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Two methods are proposed for the mapping of cracklike flaws in homogeneous, 
isotropic, elastic media. The methods require as input data the travel times of 
diffracted ultrasonic signals. The first method maps points on the crack edge by a 
process of triangulation with the source and receiver as given corner points of the 
triangle. By the use of travel times for neighboring positions of the source and/or the 
receiver, the direction of signal propagation, which is the necessary eonstitutent 
required to complete the triangle, can be computed. The inverse mapping is global in 
the sense that no a priori knowledge of the location of the crack is required, The 
second method is a local edge mapping which determines sets of planes relative to a 
known point close to the crack edge. Each plane contains a flash point. The 
intersection of the envelopes of two sets of planes maps an approximation to the crack 
edge. 

PACS numbers: 43.20.Fn, 43.35.Zc, 43.20.Bi, 43.20.Dk 

INTRODUCTION 

The field generated by scattering of ultrasonic waves by 
a flaw contains a substantial amount of information on the 
flaw's location, its size and shape. The extraction of this 
information requires the solution to an inverse problem. 

Inverse scattering theories may be divided into two gen- 
eral categories, which use data in the time and frequency 
domains, respectively. If the inhomogeneity is expected to be 
a 'smooth convex cavity, then the physical optics inverse 
scattering theory (see Bojarski I and Lewis 2} may be a suitable 
approach. This is a frequency-domain theory based on a 
Kirchhoff approximation to the solution of the direct prob- 
lem. The input data is the observed backscattered field. Bo- 
jarski showed that the backscattered field is directly related 
to the characteristic function of the cavity. This function is 
defined as unity inside the cavity and zero outside. Boernet 3 
has noted the connection between this method and the use of 
Radon transforms or projection mapping methods. 

A variation of the Bojarski theory in which the function 
to be mapped is singular on the surface of the scatterer and 
zero elsewhere was proposed by Cohen and Bleistein. n Such 
a theory is suitable for inverting crack-scattered data, since 
the volume of a crack is zero but its surface area is not. Hence 

the characteristic function has zero support, while the singu- 
lar surface function is singular over the entire crack face. If 
the crack is flat, then it is completely defined by the crack 
edge. This fact was utilized by Achenbach et al., 5 to develop 
an inversion scheme which maps the crack edge. Also in the 
area of crack characterization, Teitel 6 has shown how the 
low-frequency scattered field can be used to determine all 
the relevant parameters for a flat elliptical crack. However, 
Teitel's low-frequency method requires the measurement of 
the exact amplitude of the scattered wave. In practice the 
measured amplitude may, however, be quite different from 
the theoretical one, due to effects of coupling of the trans- 
ducer to the material and dissipation within the material. 

The methods proposed in the present paper are based 
on arrival times. They do not require knowledge of the abso- 
lute amplitude of the scattered signal. In homogeneous elas- 
tic materials the travel time of a signal from one transducer 
to another can be measured quite accurately. The first re- 
ceived scattered signal satisfies Fermat's Principle of least 
time. It is well known that such a signal describes a geodesic 
curve or stationary ray path. The point on the scatterer from 
which the scattered signal emanates is called the flash point. 
If the shape and location of the scatterer are known, then the 
position of the flash point can be computed by the laws of 
geometrical optics. In general, for every stationary ray path 
there is an associated flash point on the scatterer. The meth- 
ods of this paper use travel times to map the locations of the 
flash points. 

For the host material we consider a homogeneous, iso- 
tropic, linearly elastic solid. For materials which display sig- 
nificant inhomogeneity and/or anisotropy, and hence sig- 
nificant wave velocity variations, the present methods 
cannot be expected to yield accurate results. In principle 
such effects can be taken into account, but the necessary 
computations become rather difficult. The flaw is assumed 
to be a crack with a well-defined edge. Except in the domain 
of specular reflection, the first signals arriving via the crack 
are produced by diffraction at flash points on the edge of the 
crack. For the direct problem the positions of the flash points 
follow from Snell's law of edge diffraction, which is defined 
within the context of the geometrical theory of diffraction 
for elastodynamics, as discussed by Achenbach and Gante- 
sen. ? In the inverse problem flash points on the crack edge 
are determined from the arrival times of observed signals. 

Two methods are proposed in this paper. In the first 
method, which is a global triangulation method, the source 
and the receiver are given corner points of the triangle, and 
we compute the flash point as the third comer point. The 
triangle may be completed if the direction of the stationary 
ray path is known at either the source or the receiver. This 

264 J. Acoust. Soc. Am. 72(1), July 1982 0001-4966/82/070264-09500.80 (•) 1982 Acoustical Society of America 264 



direction can be computed by measuring the spatial gradient 
of the travel time. The crack edge may be mapped by locat- 
ing a sufficient number of flash points. 

The second method is a local mapping technique. It is 
local in the sense that a base point near the crack must be 
known a priori. This base point can be determined by the 
global triangulation method. The travel times corresponding 
to several different source-receiver pairs form surfaces on 
whose intersection the flash points must be located. To a first 
approximation, the surfaces can be replaced by planes, 
whose intersection is easily computed. By iteration, the solu- 
tion converges to a section of the crack edge. Numerical tests 
of the method have been carried out by the use of synthetic 
data. 

