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The interaction between rough crack faces is modeled by nonlinear relations between the 
crack-face tractions and the crack-opening displacements. These relations account for crack 
closure and for the related resistance to crack-face sliding. The relations are used to 
investigate reflection and transmission of an incident pulse by an infinite flaw" plane. The 
problem statement is reduced to a set of inhomogeneous nonlinear ordinary differential 
equations for the displacement discontinuities, [u] and [v], across the flaw plane. These 
equations have been solved numerically. The reflected and transmitted displacement pulses 
follow directly from [u] and [v]. Next the Kirchhoff approximation in the time domain has 
been used to derive expressions for the specular reflection and transmission of an incident 
pulse by a crack with interacting crack faces. Both incident longitudinal and transverse waves 
have been considered. The loss of specular reflection as compared to a perfect (traction-free) 
crack is exhibited by specific examples. 
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1. INTRODUCTION 

A crack is a surface of displacement discontinu- 
ity. The failure processes that result in a crack gener- 
ally produce rough crack faces. Once crack opening 
has taken place, and the crack faces have undergone 
the slightest relative sliding displacement, the crack 
will never completely close again due to incompatibil- 
ity of the rough crack faces. Under subsequent load- 
ing conditions the faces of the crack generally are not 
free of surface tractions, as is assumed for a perfect 
mathematical crack, nor will there be perfect contact 
between the crack faces. Unless the crack faces are 
completely separated, a complicated interaction be- 
tween the crack faces is to be expected, which will be 
different for opening and closing of the crack on the 
one hand, and relative sliding of the crack faces on 
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the other. The interaction of the crack faces will 
generally be a nonlinear process which will depend 
strongly on the magnitudes of the tractions trans- 
mitted across the contacting crack faces. 

The effects of interaction between contacting 
crack faces are of particular interest in studies of 
crack detection and crack characterization by the use 
of the specular reflection and scattering of ultrasonic 
waves. A perfect mathematical crack acts as a perfect 
screen for reflection and scattering. It may be as- 
sumed that scattering results for the perfect mathe- 
matical crack-model are valid for a real crack if the 
amplitude of the incident wave is smaller than the 
average crack-opening displacement prior to wave 
incidence, and if the wavelength is much larger than a 
characteristic length of the roughness of the crack 
faces. 

A crack with interacting crack faces may be a 
poor reflector, and thus difficult to detect and to 
characterize. In this paper we investigate the loss of 
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specular reflection due to transmission across the 
crack faces by nonlinear crack-face interactions. The 
crack is represented by a flaw plane of traction 
continuity (the tractions may vanish) but possible 
displacement discontinuity. The interaction between 
the crack faces is described by nonlinear relations 
across the flaw plane between averaged tractions and 
averaged displacement discontinuities and their de- 
rivatives. 

The effects of crack-face roughness and crack- 
face interactions on the scattering of ultrasonic waves 
have been of concern to several investigators. Ana- 
lytical studies have been presented by Haines, °) 
Thompson et al., (2) and Buck et al. °) The approach of 
the present paper is comparable to the one of Ref. 
(2), except that we take into account both normal and 
shear tractions across the flaw plane. In addition, the 
emphasis in the present paper is on cracks that are 
lightly dosed and may experience separation of the 
crack faces as well as further closure. Since the resis- 
tance to crack closure is very different from the 
resistance to crack opening, the problem is then 
inherently nonlinear. If the crack should remain 
closed at all times a local perturbation about the 
closed state can be used as described in Ref. (2), to 
yield a linear problem statement. The postulated 
nonlinear flaw-plane relations used in this page con- 
tain a number of parameters which must be de- 
termined experimentally. Experimental investigations 
have been carried out by Woolridge (4'5~ and Golan, (6) 
as well as by Thompson, et al.(2) An analytical study 
which takes into account nonlinear interaction effects 
at an interface for a one-dimensional configuration 
has been presented by Richardson. (v) 

2, CONDITIONS AT THE FLAW PLANE 

A schematical depiction of a flaw surface is 
shown in Fig. 1 (a). In this paper it is assumed that 
for the purpose of computing the fields of stress and 
deformation elsewhere in the body, the interaction 
between the upper and lower faces of the flaw plane 
can be described by appropriate relations between 
the tractions and displacement across a perfectly flat 
surface. This surface, which is shown in Fig. 1 (b), 
may be considered as the median plane of the actual 
flaw surface. 

