Mapping of a crack edge by ultrasonic methods
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Two methods are proposed for the mapping of cracklike flaws in homogeneous,
isotropic, elastic media. The methods require as input data the travel times of
diffracted ultrasonic signals. The first method maps points on the crack edge by a
process of triangulation with the source and receiver as given corner points of the
triangle. By the use of travel times for neighboring positions of the source and/or the
receiver, the direction of signal propagation, which is the necessary constitutent
required to complete the triangle, can be computed. The inverse mapping is global in
the sense that no a priori knowledge of the location of the crack is required. The
second method is a local edge mapping which determines sets of planes relative to a
known point close to the crack edge. Each plane contains a flash point. The
intersection of the envelopes of two sets of planes maps an approximation to the crack

edge.

PACS numbers: 43.20.Fn, 43.35.Zc, 43.20.Bi, 43.20.Dk

INTRODUCTION

The field generated by scattering of ultrasonic waves by
a flaw contains a substantial amount of information on the
flaw’s location, its size and shape. The extraction of this
information requires the solution to an inverse problem.

Inverse scattering theories may be divided into two gen-
eral categories, which use data in the time and frequency
domains, respectively. If the inhomogeneity is expected to be
a smooth convex cavity, then the physical optics inverse
scattering theory (see Bojarski' and Lewis?) may be a suitable
approach. This is a frequency-domain theory based on a
Kirchhoff approximation to the solution of the direct prob-
lem. The input data is the observed backscattered field. Bo-
jarski showed that the backscattered field is directly related
to the characteristic function of the cavity. This function is
defined as unity inside the cavity and zero outside. Boerner®
has noted the connection between this method and the use of
Radon transforms or projection mapping methods.

A variation of the Bojarski theory in which the function
to be mapped is singular on the surface of the scatterer and
zero elsewhere was proposed by Cohen and Bleistein.* Such
a theory is suitable for inverting crack-scattered data, since
the volume of a crack is zero but its surface area is not. Hence
the characteristic function has zero support, while the singu-
lar surface function is singular over the entire crack face. If
the crack is flat, then it is completely defined by the crack
edge. This fact was utilized by Achenbach et al.,’ to develop
an inversion scheme which maps the crack edge. Also in the
area of crack characterization, Teitel® has shown how the
low-frequency scattered field can be used to determine all
the relevant parameters for a flat elliptical crack. However,
Teitel’s low-frequency method requires the measurement of
the exact amplitude of the scattered wave. In practice the
measured amplitude may, however, be quite different from
the theoretical one, due to effects of coupling of the trans-
ducer to the material and dissipation within the material.
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The methods proposed in the present paper are based
on arrival times. They do not require knowledge of the abso-
lute amplitude of the scattered signal. In homogeneous elas-
tic materials the travel time of a signal from one transducer
to another can be measured quite accurately. The first re-
ceived scattered signal satisfies Fermat’s Principle of least
time. It is well known that such a signal describes a geodesic
curve or stationary ray path. The point on the scatterer from
which the scattered signal emanates is called the flash point.
If the shape and location of the scatterer are known, then the
position of the flash point can be computed by the laws of
geometrical optics. In general, for every stationary ray path
there is an associated flash point on the scatterer. The meth-
ods of this paper use travel times to map the locations of the
flash points.

For the host material we consider a homogeneous, iso-
tropic, linearly elastic solid. For materials which display sig-
nificant inhomogeneity and/or anisotropy, and hence sig-
nificant wave velocity variations, the present methods
cannot be expected to yield accurate results. In principle
such effects can be taken into account, but the necessary
computations become rather difficult. The flaw is assumed
to be a crack with a well-defined edge. Except in the domain
of specular reflection, the first signals arriving via the crack
are produced by diffraction at flash points on the edge of the
crack. For the direct problem the positions of the flash points
follow from Snell's law of edge diffraction, which is defined
within the context of the geometrical theory of diffraction
for elastodynamics, as discussed by Achenbach and Gaute-
sen.” In the inverse problem flash points on the crack edge
are determined from the arrival times of observed signals.

Two methods are proposed in this paper. In the first
method, which is a global triangulation method, the source
and the receiver are given corner points of the triangle, and
we compute the flash point as the third corner point. The
triangle may be completed if the direction of the stationary
ray path is known at either the source or the receiver. This
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direction can be computed by measuring the spatial gradient
of the travel time. The crack edge may be mapped by locat-
ing a sufficient number of flash points.