It is assumed that the travel times for all relevant sta- 

tionary ray paths can be measured. This may not be possible 
for some diffracted signals, whose arrival times may be too 
close to that of preceding signals. In this ease the relevant 
arrival time may be inferred from measurement of the spac- 
ing of peaks in the high-frequency interference spectrum. 
For more details, the reader is referred to Achenbach and 

Norris. a Finally, we note that throughout the paper the 
source and the receiver have been assumed separated, i.e., 
the measurement method is pitch-catch. The analysis can 
easily be modified to accommodate pulse-echo data. 

I. GLOBAL TRIANGULATION 

If an observed signal is known to emanate from a flash 
point, then the inverse problem of mapping the scatterer 
may be viewed as a problem of triangulation, i.e., completing 
the triangle with comer points at the source, the receiver, 
and the flash point. The positions of the source and the re- 
ceiver and the time delay between emission and reception of 
the diffracted signal are known. In the following it is shown 
that knowledge of the signal propagation direction at either 
the source or the receiver is generally sufficient to complete 
the triangle. 

A. Parametric dependence of the flash point 

In, a homogeneous, isotropic, linearly elastic medium 
there are two wave speeds CL and cr corresponding to longi- 
tudinal and transverse waves, respectively. Ifp is the density 
and A, p are the Lam6 elastic constants, then 

cL = [½ + cT = (1) 
The slownesses s L andsr are the inverses of the wave speeds. 

At the receiver, four different signals may be observed, 
corresponding to the different types of the emitted and re- 
ceived waves. Let To be the time delay for a signal of emitted 
type at, a = L, Tand received type 13,13 = L,T. Ifx s and x a 
represent the position vectors of the source and receiver, re- 
spectively, then the surface E• on which the flash point lies 
may be described as 

E• ----- [x•;s•lx • --Xsl +st•lx • --xe[ = To[- (2) 
For any point x• on E•a, we define the unit vectors p and q 
and the distances rs and r e as 

xo• = Xs + rsp = x e + req. (3) 

Also, we define the vector X from the source to the receiver 

X = x e - xs. (4) 
Thus the unit vector from the source in the direction of the 

receiver is • = •/X, where X = tXl. The dependence of the 
distances rs and r e on p and q follows from the definition of 
the surface E•. We have, for example, that 

rs = f•(P'-•'), 15) 
where 

r(s•- 2T[ -- X 2)/2(s• - 'r o - x• ), ct =13, 
= 14x- re ñ [(4X-sro) 2 + 

[ 
(6) 

The ambiguity with the ñ in the definition off•a(•), 
is taken care of as follows: If T o > srX , then only the plus sign 
is taken. However, if at = L and T o < srX , the distance r s 
becomes a double valued function of the unit vector p. In 
other words the source is not contained within ELf if 
T o < srX. When this happens, either sign is admissible for 

Ihe distance r e from the receiver to the flash point is 
re =f• ( -- q'•}- 17) 

When a = 13, the surface E• is simply a spheroid with foci at 
the source and receiver. The major axis length is s•- ' To and 
the eccentricity is soX/To. Some examples of the surface 
E•a, a•13, are presented in Fig. 1. 

We note that p and q are not independent but are related 
by the identity 

rsP -- req = X. (8 I 
The explicit dependence is 

FIG. I. Sections of the surfaces E•r in a plane containing the source $ and 
receiver Q. Dimensionless travel times are Tocr/X = 1.2(0.2)3. Poisson's 
ratio is I/3. 
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q = g•(p-•)[/•,•(p-•{)p-• -- X ] -' IX --/•(p,•)p ]. (9) 

The unit vector p follows as a function of q by replacing 
• -- q and a•. Here &,•) is the root of 

f• [go• )]go• } +fo• }• -- X = 0. {10} 
This equation may be solved to give 

g•} = «(n -- X)I•Xh -- ro•} -' 
X{s•To+&,[To: +{• --•}Xh ]'t:l, {11} 

where 

When a =/?, the expression for g•{• } simplifies somewhat, 
and the resulting form of Eq. {9} is 

q = (T• +•X: -- 2s• Top. X)-' 
X [{To: -- •X:)p -- 2s•{To -- s•p-X)X]. {13) 

B. Determination of the ray direction 

In order to complete the triangulation scheme, we re- 
quire knowledge of either of the ray directions p or q. Con- 
sider the unit vector p, which is the direction of the ray leav- 
ing the source. In the Appendix it is shown how the spatial 
gradient of the travel time for a stationary ray is related to 
the ray direction at the source. This relation is a direction 
consequence of a generalized form of Fermat's Principle that 
includes stationary as well as minimum ray paths. From Eq. 
(A13} in the Appendix, we have for the homogeneous iso- 
tropic elastic material that 

p= -- c• Vsr o, (14) 

where V s T o is the gradient of the travel time with respect to 
the source position x s. Similarly 

q= --c•VoT o, (15) 
where V• To is the gradient of To with respect to the receiver 
position xo. 