In the analytical model we consider averaged 
tractions and averaged displacement discontinuities 
per unit area, with respect to coordinates in the flaw 

(a) 

(b) " ~  × 

Fig. 1. Schematic depiction of flaw plane. 

plane. The averaged tractions are continuous, which 
implies that at y = 0: 

o; =Oy =Oy, G=Oyx=O,*x (a) 

where the + and - signs refer to the upper and 
lower sides of the flaw plane as shown in Fig. 1 (b). It 
should be noted that Eq. (1) includes the conditions 
for a perfect mathematical crack, which are 

Oy =Oy- =0 ,  Oy+x = Oy~ = 0  (2) 

In the present model for a crack with rough crack 
faces, Eq. (1) will be supplemented by relations be- 
tween the stresses oy*, oy x and the displacement dis- 
continuities [ v] and [u], respectively. 

We will first consider the opening mode of the 
crack. It is reasonable to assume that in the unloaded 
state (i.e., when Oy* = 0) the crack will be slightly 
open: [v] = A > O. In the closing mode we have Oy < O, 
and the required stress will increase rapidly as [v] ---, O. 
In fact we assume that an infinite flaw-plane stress 
oy* is required to close the crack completely ([v] = O) 
(i.e., to completely flatten out the roughness of the 
crack faces). The crack opening displacement cannot 
be negative since that would imply overlap of the 
crack faces. To open up the crack, [v] > A, a slight 
resistance has to be overcome. The behavior de- 
scribed here can be represented by the relation 

oy* = T [ v[JV-] A (3) 

Here T is the maximum tensile traction (very small) 
that can be transmitted across the crack faces. For an 
unbounded flaw plane the resistance to separation of 
the faces should decrease as Iv ] -A  increases. This 
behavior is not represented by Eq. (3) since Cry* ~ T as 
[v] ~ oc. Thus, for that case Eq. (3) is not valid when 
Iv ] -  A may assume large positive values. To model a 
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Fig. 2. Relations between averaged flaw-plane tractions ~* and 
a*~, and averaged flaw-plane displacement separations [v] and [u]. 

crack, a residual resistance to separation of the crack 
faces is, however, a desirable feature since it may be 
thought of as representing the constraint on the 
crack-opening displacement by the presence of the 
crack tips. Equation (3) represents a nonlinear spring. 
The relation between oy* and [v] is shown in Fig. 2 
(a). 

We have assumed that opening of the crack is 
independent of sliding of the crack faces. The oppo- 
site can, however, not be assumed. The resistance to 
sliding depends very much on the extent of crack 
opening, specifically on the magnitude of Oy. When 
Oy* > 0 there will be very little resistance to sliding, 
while for Cry < 0 there will be considerable resistance. 
A convenient relation between a~x and [u] is that we 
require [ay*x[ ~< S, and 

[/t] = 6 ~ / C  for ]o~d < S (4) 

The critical value S depends on oy*. Here we assume 
the relation 

S = Soexp(-  aOy) (5) 

Equation (5) satisfies the condition that S is small for 
Oy* > 0, while S increases rapidly as ay* becomes 
negative (i.e. as the crack faces are pressed together). 

With the arrival of a pulse at the flaw plane at 
t = 0, we have [u] = 0. As t increases Eq. (4) holds 
until I[u]l -- S / C .  If [/l] is non-zero at this point, the 
motion is altered abruptly to frictional sliding, in 
which oy* x is equal to Ssgn[h]. The frictional sliding 
ceases when [h] changes sign or when S exceeds 
Cl[u]l, say at [u ]=  [ut] and Oy x = S 1. Equation (4) 
then takes over again in the form 

= C ( [ u ] - [  R1])-{- S 1 (6) 

until a later time at which %* again reaches the 

critical value S. This occurs when 

I G I = S ,  [/tl ¢ 0  (7) 

A simple displacement history is illustrated in Fig. 2 
(b). The key point to observe is the possibility of 
displacement hysteresis. 

The parameters T, A, C, a and S O have to be 
determined from the crack geometry and from ex- 
perimental data. 

In the next Section the reflection and transmis- 
sion of plane pulses at an unbounded flaw plane will 
be investigated for arbitrary relations between trac- 
tions and displacement discontinuities at the flaw 
plane. The specific relations of Eqs. (3-7) will be 
applied in Section 5. 