The second method is a local mapping technique. It is
local in the sense that a base point near the crack must be
known a priori. This base point can be determined by the
global triangulation method. The travel times corresponding
to several different source-receiver pairs form surfaces on
whose intersection the flash points must be located. To a first
approximation, the surfaces can be replaced by planes,
whose intersection is easily computed. By iteration, the solu-
tion converges to a section of the crack edge. Numerical tests
of the method have been carried out by the use of synthetic
data.

It is assumed that the travel times for all relevant sta-
tionary ray paths can be measured. This may not be possible
for some diffracted signals, whose arrival times may be too
close to that of preceding signals. In this case the relevant
arrival time may be inferred from measurement of the spac-
ing of peaks in the high-frequency interference spectrum.
For more details, the reader is referred to Achenbach and
Norris.* Finally, we note that throughout the paper the
source and the receiver have been assumed separated, i.e.,
the measurement method is pitch—catch. The analysis can
easily be modified to accommodate pulse-echo data.

I. GLOBAL TRIANGULATION

If an observed signal is known to emanate from a flash
point, then the inverse problem of mapping the scatterer
may be viewed as a problem of triangulation, i.e., completing
the triangle with corner points at the source, the receiver,
and the flash point. The positions of the source and the re-
ceiver and the time delay between emission and reception of
the diffracted signal are known. In the following it is shown
that knowledge of the signal propagation direction at either
the source or the receiver is generally sufficient to complete
the triangle.

A. Parametric dependence of the flash paint

In a homogeneous, isotropic, linearly elastic medium
there are two wave speeds ¢, and ¢ corresponding to longi-
tudinal and transverse waves, respectively. If p is the density
and A, p are the Lamé elastic constants, then

e = [ +2u)/p1'%, er = (u/p)'' (1)
The slownesses s, and s;- are the inverses of the wave speeds.

At the receiver, four different signals may be observed,
corresponding to the different types of the emitted and re-
ceived waves. Let T, be the time delay for a signal of emitted
type a, @ = L,T and received type 8, 8 = L,T. If x; and x,
represent the position vectors of the source and receiver, re-
spectively, then the surface E,; on which the flash point lies
may be described as

Eqp = [XagiSa|Xap — Xs| +55|Xag —Xp| =To}.  (2)
For any point x4 on E, 5, we define the unit vectors pand q
and the distances 75 and 7, as

X5 =Xg + IsP =X, +7pq. (3)
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Also, we define the vector X from the source to the receiver
as

X=xp —xq. 4
Thus the unit vector from the source in the direction of the
receiver is X = X/X, where X = |X|. The dependence of the

distances r¢ and 7, on p and q follows from the definition of
the surface E_,. We have, for example, that

rs =fs(p-X), (5)

where
(657 °T5 — XY/2s; 'Ty— XE), a=p,
faﬂ(§) = [‘géXé-—SaTO + [(S;Xé- — Su T0)2 + (Sg —Sﬁ)
X(T5 — o X))} Asp — L), asPB.

(6)
The ambiguity with the + in the definition of f.8&), a#B,
is taken care of as follows: If T}, > s1.X, then only the plus sign
is taken. However, if @ = L and T, <sX, the distance rg
becomes a double valued function of the unit vector p. In
other words the source is not contained within E,, if
Ty <syX. When this happens, either sign is admissible for
Jurl6)-

The distance r,, from the receiver to the flash point is

7o = [ — ¢-X). (7)
Whena = §, thesurface E,; is simply a spheroid with foci at
the source and receiver. The major axis length is s, ' Ty, and
the eccentricity is s, X /7,. Some examples of the surface
E 45, a#p, are presented in Fig. 1.

We note that p and q are not independent but are related
by the identity

rsp—roq=X. (8)
The explicit dependence is

FIG. 1. Sections of the surfaces E, ;- in a plane containing the source S and
receiver Q. Dimensionless travel times are Tye, /X = 1.2(0.2)3. Poisson’s
ratio is 1/3.
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4=250X)[fspXpX — X ] [X— LKD) (9)

The unit vector p follows as a function of q by replacing
p<+ — q and a<f. Here g,4(£ ) is the root of

Jop[828€)18.58 ) + fop6)6 — X =0. (10)
This equation may be solved to give

8.5)=4h — X )2 Xh — T3)™"
X (spTo+5. [T3 + (3 — 2R ]2, (1)
where

k=24 E) - X. (12)

When a = B, the expression for g,,4(£ ) simplifies somewhat,
and the resulting form of Eq. (9) is

q=(T§ +s2X*— 25, Top-X)~'
X[(T§ — 5X2)p — 25,(T — 5,0 X)X]. (13)