Experimentally, one could estimate the vector 
Vs To(Vo To) by shifting the source (receiver) successively in 
three linearly independent directions and measuring the 
time delay for each new position. For example, let the source 
be moved successively to the three new positions xs + hey, 
j = 1,2,3, where h is some small distance and ey,j = 1,2,3, are 
three linearly independent unit vectors. Denoting by Toy, 
j = 1,2,3, the measured value of the travel time for each new 
source position, we have by finite differences that 

c• VsTo = ¾, (161 

yy = %(To• -- To)/h -aye, j= 1,2,3 (17) 
and the computational error lAY] is of order h times the 
Laplacian % V•T o. By choosing different finite difference 
procedures, the computational error in the gradient of To 
can be made of order h: or less. Later wc analyze the effect of 
errors, both computational and experimental, on the inver- 
sion result. 

In practice, one is interested in locating a defect inside 
an elastic body. The source and receiver are transducers, 

which are positioned on the surface of the body and must 
remain directly coupled to the surface. Therefore the source 
(receiver) position has only two degrees of freedom. Consider 
the source at x s. Locally it may be moved in the tangent 
plane to the surface. Let e• and ea be two orthogonal unit 
vectors in this plane. Then by shifting the source successively 
in the directions e• and e:, and forming finite differences as in 
Eq. {17}, we may compute approximately the quantities c a ey 
'Vs To,j = 1,2. Let us assume for the moment that the errors 
are zero. Then, from F_q. {14) we have the components of the 
unit vector p in the e• and e: directions. It remains to deter- 
mine the component of p into the body. Since IPl = 1, it 
follows that this component is equal to [1 -- (p.el) • 
-- (p.e:):] •t:. Similarly, we could determine the vector q by 
shifting the receiver in two orthogonal directions tangential 
to the surface and using Eq. (15}. 

Now suppose that we shift both source and receiver, but 
only in one direction for each. Let es and eo be unit tangent 
vectors to the surface at the source and receiver, respective- 
ly. Assuming no errors, computational or experimental, we 
can obtain the quantities y and % where 

Y:c•,es.•sTo, (15) 

?/= c•%.Vo To. (19} 
Our problem now reduces to finding p from the three 

equations 

p-es + Y = 0, {20} 

q-% + ?/= O, (21) 
and 

IPl---- 1. (22) 

From Eq. (9), we have q = q(p). This relation, in combination 
with Eq. (10}, can be used to rewrite Eq. (21} as the equation 
for a surface in p space. This surface is 

f•(p.J'}o.e o -- X-e o •- r/fo• [go•(p.•/)] = 0, (23) 
where f• and g• were defined in Eqs. (6) and (11). This 
surface will intersect the plane defined by Eq. {20) along 
some curve and this curve will in general intersect the unit 
sphere of Eq. (22) at two points, p+ and p-. When a = fi, the 
surface (23) simplifies to the plane 

p-eS + :9' = 0, (24} 
where 

e• = % + 2(R z _ X:)-•(%-X --R?/)X 
ß = {R • - x•i%.v• [X/(n • -X•}l. (25) 

•/' = •/+ 2(R 2 _ X2)- ](;/X2 _ Reo.X) 
= (R 2 __ X 2)ee.Ve [ _ R/(R 2 __ X2)], (26) 

and R = c,•To. Thus, for a =/•, the two points p+ and p- 
may be found in closed form as the points of intersection of 
the two planes (20) and (24} with the unit sphere. The neces- 
sary condition for finding the points of intersection is that 
the planes (20) and (24) are not parallel, i.e., that 

le• ̂ eS1 >0. {27) 
When a •,8, the points of intersection of the three sur- 

faces (20), {22), and (23) must be found by solving an algebraic 
equation. 
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The dilemma of choosing the vector p from the pair p+ 
and p- can usually be resolved quite simply. For example, if 
a =/• and es, e o, and X are all coplanar, then the only differ- 
ence in p+ and p- is in their components normal to this 
plane, i.e., only one of them is directed into the solid. How- 
ever, if the source and receiver are on opposite sides of a slab 
with parallel sides, such that es and e o are parallel to one 
another but perpendicular to X, then extra information is 
required to choose between p+ and p-. 

In summary, we have three alternative methods of de- 
termining the unit vector p {or equivalenfiy q}. The first 
method Ill consists of shifting the source transducer in two 
directions tangential to the body surface, and forming direc- 
tional derivatives of the travel time to the fixed receiver. In 

the second method Ill), the roles of the source and receiver 
are reversed, i.e., the latter is shifted while the former is not. 

In the third method (III}, both source and receiver are shift- 
ed, but each in only one direction. If the received signal is 
mode converted, and in addition To > srX, then only one of 
methods I and II will produce a unique flash point. The 
correct method is the one in which the endpoint correspond- 
ing to the faster wave speed is kept fixed; for example, if 
a = L and/? = T, then it is method II. 