3. REFLECTION AND TRANSMISSION AT A 
FLAW PLANE 

We will consider the reflection of an incident 
plane pulse at an unbounded flaw plane in an other- 
wise homogeneous unbounded solid. With reference 
to the coordinate system shown in Fig. 1 (b), the 
incident pulse is of the general form 

a = L , T  

(8) 

where a = L and a = T define an incident longitudi- 
nal and transverse wave, respectively, and H(  ) is the 
Heaviside step function. The unit vector d~ defines 
the displacement direction: 

d L = (sinOL,cOsOL) , dr  = (cos O r , -  s in0r)  

(9) 

Also 

~ = t - ( x / G ) s i n O ~ ,  = - ( y / c o ) c o s  0o 

(10) 

where 

= (x  4 = (11) 

Thus, the pulse arrives at x = 0, y = 0 at time t = 0. 
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The incident wave generates reflected and trans- 
mitted waves, which are indicated by u ~ and ff~, 
respectively. We may write 

u ~ = f l l f / ( ~  ~ - ~/~) + d~ . f~  ( ~ -  - ~/~-) (12) 

__ t t t t t t t utr - d L f ~ ( ~  + ~/z) + d r f ~ ( ~ r  + ~/~) (13) 

In (12) and (13) 

d; = (sinO;,-  cosO~), 

d~ = (sin0~,cos 0~), 

li} = t - ( x / c  a )sin 0~, 

~'# = t - ( x /c¢ )sin O~, 

a ~  = ( - c o s  0~ ,  - s in 0 ~ )  

(14) 

d~- = (cos 0 ~ , -  sin0~-) 

(15) 

~l~=- (y /c~)cosO;  (16) 

,~=-(y/c,~)cosO/~ (17) 

where [3 = L, T. Here we have taken into account that 
the material is the same on both sides of the flaw 
plane. 

The relations at the flaw plane are taken in the 
general form, discussed in Section 2. Thus, the stresses 
oy and oy~ are continuous across the flaw plane, and 
these stresses are related to the displacement discon- 
tinuities Iv] and [u] by specified relations. 

The displacement discontinuities follow directly 
from (8) and (12)-(13). The relevant stresses follow 
by substituting ff~, I! re and u t~ in 

°~=~ +-fix 

o v = ( X + 2 1 z ) [ O ~ y + ( 1 - 2 / x Z ) ~ x ]  (19) 

where 

~2 2 2 = % / c  r = (X + 2/~)//~ 

The conditions on the flaw plane subsequently yield 
relations between ~ r r f~(~a),f~(~#),f;(~t~) ([3 = L, T), 
and the derivatives of these functions. Because of the 
infinite extent of the flaw plane, the functions f~ (~) ,  
f ; (~ ) )  and f ; ( ~ )  will have translational invariance 
with respect to their arguments, which impfies that 

~Z = ~ = ~ = ~ =- ~o (20) 

By employing (16)-(17) it then follows from (20) that 

(1/c~)sinOl~ = (1/%)sinO~ (21) 

which is Snell's law. In (21) we have left out the 
superscripts r and t, which are no longer required 
since 0~ = 0~ = 0~. We limit this paper to the case 
(cL/cr)sinO T <1 (i.e., subcritical incidence of trans- 
verse waves). 

By the use of (20) and (21) the displacement 
discontinuities can now be expressed as 

[u] = sin0L[ IL(~a)- l~(~a)] 

~_ COS 0T [ f ~ . ( ~ a )  .qt - f ~ (  ~ a ) ] _  f i ( ~ a )  Max 

(22) 

[o]=cosOL[fZ(~a)+ f ; ( ~ , ) ]  

- s in  0~ [ f ~ ( ~ . ) -  f~ (~a ) ] -  f ( ~ a )  aay 

(23) 

From continuity of oy x it follows that 

- C L j * ( ~ ) +  x-1sin 2 eLj¢{ (~a)-cos2Orf( .  ( ~ )  

= - ~-XsinZ0~/Z(~°)-cos2O~/}(~a) 

(24) 

where a dot denotes a derivative with respect to the 
argument, and 

CLL = K-lsin20L, C t r  = cos20 r (25) 

Continuity of normal stress Oy yields 

-- CTafi(~a) -- COS 20rf~ ( ~ ) - - X - ~ s i n  20rf~ (~,,) 

= - COS20T]] (~,~) + ~ - ls in  20r/~-(~) 

(26) 

where 

CrL = CLT, Crr = - ~¢-lsin20r (27) 