B. Determination of the ray direction

In order to complete the triangulation scheme, we re-
quire knowledge of either of the ray directions p or q. Con-
sider the unit vector p, which is the direction of the ray leav-
ing the source. In the Appendix it is shown how the spatial
gradient of the travel time for a stationary ray is related to
the ray direction at the source. This relation is a direction
consequence of a generalized form of Fermat’s Principle that
includes stationary as well as minimum ray paths. From Eq.
(A13) in the Appendix, we have for the homogeneous iso-
tropic elastic material that

p=—c, V5T, (14)

where V¢ T}, is the gradient of the travel time with respect to
the source position xg. Similarly
= — gV Ty (15)
where V,, T}, is the gradient of T, with respect to the receiver
position x,.
Experimentally, one could estimate the vector
Vs TV, T,) by shifting the source (receiver) successively in
three linearly independent directions and measuring the
time delay for each new position. For example, let the source
be moved successively to the three new positions x + 4e,,
Jj=1,2,3, where & is some small distance and ¢,j = 1,2,3,are
three linearly independent unit vectors. Denoting by T,
Jj=1,2,3, the measured value of the travel time for each new
source position, we have by finite differences that

CavSTO = Y: . (16)
where
Y = ca(Toj — To)/h —A‘yj, =123 (17)

and the computational error [4y| is of order 4 times the
Laplacian ¢, V3T, By choosing different finite difference
procedures, the computational error in the gradient of T,
can be made of order 4 2 or less. Later we analyze the effect of
errors, both computational and experimental, on the inver-
sion result.

In practice, one is interested in locating a defect inside
an elastic body. The source and receiver are transducers,
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which are positioned on the surface of the body and must
remain directly coupled to the surface. Therefore the source
(receiver) position has only two degrees of freedom. Consider
the source at xg. Locally it may be moved in the tangent
plane to the surface. Let ¢, and e, be two orthogonal unit
vectors in this plane. Then by shifting the source successively
in the directions e, and e,, and forming finite differences as in
Eq. (17), we may compute approximately the quantities ¢, ¢;
-V T, = 1,2. Let us assume for the moment that the errors
are zero. Then, from Eq. (14) we have the components of the
unit vector p in the e; and e, directions. It remains to deter-
mine the component of p into the body. Since |p| =1, it
follows that this component is equal to [1 — (p-e,)?

— (p-e,)*]"/% Similarly, we could determine the vector q by
shifting the receiver in two orthogonal directions tangential
to the surface and using Eq. (15).

Now suppose that we shift both source and receiver, but
only in one direction for each. Let e5 and e, be unit tangent
vectors to the surface at the source and receiver, respective-
ly. Assuming no errors, computational or experimental, we
can obtain the quantities ¥ and 7, where

Y =c,es V5T, (18)
7 =cgegVyT,. (19)

Our problem now reduces to finding p from the three
equations

pes +vy=0, (20)

qeg +7=0, (21)
and

ol =1 (22)

From Eq. (9), we have q = gq(p). This relation, in combination
with Eq. (10), can be used to rewrite Eq. (21) as the equation
for a surface in p space. This surface is

SealpX)p-ey — Xeep + 1f 5 [8.5(-X)] =0, (23)
where /.5 and g,, were defined in Egs. (6) and (11). This
surface will intersect the plane defined by Eq. (20) along
some curve and this curve will in general intersect the unit
sphere of Eq. {22) at two points, p* and p~. Whena = 8, the
surface (23) simplifies to the plane

pe, +7'=0, (24)
where
e =eg +2(R*— X% 'egX — R)X
- =(R*=X%eyV,[X/(R? - X?)]. (25)
7 =7+2R*—X?)"'(7X? — ReyX)
=(R?2—X?%eyVo[ —R/R? X7, (26)

and R = ¢, T, Thus, for @ = S, the two points p* and p~
may be found in closed form as the points of intersection of
the two planes (20) and (24) with the unit sphere. The neces-
sary condition for finding the points of intersection is that
the planes (20) and (24) are not parallel, i.e., that

les Aey|>0. 27

When a #/3, the points of intersection of the three sur-
faces (20), {22), and (23) must be found by solving an algebraic
equation.
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The dilemma of choosing the vector p from the pair p*
and p~ can usually be resolved quite simply. For example, if
a = fand e, ,, and X are all coplanar, then the only differ-
ence in p* and p~ is in their components normal to this
plane, i.e., only one of them is directed into the solid. How-
ever, if the source and receiver are on opposite sides of a slab
with parallel sides, such that es and e, are parallel to one
another but perpendicular to X, then extra information is
required to choose between p* and p~.