C. Error analysis 

In practice the inversion result will be incorrect due to 
experimental and computational errors. The former are the 
inevitable result of inaccurate measurements of such quanti- 
ties as the source position, the delay time of the first arriving 
signal, etc. It is assumed that errors due to inhomogeneity of 
the host m.aterial and variations of the wave speed along the 
ray path are negligible. Often this may not be the case, which 
may lead to errors on the order of magnitude of the size of the 
scatterer. We define the computational errors as those in- 
curred in using the finite difference approximation to the 
gradients. For the moment we consider all errors together 
and find the resultant error in the flash point position. 

We consider the inversion using method I for arbitrary 
type of the emitted and received waves. Without loss of gen- 
erality we may assume that the source is shifted in two ortho- 
gonal directions, specified by the unit, vectors el and e2. De- 
fine the dimensionless numbers y• and ?'2 to be the actual 
values of the directional der(yates of the travel time, i.e.• 

• =c•efVsTo, j= 1,2. (28) 
Let y• + Ay/be the corresponding values computed from 
the experimental data. Thus Ay• incorporates both experi- 
mental and computational errors. We assume that the major 
source of error in the flash point position is attributable to 
the errors Aye. IfAy is small, where 

ny = [(Ay,): + (A/2}2]1/2 , (29) 
then a linear error analysis produces bounds on the error 
IAxo• [ in the position of the flash point. These bounds are as 
follows: 

rsAy< ]Axil < MrsAy, (30) 
where 

M 2 = [1 + {st•X/sar•}2]/(1 -- f) (31) 

and 

y• = • + •. (32) 
In order to derive this result, we consider the error in- 

duced in the computed value of the unit vector p, which 
points in the direction of the flash point. We have that 
p = p + or p- where 

The error in the calculated value of p is A p = A p + or A p-, 
where 

Ap + = _ Ay•e• -- LIy:e2 

Thus the absolute magnitude of Ap is 

Ap: [(1 -- 2 + (1 -- •}(Ar2)2 ] '/2(1 -- f)-IJ2, 
(35} 

from which it follows that 

ar<ap<(l -- f)-I/2ay. (36} 
The error in p induces a resultant error in the estimated flash 
point position, which follows from Eq. {3} as 

Ax• = rsA p + (Ap. Vprs) p. (37) 
The gradient off s with respect to p may be calculated from 
the quadratic equation 

d{4 --•}- 2rs{s•ro --s•p.X} + T• --•X: =0. 
(38) 

Differentiation of this equation with respect to p produces 
Vpr s, which when inserted in Eq. {37} gives 

AXaB = [(Sar Q + s•rs}Ap 
+ s•X ̂  Io ̂ AH] r•/{s•ra + s#rs - s•o.X}. 

(39) 

Since p is a unit vector, it follows that p.Ap = 0 to first order, 
i.e., p and Ap are perpendicular. Hence by Eq. 

Iax.. I = rs [(Ap) 2 + (saX'Ap)2/(s, ro 
_•_ $Or$ -- s/5, p.X)2] l/2. 

NOW, 

s•r• + sars -soo. X = ro{sa + s#p.q}>s•r e, 
because by definition, p.q must be positive. Therefore we 
obtain the following bounds for the flash point error: 

rsAp<lax•o I <rs[l + (soX/s•ro)2]l12Ap. (41) 
Combining this with Eq. (36) we arrive at the result (30). 

For example, if a difference scheme like the one de- 
scribed in Eq. (17} is used to compute y• and Y2, then the 
computational error is 

A y = 0 (he,, V• To). (42) 
The Laplacian of the travel time follows quite simply from 
Eq. {14) as 

% V2To = -- Vs-p. (43) 
The divergence of p with respect to the source position may 
be obtained as follows: Consider the reverse signal which is 
emitted from the point xo as a wave of type/•, scatters from 
the flash point xa0, and is observed at the point x s as a wave 
of type or. The travel time for this signal is To, and its depen- 
dence on the location of Xs is the same as that of the 
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signal. The reverse scattered signal propagates as a wave 
front which passes x s at time To after emission at x o. Letps • 
andps 2 be the principal radii of curvature of the wave front 
surface as it passes Xs, defined so as to be negative if the 
center of curvature is in the direction of propagation of the 
wave front. Thus the vector p is the unit normal to the wave 
front surface, pointed in the direction of positive curvature. 
By resolving the gradient operator Vs into three components 
along p and along the principal lines of curvature we deduce 
that 

-- Vs'P = P•-, ] + P• 1. (44} 
From Eqs. (30), 142)-(44), we have for the first-order differ- 
ence scheme, that 

lax•l ---- O (Mhrs/Ps), (45) 
where p• = Min (p•] , P•s2). 