Equations (24) and (26) may now'be  integrated to 
yield 

CLLA ~ + CLTA T = CL~fi(~a) (28) 

CgrA-g + CTrA~- = Cr~f'(~a) (29) 
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where 

a~ = fd(O±/;(~o) (30) 

Equations (28) and (29) can be used to solve for 
2x~ (G) and A~(G). Substitution of the results in the 
expressions for [u] and [v], (22) and (23), yields 

[ul = cosOr(A ~ --f,~8,~T)/CLT (31) 

[v] = cosOL(A~ -f/,8,,r)/CLr (32) 

The stresses at the flaw plane at the side of trans- 
mitted waves may be written as 

2% -a* =CLT(~, ~ + ~ L ) + C T T ( ~  ~ - + ~T)  ~"b 2[~ y 

(33) 

2c T ; - G  = c ~ ( ~  + ~z )+c~(~  + ~ )  

(34) 

where, as before, a dot denotes differentiation with 
respect to the argument. We can next eliminate /X Z 
and A r from these expressions by using (28) and 
(29). Subsequent elimination of A~ and A~ by the 
use of (31) and (32) yields 

2 D 
pcLO~ = cosO L [O]+2CT.fi~((~) (35) 

2 D 
= + 2CL~f~' ( ~ )  (36) 

ocT°~ * cos0r[/d "~ 

where 

D = CzLr - CLLCTT > 0 (37) 

Substitution of (35) and (36) into the relations be- 
tween Oy*, o~ and [u], [v] yields a set of inhomoge- 
neous nonlinear ordinary differential equations for 
[u] and [v], which in general must be solved numeri- 
cally. 

Finally, the reflected and transmitted amplitudes 
are given in terms of [u] and [v] by 

f [ (~)  =-~ [ COS0L [v]+  [u] (38) 

1 CL~ 
f(-( ~) = ~ { ~ [  v]+ ~o~T[ u]} (39) 

f~( )=~ ~o-5~[~1-co-~[.1 +~f~'(~) 

(40) 

l{C~T CLL } 
f~(~)= ~o--~[u]-~o--0~[v] +~of.'(~) 

(41) 

4. SPECULAR REFLECTION BY A FLAT CRACK 

In this section we consider a flat crack as a flaw 
plane of finite dimensions with the reflection and 
transmission properties that have been discussed in 
Section 2. Under the influence of an incident wave 
the tractions are continuous across the faces of the 
crack, but the displacement components may suffer 
discontinuities. For a surface of displacement discon- 
tinuity in an unbounded body, the radiated elas- 
todynamic field may be expressed in terms of a 
well-known representation integral (see e.g. [8, p. 
103]). The representation integral employs the basic 
singular solution, which is the field generated by a 
point load per unit volume applied at position x = ~, 
and pointing in the x k direction with time depen- 
dence g(t), i.e., 

f/= Gg(t)SIx-  gl (42) 

The generated displacement field may be expressed 
in the form 

4~rpu/6; k(x, t; ~) = D[(~;  g(t)} (43) 

where (see Ref. [8], Eq. (3.96)) 

Dik(~; g ( t ) }  1 (32i2g l/or = -- G ) f ~ / c  L s g ( t  -- rs)  ds 

+ g t - - -  - g t -  
F CL 

+ 4 7 g  t -  
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In (44) 

r = Ix -  ~1, 2, = ( x , -  ~) / r  (45) 

Note that here we have taken the point load per unit 
volume, whereas in Ref. (8) it was taken per unit 
mass. Hence p does not appear in the right hand side 
of the corresponding expression in Ref. (8). The 
stress components follow from Hooke's Law: 

4~rpTi~;k(X,t;~)=S~{g;g(t)} (46) 

where the operator S~[ ] is given by Eq. (3.98) of 
Ref. (8). 

