. The resistance to closing then
becomes very large, causing the upper face to lift.
When the pulse has passed through, and the lower
face recedes, the large pressure on the two faces
changes to a small tension which slowly brings the
two faces back to their equilibrium positions. The
decay rate in our example is exceedingly slow, leaving
the flaw plane open for a long time after the passage
of the pulse. In Fig. 3(c) we note how the shear stress
in the flaw plane causes the upper face to move in
phase with the lower one, though the magnitude of
u" is much smaller. The transfer of energy leaves u~
slightly smaller than the stress-free u ~. The times at
which the flaw-plane sliding is in the frictional regime
(see Eq. (6)) are indicated by the circles on the u*
curve. '

For the same pulse profile, the displacements
due to T waves incident at +20° are plotted in Fig.
4. For an angle of incidence of +20° the pulse causes
the gap to open while it closes for —20°. In Fig. 4(d)
we see how the flaw-plane closure affects the shear
stress. As the faces close, the resistance to sliding is
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2]’ (a)
1
el
0 " - -
-1 \v‘
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Fig. 4. Vertical (a) and horizontal (b) displacements on the flaw
plane for a T-wave incident at 20°. (c¢) and (d) are for T-wave
incidence at —20°.

governed mainly by Eq. (4), causing the upper face to
move significantly. When the faces open, the critical
stress S of Eq. (5) is decreased, allowing frictional
sliding to take place. The net effect after the pulse
has passed through is to leave the faces horizontally
displaced relative to one another.

Figure 5 shows the reflected and transmitted
fields for the T wave incident at —20°. The stress-free
results are shown for comparison. We note that there
are no transmitted waves for the stress-free interface.

The reflected and transmitted waves are shown
in Fig. 6 for an L wave incident at 20°. The step-like
transmitted L wave of Fig. 6(c) is particularly inter-
esting.

We now consider the incidence of pulses on flaw
planes of finite area (cracks). We shall only be inter-
ested in the specularly reflected and transmitted fields,
therefore the results of Egs. (65) and (66) are applica-
ble. In all the examples, the quantities plotted are for
B=L,T.

r _R
Ug =—ut-dfy (75)
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17 (a}

-~

Fig. 5. T-wave incident at —20° (a) Reflected L-wave, (b) re-
flected T-wave. The dashed lines in (a) and (b) are for the
traction-free plane. (¢) Transmitted L and 7-waves.

| N
-1
1
I N
(c)
0 _ . »
"""" N S
0/
1l

Fig. 6. L-wave incident at 20°. Reflected (a), (b), and transmitted
waves (c).
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where the various quantities on the right-hand side of
Eq. (75) are defined in Section 4. Thus, Uy and Uj
are independent of the crack size and shape and of
the observation distance R.

Normal incidence of L and T waves is consid-
ered in Fig. 7. In both cases there are no mode
conversions and the reflected and transmitted fields
are identical. The fields produced by a stress-free
crack are shown for comparison. The results are
basically proportional to the time derivatives of the
displacement discontinuities across the infinite flaw
plane. It is useful to compare Fig. 7 with Fig. 3. In
particular, the step-like jump in Fig. 7(a) is related to
the rapid closure of the interface gap. It is noted that
the tension part of the reflected pulse is affected by
crack closure, while the compressive part is not.

The reflected and transmitted fields for L inci-
dence at 20° are shown in Fig. 8. A novel feature, in
comparison with the stress-free crack, is the ap-
pearance of a transmitted or “shadow” mode-con-
verted T wave. These results should be compared
with those of Fig. 6.

Shear-wave incidence also produces a mode-con-
verted transmitted L wave, as is shown in Fig. 9 for T
wave incidence at —20°. The induced crack closure
also affects the reflected and transmitted 7' waves
significantly. Similar computations for T incidence at
20° show little difference from the stress-free results,
as expected from Fig. 5.

In summary, crack closure and the resistance to
relative sliding of the crack faces have been modeled
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0 » -
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Fig. 7. Specularly reflected far-field amplitudes for normally inci-
dent L (a), and T-waves (b), on a crack. The results for the
traction-free crack are indicated by the dashed lines.
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Fig. 8. L-wave incident on a crack at 20°. Reflected (a) and
transmitted (b) L-wave amplitudes. Reflected (¢) and transmitted
(d) T-waves. Results for the traction-free crack are shown by
dashed lines.
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Fig. 9. Same as Fig. 8, except for a T-wave incident at —20°.



Loss of Specular Reflection

to investigate the influence of crack-face interaction
on the scattered fields. Approximate results for the
scattered fields in the zones of specular reflection and
specular transmission show that crack-face interac-
tion can be a significant effect. As might be expected
the effect on the scattered fields is particularly
noticeable if the incident pulse creates a significant
interface pressure across the crack faces. This will
happen for incident pressure pulses, but also for
incident transverse waves when the displacement
component normal to the crack, points towards the
crack faces. The latter case was illustrated by consid-
ering a T-wave incident under an angle of incidence
of —20°. When crack-face interaction is initiated by
the incident pulse, part of the pulse is transmitted
across the crack faces, and the reflected signal is
correspondingly reduced. For non-interacting crack
faces (zero crack-face tractions) the reflected dis-
placement signal is proportional to the derivative of
the incident pulse in the present approximation. For
a compressive incident pulse the tension part of the
reflected pulse may be significantly affected by
crack-face interaction, while the compressive part will
not be.
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