In summary, we have three alternative methods of de-
termining the unit vector p (or equivalently q). The first
method (I} consists of shifting the source transducer in two
directions tangential to the body surface, and forming direc-
tional derivatives of the travel time to the fixed receiver. In
the second method (II), the roles of the source and receiver
are reversed, i.e., the latter is shifted while the former is not.
In the third method (III), both source and receiver are shift-
ed, but each in only one direction. If the received signal is
mode converted, and in addition T, > s,-X, then only one of
methods I and II will produce a unique flash point. The
correct method is the one in which the endpoint correspond-
ing to the faster wave speed is kept fixed; for example, if
a =L and 8 =T, then it is method II.

C. Error analysis

In practice the inversion result will be incorrect due to
experimental and computational errors. The former are the
inevitable result of inaccurate measurements of such quanti-
ties as the source position, the delay time of the first arriving
signal, etc. It is assumed that errors due to inhomogeneity of
the host material and variations of the wave speed along the
ray path are negligible. Often this may not be the case, which
may lead to errors on the order of magnitude of the size of the
scatterer. We define the computational errors as those in-
curred in using the finite difference approximation to the
gradients. For the moment we consider all errors together
and find the resultant error in the flash point position.

We consider the inversion using method I for arbitrary
type of the emitted and received waves. Without loss of gen-
erality we may assume that the source is shifted in two ortho-
gonal directions, specified by the unit.vectors e, and e,. De-
fine the dimensionless numbers ¥, and ¥, to be the actual
values of the directional derivates of the travel time, i.e.;

¥ =C.€-VsT,, j=12. (28)

Let 7; 4+ 4y, be the corresponding values computed from
the experimental data. Thus A4y; incorporates both experi-
mental and computational errors. We assume that the major
source of error in the flash point position is attributable to
the errors 4y;. If Ay is small, where

Ay =[Ay\} + (Ar)1?, (29)
then a linear error analysis produces bounds on the error

|Ax,z| in the position of the flash point. These bounds are as
follows:

rsAy<|Ax, 4| < MrsAy, (30)
where

M? =1+ (sX /5,75 )/(1 — 1) 31)
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and

r=7+7n (32

In order to derive this result, we consider the error in-
duced in the computed value of the unit vector p, which
points in the direction of the flash point. We have that
p=p"* orp~ where

Pt = —vie,— e+ (1— )%, Ae,. (33)
The error in the calculated value of pis Ap =Ap* or4p—,
where

Ap* = —Ay.e, —Arse,

Fdr + 74701 — 7)) e Ae, (34)
Thus the absolute magnitude of Ap is
Ap=[(1 —7)Ar,)* + (1 — AP — "2,
(35)
from which it follows that

Ay<4p<(1 — )~ "4y. (36)
The error in p induces a resultant error in the estimated flash
point position, which follows from Eq. (3) as

Ax,; = rsdp + (Ap-V, rs)p. (37)
The gradient of r¢ with respect to p may be calculated from
the quadratic equation

1555 — 5p) — 2r5ls, Ty — spp-X) + T5 — 53X * =0.

(38)
Differentiation of this equation with respect to p produces
V.rs, which when inserted in Eq. (37) gives
Ax,5 = [(sarQ + 5,75)Ap
+ 5, XA(BAAD))7./(s,7p + Sprs — $p-X).
(39)
Since p is a unit vector, it follows that p-Ap = O to first order,
i.e., p and Ap are perpendicular. Hence by Eq. (39)
IAxaﬁl =Trs [(AP)Z + (Sﬁx'AP)Z/(Sa"g
+ sprs — s5p-X)]""2
Now,

SaTo +Sars —sgpX=r, (s, +55p-9)>5, o, (40)
because by definition, p-q must be positive. Therefore we
obtain the following bounds for the flash point error:

rsAp<|Ax 5| <rs[1 + (spX /5,7p)]'*Ap. (41)

Combining this with Eq. (36) we arrive at the result (30).