Now consider a surface A of displacement dis- 
continuity [us(x, t)]. It then follows from the repre- 
sentation integral given by Eq. (3.105) of Ref. (8) that 

(47) 

where summations over the indices i and j are im- 
plied, 

[u,(x, t)] =u? (48) 

and n is the normal on the plus face of the surface A. 
Equation (47) simplifies substantially in the far 

field (i.e., when r >> [xD. It can then be shown that 

r) 
D?{f;g(t))--- r CLg(t--\ 

+--(~k--2~2k g t-- 
r 

(49) 

provided that g(s)= O(1) for s = O(1) and g ( s )=  
o(1/r) for s = O(r). The corresponding stress is then 
obtained as 

where 

,~ = "rq; k + "r/j; k 

"rq;k=----~t~ifk-~rglt-- ,a= L ,T  (51) 

C'L=(22i2jx-Z+6i j (1--2~-2))2  k (52) Bij;  k 

a,  r _ ~ j k 2  t _ 2 2 ~ 2 j 2  k B i j ;  k - -  3 i k 2 j  "t- (53) 

and 

r = = x / I x l  (54) 

Equation (50) reduces to the corresponding expres- 
sion for a time-harmonic force, given as Eqs. 
(1.64)-(1.68) in Ref. (9), by the substitution g ( t -  
r/c,) = exp[-  io~( t - r/%)], where ~o = k,%. 

Substitution on (50) in (47) yields in the far field 

uk(x,t ) 1 ~ 1B~fknjUp(t,R ) (55) 
4~rR ~= ,7- ~ 

where 

(56) 

For convenience we have taken the origin in the 
plane of the crack, R = Ixl, and g and x have been 
interchanged. 

Equation (55) would give the radiated field if the 
crack-opening displacement were known a priori. This 
is, however, not the case. In an actual scattering 
problem the crack-opening displacement is part of 
the solution being sought. It is, however, possible to 
obtain an approximate solution to the scattering 
problem by making a judicious a priori estimate of 
[ui]. A simple and useful estimate, which has validity 
at higher frequencies, is obtained by assuming that 
[ui] is the same as for an infinite flaw plane. This 
approximation ignores the effect of the crack edge on 
the crack-opening displacement. 

The value of [us] for an infinite flaw plane 
follows from the results of Section 3. Let the vector p~ 
be in the incident wave direction and ]p~[ =1/%. 
Then [u] = [u(t- p,. ~)]. We also define the vector q~ 
in the scattered wave direction by ~ = q~c~, and thus 
]q~l = 1 /% Then we may write 

- ( 5 7 )  
c,~ 

Now, consider the integral 

I = fj(a- ) (5S) 
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Let us define the new crack-plane coordinates ~, ~ by 

( n A ( a A n )  n A a  (59) 
~= ~-~ ~ ~] + T/InAal 

Thus 

a.~ = InA al~ (60) 

and 

I = fAf(InA al~5) d~dTl 

= f0 n n____~_a, dg (61) 
Af(a '~)  InAal2 

where OA is the edge of the crack. By identifying 
a = q¢ -p~,  we can then write (56) as 

U f l ( t , R ) = L A  u i t + ( q ¢ - p ~ ) . ~  

nA (q , - -p~)  
x InA(q,-P )} 2 (62) 

Note that the edge integral is taken in the counter- 
clockwise sense. 

Equation (62) has been derived for arbitrary 
angles of observation. Comparisons with exact solu- 
tions for analogous problems have, however, indi- 
cated that the approximation gives the best results in 
the shadow zones and in the zones of specular reflec- 
tion. In these zones we have either q ~ - p ~  = 0 or 
( q ~ - p ~ )  is normal to the plane of the crack, and 
hence (q~ -p~).~ vanishes. Substitution of this result 
in (57) and (56) yields 

UF(t ,R)=A[ i~ i ] ( t -R /c t~)  ~ (63) 

where A is the area of the crack face, and we have 
used the notation 

[ i t i ( t - R / c B ) ] = [ i t i l ( t - R / e # )  (64) 

Thus the discontinuity in the particle velocity across 
the crack faces, computed at the origin, radiates as a 
spherical wave. 

Let the crack lie in the plane y = 0. The crack 
normal n is then equal to i 2. If the incident wave 
motion is in the plane of x and y, then the scattered 
longitudinal and transverse fields in the specular and 

shadow directions are 

uL(x ,  t )  - A 4~rRcz ( -Y- ~ - 2sin20z [/t] 

u T ( x ,  t )  = - -  

+cos20r[0l}(t- R/ct) 

- A  
4 7rRcr (c°s20r[/~] 

(65) 

±sin2OT[O]}(t-- R/CT) d (66) 

u and o are the displacement components in the x 
and y directions, the notation defined by (64) has 
been used, and the displacement vectors for the re- 
flection and shadow fields (superscripts r and t, re- 
spectively) are given in Eqs. (14) and (15). 