Consider the special case in which the flash point lies on 
a smooth edge. This occurs, for example, if the scattering 
object is a flat crack, with a smooth edge. The observed. sig- 
nal is diffracted from the edge and the flash point may be 
predicted by the geometrical theory of diffraction (GTD). A 
description of GTD for problems of elastodynamie diffrac- 
tion by cracks is given by Achenbach and Gautesen. 7 As far 
as the radii of curvature of the diffracted signal are con- 
cerned, it is immaterial whether the edge is that of a crack or 
of a wedgelike inclusion. Whatever the local geometry of the 
edge at the flash point, the principal radii Psi and Ps2 are 

Ps, = rs, Ps2 = rs +•j, (46) 
where •j is the signed distance from the flash point to the 
caustic. The general form of •j for an arbitrary incident 
wave front is given by Gautesen et al. ø In our case, the inci-' 
dent wave front is spherical, with center at x o. We find that 

•j = c s sin 2 • [n.(cap + c•q}/a + % sin 2 q•a/ro] -'. 
(47) 

The angles •6• and •b a are the angles between the direction 
vectors p and q and the tangent to the edge, respectively. The 
unit vector n is directed from the flash point towards the 
center of curvature of the edge, and a is the corresponding 
radius of curvature. Snell's law for diffraction is 

% sin •a = cs sin •b•,. (48) 
If n.• + (c•/c a)q] = o(1 ), the diffracted ray is near either the 
shadow or reflection boundary. We assume, as is generally 
the case, that the signal is in the zone of pure diffraction. In 
this case, the above quantity is of order unity. If, in addition, 
the radius of curvature of the edge is small as compared with 
the distances rs and r o, then by Eq. 147), 

•j = O {a), {49) 
and by Eq. (46), 

= + (50} 

Therefore, from Eqs. (45}, {46), and (50}, we have 

This states that the flash point error is proportional to the 
transducer shift h if the simplest difference scheme is adopt- 
ed. The same result could also be shown for methods II and 
III of above. 

The minimum number of shifts required in order to 
proceed with the inversion is two, whether the method used 
is I, II, or III. This corresponds to taking three measure- 
ments of the travel time. The only possible difference scheme 
is the one described in Eq. (17), and the resultant error in the 
flash point position is of order h. However, if one more shift 
is performed, then a difference scheme can be used which 
ensures that the error is of order O (h 2). Thus one more mea- 
surement increases the computational accuracy dramatical- 
ly. To see this, we consider an example using method III and 
synthetic data. 

D. Inversion of synthetic data 

We present an example of inversion of synthetic crack- 
scattering data. The travel times are calculated exactly and 
the only errors come from the size of the transducer shifts 
and the finite difference scheme used. Only the first received 
diffracted signals are considered. Both the incident and dif- 
fracted waves are longitudinal, i.e., at =/• = L. Method III 
of above is used, and two difference schemes are compared 
for accuracy. 

Consider a flat crack with a smooth circular edge. Let 
the radius of the crack be unity, and define a rectangular 
coordinate system {x,y,z) with origin at the center of the cir- 
cle and the z axis normal to the crack. Two transducers, our 

source and receiver, are located at the points Xs = 15,10,7) 
and xa = 110,5,7), respectively. The exact position of the 
flash point for the first received signal is at I1/V•,I/v•,O), 
and the travel time may be calculated easily. The source is 
then shifted in the direction ofthe vector U = (1,1, -- 2)/v/• 
by an amount h. The travel time for the first diffracted signal 
is again calculated. We note that the flash point position will 
be slightly different. Now the receiver is shifted in the same 
direction by the same amount and the travel time is calculat- 
ed. These three travel times provide sufficient information 
with which to form gradients according to Eq. {17), and then 
use method IlI to invert to find the flash point. For h = 0.1, 
0.5, 1, and 2, the results of the inversion and its accuracy are 
given in Table I. We observe the expected linear error 
growth with h, in agreement with Eq. (51 ). Also, we note that 
the calculations do not involve Poisson's ratio explicitly, 
since the travel time and the longitudinal wave speed occur 
only in the combination c• To, which is equal to the ray path 
length. The other data in Table I result from shifting the 
source back to its original position and calculating the travel 
time once more. This additional information allows us to 

take the actual source and receiver positions at x s + Ih/2)U 
and x• + (h/2)U, respectively. The gradients are now com- 
puted by a centered difference scheme, and are correct to 
order h •. The error in the position of the computed flash 
point is seen from Table I to be also of order h 2. In fact it is 
very small, even for shifts as large as the dimension of the 
crack. 

In summary, two transducer shifts provide the mini- 
mum information necessary for inversion, and the error in 
the calculated position is linear. However, one more shift 
produces much greater computational accuracy. Two shifts 
imply three travel time measurements, while three shifts im- 
ply four such measurements. 

268 J. Acoust. Soc. Am., Vol. 72, No. 1, July 1982 A.N. Norris and J. D. Achenbach: Mapping of a crack edge 268 



II. LOCAL CRACK-EDGE MAPPING 

The methods discussed above are useful for identifying 
single points on a scatterer. In order to determine the size 
and shape of the scatterer, we would have to repeat the inver- 
sion procedure a number of times. Each inversion produces 
one point, the flash point, so that eventually we would hope 
to have enough points to characterize the scatterer. In the 
present section we discuss an alternate method of mapping 
the scatterer. This method is again based on transit times 
from source to receiver via a flash point. However, instead of 
using single transit times to produce single flash points, we 
now use a set of transit times to simultaneously produce a set 
of flash points. Essentially, the method is an iterative proce- 
dure based on Newton's method of approximation. To start 
with, we assume that a point x o near the scatterer is known. 
It may have been determined by the global triangulation 
method. Then, the surface E• on which the flash points lie 
may be approximated by their tangent planes near Xo. For a 
crack the intersections of the tangent planes give a polygon 
which approximates the curve of flash points. The procedure 
may then be repeated by reehoosing x o, so that a convergent 
iteration ensues. In what follows, we assume that the scat- 
terer is a flat crack with a smooth edge, although it may be 
seen that the method would also work for convex voids or 

inclusions. 