For example, if a difference scheme like the one de-
scribed in Eq. (17) is used to compute ¥, and ¥,, then the
computational error is

Ay = O(he,ViT,). (42)
The Laplacian of the travel time follows quite simply from
Eq. (14) as

¢, VT, = — Vsp. (43)
The divergence of p with respect to the source position may
be obtained as follows: Consider the reverse signal which is
emitted from the point x, as a wave of type B, scatters from
the flash point x .5, and is observed at the point x as a wave

of type a. The travel time for this signal is T, and its depen-
dence on the location of x is the same as that of the S—Q
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signal. The reverse scattered signal propagates as a wave
front which passes x at time T, after emission at x,,. Let p;,
and ps, be the principal radii of curvature of the wave front
surface as it passes Xg, defined so as to be negative if the
center of curvature is in the direction of propagation of the
wave front. Thus the vector p is the unit normal to the wave
front surface, pointed in the direction of positive curvature.
By resolving the gradient operator V into three components
along p and along the principal lines of curvature we deduce
that )

- Vsp=ps5' +ps2"- 44)
From Egs. (30), (42)—(44), we have for the first-order differ-
ence scheme, that

|4x,5| = O (Mhrs/ps), (45)

where pg = Min (p5,, p5,)-

Consider the special case in which the flash point lies on
a smooth edge. This occurs, for example, if the scattering
object is a flat crack, with a smooth edge. The observed sig-
nal is diffracted from the edge and the flash point may be
predicted by the geometrical theory of diffraction (GTD). A
description of GTD for problems of elastodynamic diffrac-
tion by cracks is given by Achenbach and Gautesen.” As far
as the radii of curvature of the diffracted signal are con-
cerned, it is immaterial whether the edge is that of a crack or
of a wedgelike inclusion. Whatever the local geometry of the
edge at the flash point, the principal radii pg, and ps, are

Ps1 =Tsy» Ps2=Ts +l—7;: (46)
where p is the signed distance from the flash point to the
caustic. The general form of p; for an arbitrary incident

wave front is given by Gautesen et al.® In our case, the inci-

dent wave front is spherical, with center at x,. We find that

P4 =cgsin’ $, [n-(csp + c.q)/a + ¢, sin’ @g/rg] 7
(47)
The angles ¢, and ¢, are the angles between the direction
vectors p and q and the tangent to the edge, respectively. The
unit vector n is directed from the flash point towards the
center of curvature of the edge, and 4 is the corresponding
radius of curvature. Snell’s law for diffraction is
¢, singg =cgsing,. (48)
Ifn[p + (c,/cg)al = o(1), the diffracted ray is near either the
shadow or reflection boundary. We assume, as is generally
the case, that the signal is in the zone of pure diffraction. In
this case, the above quantity is of order unity. If, in addition,
the radius of curvature of the edge is small as compared with
the distances rg and r,, then by Eq. (47),

P =0\a), (49)
and by Eq. (46),

Ps2 =Ts t+olrs). (50)
Therefore, from Egs. (45), (46), and (50}, we have

|Ax,z| = O (Mh). (51)

This states that the flash point error is proportional to the
transducer shift 4 if the simplest difference scheme is adopt-
ed. The same result could also be shown for methods II and
I1I of above.
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The minimum number of shifts required in order to
proceed with the inversion is two, whether the method used
is I, II, or III. This corresponds to taking three measure-
ments of the travel time. The only possible difference scheme
is the one described in Eq. (17), and the resultant error in the
flash point position is of order 4. However, if one more shift
is performed, then a difference scheme can be used which
ensures that the error is of order O (h %). Thus one more mea-
surement increases the computational accuracy dramatical-
ly. To see this, we consider an example using method III and
synthetic data.

D. Inversion of synthetic data

We present an example of inversion of synthetic crack-
scattering data. The travel times are calculated exactly and
the only errors come from the size of the transducer shifts
and the finite difference scheme used. Only the first received
diffracted signals are considered. Both the incident and dif-
fracted waves are longitudinal, i.e., « =8 = L. Method 111
of above is used, and two difference schemes are compared
for accuracy.

Consider a flat crack with a smooth circular edge. Let
the radius of the crack be unity, and define a rectangular
coordinate system (x,p,z) with origin at the center of the cir-
cle and the z axis normal to the crack. Two transducers, our
source and receiver, are located at the points xg = {5,10,7)
and x, = (10,5,7), respectively. The exact position of the
flash point for the first received signal is at (1/v/2,1/v/2,0),
and the travel time may be calculated easily. The source is
then shifted in the direction of the vector U = (1,1, — 2)/v/6
by an amount &. The travel time for the first diffracted signal
is again calculated. We note that the flash point position will
be slightly different. Now the receiver is shifted in the same
direction by the same amount and the travel time is calculat-
ed. These three travel times provide sufficient information
with which to form gradients according to Eq. (17), and then
use method I1I to invert to find the flash point. For A =0.],
0.5, 1, and 2, the results of the inversion and its accuracy are
given in Table 1. We observe the expected linear error
growth with A, in agreement with Eq. (51). Also, we note that
the calculations do not involve Poisson’s ratio explicitly,
since the travel time and the longitudinal wave speed occur
only in the combination ¢, T, which is equal to the ray path
length. The other data in Table I result from shifting the
source back to its original position and calculating the travel
time once more. This additional information allows us to
take the actual source and receiver positions at xg + (7 /2)U
and x, + (h /2)U, respectively. The gradients are now com-
puted by a centered difference scheme, and are correct to
order h2 The error in the position of the computed flash
point is seen from Table I to be also of order 4 2. In fact it is
very small, even for shifts as large as the dimension of the
crack.