It is of interest to compute the reflection and 
shadow fields when the crack faces are stress free 
(Oy = a~* x = 0). The reflected field of type/3 due to an 
incident wave of type a is found to be 

a " i  A c°SO~R~f2(t_ R/cB)d ~ (67) 
uB(x, t )  = 2~rR c¢ 

where R} are the reflection coefficients from a trac- 
tion free surface 

{ (C~T+CLLCrr)/D , f l = a  (68) 

The shadow fields are found to be zero when f l ¢  a, 
and when/3 = a they are 

A cosO~f2( t_R/%)dt  (69) 
u ~ ( x , t ) -  27rR c a 

Now consider the case when the crack faces do 
interact and transmit tractions. Let Uo fl'r and u off't, 
fl = L, T be the reflected and shadow fields for the 
stress-free crack, defined by Eqs. (67) and (69), re- 
spectively. The corresponding fields in the presence 
of tractions follow from Eqs. (65), (66), (35), and (36) 
a s  

L r 
u (x, t) = Uo' , + 

A cos 0 L 
2~rRpC2L D 

X { +_ R/cL)d£  (70) 



236 Achenbach and Norris 

A cos 0 T T r ur(x, t) = Uo '{, + 
2rrRoc2 D 

x { 

(71) 

where the notation Oy*(t - R / @ )  and o~x(t - R / @ )  
is analogous to (64). 

5. NUMERICAL RESULTS AND DISCUSSION 

In this Section we apply the general results of 
Sections 3 and 4 with the interface stresses Oy and oy* x 
as given in Section 2. In all the numerical examples 
we have taken the following values of the parameters 
in Eqs. (3)-(5) 

A = . 5 ,  T = . I # ,  C = # / A  

So = .3/x, a = 15//~, (72) 

where A and all subsequent displacements are nor- 
malized with respect to the maximum displacement 
of the incident pulse, which is of magnitude unity. A 
Poisson's ratio of 1 /3  is taken. The results for this 
choice of parameters illustrate the salient features of 
the model. Other parameters have been considered, 
but the corresponding results do not add much to the 
understanding of the problem, and they will not be 
discussed here. The shape of the incident profile f~ is 
the same in all examples, and is shown in Fig. 3(a). 

We first consider the pulse of finite duration 
incident upon an unbounded flaw plane. If the inci- 
dent pulse is of type a, a = L, T then the displace- 
ments u ÷,v ÷ and u ,v on the upper and lower 
faces follow from Section 3 as 

1 sin(20 r - 0L) 
u + = : : k ~ [ u ] - ( [ v ]  - k )  2cosOL 

+ (sin OLaL,, +cosOr,~r~)fd (73) 

1 sin(20 r - 0 L) 
v-+=+-g [vl+[u] 2 cos0T 

+ (cos OL3L, ~ -- s inOr3r~)f  ~ (74) 

The displacements v -+ and u -+ are shown in Figs. 
3(b) and 3(c) for normally incident L and T waves, 

#L 

- 2  

/ - \  (b) 
~ v ~ 

0 

- -1  

(c) 

Fig. 3. (a) Profile of the incident pulse. (b) Displacements v + and 
v -  for an L-wave normally incident on the flaw plane. The dashed 
line is v -  in the absence of flaw-plane tractions. (c) Displacements 
u + and u - for a normally incident T-wave. The circles indicate the 
regions of frictional sliding, and the short-dashed line represents 
u - for a traction-free plane. 

respectively. We have also plotted the displacements 
u -  and v-  for the stress free interface defined by 
Oy* = Oy* = 0. Figure 3(b) shows that o-  is the same as 
for a stress-free interface until the two faces become 
very close together. The resistance to closing then 
becomes very large, causing the upper face to lift. 
When the pulse has passed through, and the lower 
face recedes, the large pressure on the two faces 
changes to a small tension which slowly brings the 
two faces back to their equilibrium positions. The 
decay rate in our example is exceedingly slow, leaving 
the flaw plane open for a long time after the passage 
of the pulse. In Fig. 3(c) we note how the shear stress 
in the flaw plane causes the upper face to move in 
phase with the lower one, though the magnitude of 
u ÷ is much smaller. The transfer of energy leaves u -  
slightly smaller than the stress-free u- .  The times at 
which the flaw-plane sliding is in the frictional regime 
(see Eq. (6)) are indicated by the circles on the u + 
curve. 