A. Tangent plane approximation 

We have, as before, a source S at x s and a receiver Q at 
x e. The travel time T O for the diffracted signals of type (af) 
is assumed known. Then the flash point x• o lies on the sur- 
face E• defined by Eq. (2). The unit vectors p and q and the 
distances r s and r e are defined in Eq. (3}. Define the new 
distance R as 

R = •c• rs + ,c•, r e, (•2) 
where % = ct./c,, ct = L,T. With respect to an arbitrary 
point x o, we define the unit vectors Po and qo, and the dis- 
tances rso, reo, arid R o as follows: 

xo = Xs + rsoPo = xe + reo(lo, (53) 
Ro = •C, rso + •ct•reo. (54) 

Now, for all 
x -- xo = rsp -- rsoPo. 

Taking the dot product of this with Po we obtain 

(x -- xo).po = r s -- rso + rs(p.po -- 1}. (56) 

Doing the same thing in terms of r o, q etc., wc deduce that 

(x -- xo)-(•c 

where the distance,• is 

A = •C•rs(1 -- P'Po)+ •core(l -- q'qo} > 0. (58) 
For any xe_E•e, define the distan• d • 

d = I x -- •1- (•9) 
From the •sine rule for the t6angle xs, •, and x, we have 

Hens, 

1 -- P'Po = [ a2 -- (rs -- rso)2]/(2rsrso) ß (61) 
Si•il•ly we can calculate tha quantity 1 - q*qo, and com- 
bine the r•ults to get 

•r•o [U= -- (r• -- r•o) =] + ;• [•= -- (ro -- r•o) •] 
1 (• +•a)dZ. (62) • • rso 

Consider a segment of the su•ace E•a,.say F•, and define 
the positive number 6g • 

• = [0c•reo + •coreo)/(2rsoreoRo) ] sup(d2). (63} 

For a given source and receiver, the numar 6r de•nds on 
the arbitra• •int • and the segment F•. From •s. 
(62}, and (63} it follows t•t the •gment F•a lies betw•n the 
two planes: 

(x -- •}'(• Po + •oqo} -- (R -- Ro) = 0 (•) 
and 

(x -- •)'(•Po + •aqo) -- (R -- no) = - R•. (651 

Obviously, in the limit as •, the segment F• •omes a 
segment of the first plane. However, 3• can equal zero only if 
Fo = {Xo}. IfF• is taken as some part of E•a which in- 
dudes the flash point, then 5• > 0. Also, if the dimensions of 
F,a •e small •mpared to the dist•c• rs and to, and in 
addition, • is near the flash •int, then • will be much 
smaller than unity. Therefore we may approximate the sur- 
face E,• near the flash •int by the plane (•). 

B. Example: Elliptical crack 

For the remainder of this section, we consider the inver- 
sion of crack-scattering data. In order to demonstrate the 
local edge mapping, we consider the following situation: A 
fiat crack with a smooth convex cdgc is located within a 
body. There are n source positions Si, i = l,n, and m observ- 
er positions Q•, j = 1,m. For each source observer pair (S•, 
Q•) there are four pairs of associated travel times, corre- 
sponding to the four types of diffraction processes. Wc note 

TABLE I. Computed flash point and errors. The error is the distance from the exact flash point (0.707, 0.707, 0). 

Two shifts 

h Computed point Error Computed point 
Three shifts 

Errol' 

O. I (0.728, 0.728, -- 0.405) 0.050 (0.707, 0.707, O.OOO) 
0.5 (0.810, 0.810, -- 0.204) 0.250 (0.709, 0.702, -- 0.go2) 
1.0 (0.909, 0.909, -- 0.410} 0.500 (0.715, 0.688, -- 0.006) 
2.0 (1.01, 1.01, -- 0.832) 1.000 (0.738, 0.629, -- 0.024} 

0.000 
0.OO5 

0.022 

0.088 
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that the sources and receivers may be identical, correspond- 
ing to pulse-echo measurements. Suppose that an initial 
point x o has been determined by the method of triangulation, 
or some other a priori procedure. Our starting point for the 
local edge mapping is to assume that the flash points lie on 
planes specified by Eq. (64). Then all of the planes considered 
pass very close to the crack edge; in fact they envelope a 
curve which is an approximation to a segment of the crack 
edge. The inversion thus reduces to finding the congruence 
of all planes. If we had an infinite number of sources and 
receivers located arbitrarily on a sphere of very large radius 
with the crack at the center, then the congruence would be a 
smooth closed curve. Since our data is finite, we will obtain a 
polygon of points which approximate a segment of the crack 
edge. 