In summary, two transducer shifts provide the mini-
mum information necessary for inversion, and the error in
the calculated position is linear. However, one more shift
produces much greater computational accuracy. Two shifts
imply three travel time measurements, while three shifts im-
ply four such measurements.

A. N. Norris and J. D. Achenbach: Mapping of a crack edge 268



Il. LOCAL CRACK-EDGE MAPPING

The methods discussed above are useful for identifying
single points on a scatterer. In order to determine the size
and shape of the scatterer, we would have to repeat the inver-
sion procedure a number of times. Each inversion produces
one point, the flash point, so that eventually we would hope
to have enough points to characterize the scatterer. In the
present section we discuss an alternate method of mapping
the scatterer. This method is again based on transit times
from source to receiver via a flash point. However, instead of
using single transit times to produce single flash points, we
now use a set of transit times to simultaneously produce a set
of flash points. Essentially, the method is an iterative proce-
dure based on Newton’s method of approximation. To start
with, we assume that a point x, near the scatterer is known.
It may have been determined by the global triangulation
method. Then, the surface E,, on which the flash points lie
may be approximated by their tangent planes near x,,. For a
crack the intersections of the tangent planes give a polygon
which approximates the curve of flash points. The procedure
may then be repeated by rechoosing x,, so that a convergent
iteration ensues. In what follows, we assume that the scat-
terer is a flat crack with a smooth edge, although it may be
seen that the method would also work for convex voids or
inclusions.

A. Tangent plane approximation

We have, as before, a source S at x; and a receiver Q at
X,. The travel time T, for the diffracted signals of type (a,3)
is assumed known. Then the flash point x,; lies on the sur-
face E_ 4 defined by Eq. (2). The unit vectors p and q and the
distances 75 and r,, are defined in Eq. (3). Define the new
distance R as

R=Kar$ +KﬂrQ, (52)

where «, =c¢,/c,, a = L,T. With respect to an arbitrary
point x,, we define the unit vectors p, and q,, and the dis-
tances rsq, oo, and R, as follows:

Xo = X5 + rsoPo = Xp + Tp0%0, (53)

Ro=rx,1sp + K57 g0. (54)
Now, for all xeE,,,

X — Xo="7'sP— FsoPo- (55)
Taking the dot product of this with p, we obtain

(x — Xg)pg =rs — rso + rs(ppo — 1)- (56)

Doing the same thing in terms of r,, q ctc., we deduce that

(x — Xo) (kDo + #5Q0) — (R — Rg) = — 4, (57)

where the distance A is

A =K, rs(1 — p-po) + Kgro(l — g:qo) > 0. (58)
For any xeE_,, define the distance d as

d =[x —x,. (59)
From the cosine rule for the triangle x;, x,, and x, we have

d?=r3 + r5o — 2rsrsoppo. - (60)
Hence,

1 —ppo= [dz—(’s _’50)2]/(2"3’30)- (61)

Similarly we can calculate the quantity 1 — g+q,, and com-
bine the results to get

5, K
A= [dz_(’s—’so)zl +--£ [dz—(’q "'rQO)Z]
I'so 2rQ0
<i(K—“+K—")d2. (62)
2 \rg Yoo

Consider a segment of the surface E_,, say F, 4, and define
the positive number ;. as

8p = [l rpo + Karo)/(2rsorpoR0)] slugF(d zl). (63)
]

For a given source and receiver, the number 5 depends on
the arbitrary point x, and the segment F;. From Egs. (58),
(62), and (63) it follows that the segment F, lies between the
two planes:

(x — Xo}{x4 Po + K5Qo) — (R — Rp) =0 (64)
and

(X — Xo){kcoPo + K5G0) ~ (R — Ro) = — RS (65)
Obviously, in the limit as §,—0, the segment F,; becomes a
segment of the first plane. However, 8. can equal zero only if
F.p = {x,]. If F 5 is taken as some part of E,; which in-
cludes the flash point, then §,. > 0. Also, if the dimensions of
F5 are small compared to the distances r5 and r,, and in
addition, x,, is near the flash point, then & will be much
smaller than unity. Therefore we may approximate the sur-
face E,; near the flash point by the plane {64).