For the same pulse profile, the displacements 
due to T waves incident at + 20 ° are plotted in Fig. 
4. For an angle of incidence of + 20 ° the pulse causes 
the gap to open while it closes for - 20 °. In Fig. 4(d) 
we see how the flaw-plane closure affects the shear 
stress. As the faces close, the resistance to sliding is 
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Fig. 4. Vertical  (a) and horizontal (b) displacements on the flaw 
plane for a T-wave incident at 20 °, (c) and  (d) are for T-wave 
incidence at - 20 °. 
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tract ion-free  plane.  (c) Transmit ted  L and  T-waves.  

governed mainly by Eq. (4), causing the upper face to 
move significantly. When the faces open, the critical 
stress S of Eq. (5) is decreased, allowing frictional 
sliding to take place. The net effect after the pulse 
has passed through is to leave the faces horizontally 
displaced relative to one another. 

Figure 5 shows the reflected and transmitted 
fields for the T wave incident at - 20 °. The stress-flee 
results are shown for comparison. We note that there 
are no transmitted waves for the stress-free interface. 

The reflected and transmitted waves are shown 
in Fig. 6 for an L wave incident at 20 °. The step-like 
transmitted L wave of Fig. 6(c) is particularly inter- 
esting. 

We now consider the incidence of pulses on flaw 
planes of finite area (cracks). We shall only be inter- 
ested in the specularly reflected and transmitted fields, 
therefore the results of Eqs. (65) and (66) are applica- 
ble. In all the examples, the quantities plotted are for 
fl=L,T. 

U ~  -= R u / ~ ' d ~  (75) 
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where the various quantities on the right-hand side of 
Eq. (75) are defined in Section 4. Thus, U~ and U~ 
are independent of the crack size and shape and of 
the observation distance R. 

Normal incidence of L and T waves is consid- 
ered in Fig. 7. In both cases there are no mode 
conversions and the reflected and transmitted fields 
are identical. The fields produced by a stress-free 
crack are shown for comparison. The results are 
basically proportional to the time derivatives of the 
displacement discontinuities across the infinite flaw 
plane. It is useful to compare Fig. 7 with Fig. 3. In 
particular, the step-like jump in Fig. 7(a) is related to 
the rapid closure of the interface gap. It is noted that 
the tension part of the reflected pulse is affected by 
crack closure, while the compressive part is not. 

The reflected and transmitted fields for L inci- 
dence at 20 ° are shown in Fig. 8. A novel feature, in 
comparison with the stress-free crack, is the ap- 
pearance of a transmitted or "shadow" mode-con- 
verted T wave. These results should be compared 
with those of Fig. 6. 

Shear-wave incidence also produces a mode-con- 
verted transmitted L wave, as is shown in Fig. 9 for T 
wave incidence at - 2 0  °. The induced crack closure 
also affects the reflected and transmitted T waves 
significantly. Similar computations for T incidence at 
20 ° show little difference from the stress-free results, 
as expected from Fig. 5. 

In summary, crack closure and the resistance to 
relative sliding of the crack faces have been modeled 
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Fig. 7. Specularly reflected far-field amplitudes for normally inci- 
dent L (a), and T-waves (b), on a crack. The results for the 
traction-free crack are indicated by the dashed lines. 
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transmitted (b) L-wave amplitudes. Reflected (c) and transmitted 
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Fig. 9. Same as Fig. 8, except for a T-wave incident at - 20 °. 
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to investigate the influence of crack-face interaction 
on the scattered fields. Approximate results for the 
scattered fields in the zones of specular reflection and 
specular transmission show that crack-face interac- 
tion can be a significant effect. As might be expected 
the effect on the scattered fields is particularly 
noticeable if the incident pulse creates a significant 
interface pressure across the crack faces. This will 
happen for incident pressure pulses, but also for 
incident transverse waves when the displacement 
component normal to the crack, points towards the 
crack faces. The latter case was illustrated by consid- 
ering a T-wave incident under an angle of incidence 
of - 2 0  °. When crack-face interaction is initiated by 
the incident pulse, part of the pulse is transmitted 
across the crack faces, and the reflected signal is 
correspondingly reduced. For non-interacting crack 
faces (zero crack-face tractions) the reflected dis- 
placement signal is proportional to the derivative of 
the incident pulse in the present approximation. For 
a compressive incident pulse the tension part of the 
reflected pulse may be significantly affected by 
crack-face interaction, while the compressive part will 
not be. 
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