If the geometry of the problem is two dimensional, then 
the crack is completely specified by the two flash points at 
either end of the crack. The planes become lines and the edge 
mapping reduces to finding the intersection of the lines. We 
refer the reader to Reft 5 for a complete discussion of the 
two-dimensional problem. 

Let us consider the general three-dimensional problem 
of constructing the crack edge. For simplicity we consider 
the following example. We take as our crack edge the ellipse 

x 2+4y 2--1=0, z=0. (66) 

There are two sources and 20 receivers situated on the plane 
z = 10. The two sources Si, i = 1,2 are at 

S,: (-- lO, lO, lO), S2: (-- 5,10,10), 

while the 20 receivers are at 

Qi: (5,15,10)+ (j/2)(1, -- 1,0), j= 1,20. 
Our first task will be to determine the plane of the crack 
approximately. Having found the crack plane, the crack 
edge is obtained as the polygon formed by the intersection of 
the crack plane and the planes of Eq. {64). For a given type of 
received signal (L or T) there are two sets of 40 planes corre- 
sponding to the first and second arriving signals. Let J• (i, 
i = 1,2, j = 1,20 be such a set of planes. The plane of the 
crack may be found as follows: Consider the intersection of 
the planes J2 (l•/),j = 1,20 with any one of the planes/2 (2,j), 
j = 1,20. The locus of intersection is a polygon, which we 
denote by F (2,k), where 12 (2,k) is the plane which intersects 
the 20 planes corresponding to source S•. To obtain points 
which approximate the flash points, we test to see if any of 
the planes 12 ( 2, j),j-• k intersect the polygon F ( 2, k ). For such 
a point of intersection to exist, the flash point of 12 (2,j) at 
j = k must be interspersed with the flash points of 12 (2,j), 
j = 1,20,j-• k. We also require that the segment of the crack 
edge containing the flash points of 12 (1,j),j = 1,20 has a sec- 
tion in common with the segment for the planes J2 (2,j), 
j = 1,20. Such is the case for our configuration of sources 
and receivers. 

We require at least three points in order to specify the 
plane of the crack. Once this has been achieved, the remain- 
ing approximate flash points are easily determined as being 
on the polygon formed by the set of planes 12 (i,j), i = 1,2, 
j = 1,20 and the crack plane. 

.25 

Z 

0 

.75 

{b) 

- .S .0 x .S i .0 

FIG. 2. Comparison of computed edge points and actual crack edge (solid 
line}. Base point x o = {0.5,1,0.5}. Using L-L travel times (zl), L-T travel 
times ((•)). (a) Projection on plane y = 0, and lb} projection on plane z = 0. 

In Figs. 2 and 3 are plotted approximate flash points for 
two different values of the initial point x o. In Fig. 2 we have 
x o = (0.5,1,0.5) while in Fig. 3, x o = (1,2,1). Only the first 
arriving signals of type (L,L) and (L, T) were considered. The 
indicated points are the vertices of the polygons formed by 
the intersection .of the planes 12 ( 1, j),j = 1,20 with the calcu- 
lated plane of the crack. In Figs. 2(b) and 3(b) the actual crack 
edge and the approximate flash points are viewed together 
from a position directly above the crack. The side-on view 
(i.e., z = 0), looking in the positive y direction, is given in 
Figs. 2(a) and 3(a). 

We note the better approximation of the computed 
flash points to the actual edge when x o is taken at (0.5,1,0.5). 
The agreement is much poorer for the 'initial point at (1,2,1) 
as shown in Fig. 3. Since the accuracy is never known, an 
iterative procedure should be used. In this procedure a new 

.25 

-.! 

.75 

I 

- .S .0 x .5 1.0 

FIG. 3. Same as Fig. 2, except base point at (1,2,1}. 
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.75 

(q) 
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o 

- .S .0 .5 1.0 
x 

FIG. 4. Same as Fig. 2, except base point at (0.2,0.5, -- 0.5). 

initial point is taken, say at one of the estimated points of Fig. 
3. Then the mapping procedure is repeated. In general such 
an iteration could be performed several times until all the 
points converge to fixed points on the edge. In Fig. 4 we 
demonstrate the improved accuracy in the results of Fig. 2 
for one iteration. We note that the (L,T) signals define a dif- 
ferent segment of the edge than the (L,L) signals. Similarly, 
additional points follow by considering the {T, L ) and IT, T) 
signals. 

In addition to the first arriving signals, which are those 
diffracted from the near edge of the crack, there are also 
signals diffracted from the far edge. We refer to these as the 
second arriving signals of type {L,L ), IL, T), etc. The travel 
times for these signals may be inferred from the spacing of 
the peaks in the high-frequency spectrum (see Ref. 8 for a 

-.25 

-.75 

. • (b) 
ß 2 - .7 - .• 

x 
.3 

FIG. 5. Computed flash points corresponding to arrival of signals from sec- 
ond flash point of type L-L (A) and L--T (Q)). Base point at (0. 5,1,0.õ). 

om 

o 

.k• (b) 

i 

-.2. 