B. Example: Elliptical crack

For the remainder of this section, we consider the inver-
sion of crack-scattering data. In order to demonstrate the
local edge mapping, we consider the following situation: A
flat crack with a smooth convex edge is located within a
body. There are # source positions S;, = 1,n, and m observ-
er positions @, j = 1,m. For each source observer pair (S;,
Q;) there are four pairs of associated travel times, corre-
sponding to the four types of diffraction processes. We note

TABLE I. Computed flash point and errors. The error is the distance from the exact flash point (0.707, 0.707, Q).

Two shifts Three shifts
h Computed point Error Computed point Error
0.1 (0.728, 0.728, — 0.405) 0.050 (0.707, 0.707, 0.000) 0.000
0.5 (0.810, 0.810, — 0.204) 0.250 (0.709, 0.702, — 0.002) 0.005
1.0 {0.909, 0.509, — 0.410} 0.500 (0.715, 0.688, — 0.006) 0.022
20 (101, 1.01, —0.832) 1.000 (0.738, 0.629, — 0.024) 0.088
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that the sources and receivers may be identical, correspond-
ing to pulse-echo measurements. Suppose that an initial
point x, has been determined by the method of triangulation,
or some other a priori procedure. Our starting point for the
local edge mapping is to assume that the flash points lie on
planes specified by Eq. (64). Then all of the planes considered
pass very close to the crack edge; in fact they envelope a
curve which is an approximation to a segment of the crack
edge. The inversion thus reduces to finding the congruence
of all planes. If we had an infinite number of sources and
receivers located arbitrarily on a sphere of very large radius
with the crack at the center, then the congruence would be a
smooth closed curve. Since our data is finite, we will obtain a
polygon of points which approximate a segment of the crack
edge.

If the geometry of the problem is two dimensional, then
the crack is completely specified by the two flash points at
either end of the crack. The planes become lines and the edge
mapping reduces to finding the intersection of the lines. We
refer the reader to Ref. 5 for a complete discussion of the
two-dimensional problem.

Let us consider the general three-dimensional problem
of constructing the crack edge. For simplicity we consider
the following example. We take as our crack edge the ellipse

xX*+42—-1=0, z=0. (66)

There are two sources and 20 receivers situated on the plane
z = 10. The two sources S;, I = 1,2 are at

S;: (- 10,10,10), S,:(— 5,10,10),
while the 20 receivers are at

Q;: (5,15,10) + (j/2)(1, — 1,0), j=1,20.

Our first task will be to determine the plane of the crack
approximately. Having found the crack plane, the crack
edge is obtained as the polygon formed by the intersection of
the crack plane and the planes of Eq. (64). For a given type of
received signal (L or T') there are two sets of 40 planes corre-
sponding to the first and second arriving signals. Let £2 (1, j),
i=1,2, j = 1,20 be such a set of planes. The plane of the
crack may be found as follows: Consider the intersection of
the planes £2 (1,/),/ = 1,20 with any one of the planes 12 (2, j),
Jj = 1,20. The locus of intersection is a polygon, which we
denoteby I' (2,k ), where (2 (2,k ) is the plane which intersects
the 20 planes corresponding to source S,. To obtain points
which approximate the flash points, we test to see if any of
theplanes (2 (2, j),j# kintersect the polygon I" (2,k ). For such
a point of intersection to exist, the flash point of (2 (2, j) at
j = k must be interspersed with the flash points of (2 (2, j),
Jj = 1,20, j#k. We also require that the segment of the crack
edge containing the flash points of £2 (1, j), / = 1,20 has a sec-
tion in common with the segment for the planes £2(2, j),
j = 1,20. Such is the case for our configuration of sources
and receivers.

We require at least three points in order to specify the
plane of the crack. Once this has been achieved, the remain-
ing approximate flash points are easily determined as being
on the polygon formed by the set of planes {2 (i, j), [ = 1,2,
j = 1,20 and the crack plane.
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FIG. 2. Comparison of computed edge points and actual crack edge (solid
line). Base point x, = (0.5,1,0.5). Using L-L travel times (4 ), L-T travel
times ((9). (a) Projection on plane y = 0, and (b) projection on plane z = 0.