- .0 - .5 .0 .5 
x 

FIG. 6. Same as Fig. 5, except bas• point at ( -- 0.7, -- 0.75.0.3). 

further discussion on the use of the high-frequency spec- 
trum). The flash points corresponding to the second arriving 
signals of type {L,L } and {L, T) are considered in Figs. 5 and 6. 
In Fig. 5 the same value Of Xo was used as in Fig. 2. The plane 
of the crack was taken the same as in Figs. 2-4. The result of 
a single iteration, in which the initial point is taken at one of 
the points of Fig. 5, is illustrated in Fig. 6. By combining 
Figs. 4 and 6 it is evident that a good estimate of the size of 
the crack can be obtained from the diffracted signals. 
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APPENDIX: APPLICATION OF FERMAT'S PRINCIPLE 

The connection between the spatial gradient of the trav- 
el time for a stationary ray path and the ray direction is 
established in this Appendix. For generality, we consider an 
inhomogeneous anisotropic medium, although the result is 
required only for the homogeneous isotropic case. 

Consider a curve x(t ) between the two points xs and x e 
such that x(to} = x s and x(t•} = x o, to < t•. Suppose a signal 
is propagated from x s to x a along this curve such that the 
signal propagation speed at any point is a function of posi- 
tion and of the direction of propagation. If c is the speed, 
then c(t ) = c[x(t ), p(t )], where p(t ) is the unit tangent vector to 
the curve, 

p(t ) = :i{t)/li(t )l, {nl) 
and the dot denotes differentiation. Fermat's Principle states 
that the signal describes a stationary ray path if the curve x{t ) 
makes the travel time 

T = f"c-'{t )[i(t )ldt (A2) 
stationary. The simplest stationary ray path is the curve that 
minimizes T. Other curves may minimize or maximize T 
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among a certain class of curves. For example, suppose a 
compact inhomogeneity is present in an elastic medium, 
then there is a curve that minimizes T with the constraint 
that the curve includes a point on the inhomogeneity. If the 
inhomogeneity is a crack with a smooth edge, this ray path 
might correspond to the first observed diffracted ray. Other 
curves may minimize Tamong the class of multiply diffract- 
ed rays. Similarly, there is a curve that maximizes T among 
the class of singly diffracted rays. For a further discussion 
about classes of stationary ray paths, we refer to the paper by 
Keller. •o 

Suppose that x(t ) is a stationary ray path. Let L {x,/t;t } 
denote the integrand of Eq. {A2}, i.e., 

L =c-•(t )]•t{t )1, 
and define the "momentum" m(t ) corresponding to the "La- 
grangian" L as 

m• •L (A4) 

The Euler-Lagrange equations of the variational problem 
then are 

•h{t ) = -- VL (x,i;t), {AS) 
and the associated "Hamiltonian" H (x,m;t) is 

H •---i.m -- L. (A6) 

Substitution of the explicit form for L of Eq. (A3) into the 
definition of m yields 

m = {p -- • In c)/c, (AT) 
where the operator • is equal to •/o•p. Since the vector p is of 
unit magnitude, it follows that • is the angular gradient op- 
erator and that 

p.Oc = 0. (A8) 
This result, combined with the definition of H, implies that 
the "Hamiltonian" is identically zero. 

Now consider the variation in the stationary value of T 
due to a variation in the position of the endpoint x s. Keeping 
the other endpoint xa fixed, let the variation in Xs be of the 
most general type: 

•x s = [•x{t } + •t ]]t- to- {A9} 
The variation of T is 

•ST = -- L (x,i;to)rto + (rxah + •i.m}dt, 

= --(Lõt + m.x)lt = to- (A10} 
Here we have used the Euler-Lagrange equations {A9}, and 
the fact that xo is fixed. Therefore, by Eqs. (A9) and {AI0), 
we have 

-- H (x,/{;to)=0 (A11} 

and 

V s T = -- m{t o) = -- (0 -- •V In c)/c I .... ß (A 12) 

where the subscript S indicates that the gradient is evaluated 
at the endpoint x s. This is our basic result relating the spatial 
gradient of the time delay T to the ray direction p and the 
(anisotropic} speed c. In the case of isotropy, Oc = 0, and we 
have the simple result 

cVsT+ p = 0. (A13) 

Finally, we note that in homogeneous linear anisotropic 
elastic materials, the velocity of signal propagation, which is 
the velocity with which energy is propagated, is not equal to 
the phase velocity. Let on, In I = 1, be the phase velocity cor- 
responding to the energy propagation or group velocity cp, 
}p] = 1. Define the phase slowness s in the direction n as the 
inverse of the phase speed o. Then it may be shown that the 
group and phase velocities are related by 

sn ---= {p - • In c}/c, {A14) 
see, for example, Musgrave. H Therefore, combining Eqs. 
(AI2} and {AI4), we see that 

vVsT+ n = 0 (A15) 

in homogeneous linear elastic media. Equation {A14} states 
that the points cp and sn are polar reciprocal {see Ref. 11) to 
each other. The inverse relationship is 

cp = (n -- • In s)/s, (A16} 
where O•-0/o•n is the angular gradient operator with respect 
to n. By combining Eqs. {A 15) and (A 16} we see that there is a 
one-to-one relationship between the spatial gradient of the 
travel time V s T and the ray direction p. 
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