In Figs. 2 and 3 are plotted approximate flash points for
two different values of the initial point x,. In Fig. 2 we have
x, = (0.5,1,0.5) while in Fig. 3, x, =(1,2,1). Only the first
arriving signals of type(L,L ) and (L,T ) were considered. The
indicated points are the vertices of the polygons formed by
the intersection of the planes {2 (1, j), j = 1,20 with the calcu-
lated plane of the crack. In Figs. 2(b) and 3(b) the actual crack
edge and the approximate flash points are viewed together
from a position directly above the crack. The side-on view
(i.e., z=0), looking in the positive y direction, is given in
Figs. 2(a) and 3(a).

We note the better approximation of the computed
flash points to the actual edge when x, is taken at (0.5,1,0.5).

The agreement is much poorer for the initial point at (1,2,1)
as shown in Fig. 3. Since the accuracy is never known, an
iterative procedure should be used. In this procedure a new
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FIG. 3. Same as Fig. 2, except base point at (1,2,1).
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FI1G. 4. Same as Fig. 2, except base point at (0.2,0.5, — 0.5).

initial point is taken, say at one of the estimated points of Fig.
3. Then the mapping procedure is repeated. In general such
an iteration could be performed several times until all the
points converge to fixed points on the edge. In Fig. 4 we
demonstrate the improved accuracy in the results of Fig. 2
for one iteration. We note that the (L,T') signals define a dif-
ferent segment of the edge than the (L,L ) signals. Similarly,
additional points follow by considering the (7, L }and (T,T)
signals.

In addition to the first arriving signals, which are those
diffracted from the near edge of the crack, there are also
signals diffracted from the far edge. We refer to these as the
second arriving signals of type (L,L }, (L,T), etc. The travel
times for these signals may be inferred from the spacing of
the peaks in the high-frequency spectrum (see Ref. 8 for a
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FIG. 5. Computed flash points corresponding to arrival of signals from sec-
ond flash point of type L-L {4 ) and L-T ((©). Base point at (0.5,1,0.5).
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FIG. 6. Same as Fig. 5, except base point at { — 0.7, — 0.75,0.3).

further discussion on the use of the high-frequency spec-
trum). The flash points corresponding to the second arriving
signalsoftype{L,L }and (L,T )areconsidered in Figs. 5and 6.
In Fig. 5 the same value of x, was used as in Fig. 2. The plane
of the crack was taken the same as in Figs. 2—4. The result of
a single iteration, in which the initial point is taken at one of
the points of Fig. 5, is illustrated in Fig. 6. By combining
Figs. 4 and 6 it is evident that a good estimate of the size of
the crack can be obtained from the diffracted signals.
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APPENDIX: APPLICATION OF FERMAT’S PRINCIPLE

The connection between the spatial gradient of the trav-
el time for a stationary ray path and the ray direction is
established in this Appendix. For generality, we consider an
inhomogeneous anisotropic medium, although the result is
required only for the homogeneous isotropic case.

Consider a curve x(t ) between the two points Xg and X,
such that x(fg) = x5 and x{t,) = X, £, <, Suppose a signal
is propagated from xg to x,, along this curve such that the
signal propagation speed at any point is a function of posi-
tion and of the direction of propagation. If ¢ is the speed,
thene(t ) = ¢[x(z ), p(r )], where p(¢ ) is the unit tangent vector to
the curve,

p(r) =x(t)/]x(t)], (A1)
and the dot denotes differentiation. Fermat’s Principle states

that the signal describes a stationary ray pathif the curve x(r)
makes the travel time :

T= J' "= 1e )|l )|de (A2)

stationary. The simplest stationary ray path is the curve that
minimizes 7. Other curves may minimize or maximize T
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among a certain class of curves. For example, suppose a
compact inhomogeneity is present in an elastic medium,
then there is a curve that minimizes T with the constraint
that the curve includes a point on the inhomogeneity. If the
inhomogeneity is a crack with a smooth edge, this ray path
might correspond to the first observed diffracted ray. Other
curves may minimize 7 among the class of multiply diffract-
ed rays. Similarly, there is a curve that maximizes 7" among
the class of singly diffracted rays. For a further discussion
about classes of stationary ray paths, we refer to the paper by
Keller.'®

Suppose that x(t ) is a stationary ray path. Let L (x,%;t)
denote the integrand of Eq. (A2), i.e.,

L=c~'(t)|x(t)|, (A3)
and define the “momentum” m(¢ ) corresponding to the “La-
grangian” L as
_IL
=
The Euler—Lagrange equations of the variational problem
then are

m (A4)

m(t)= — VL (x,x;), (AS)
and the associated “Hamiltonian™ H (x,m;t ) is
H=xm—L. (A6)

Substitution of the explicit form for L of Eq. (A3) into the
definition of m yields

(A7)
where the operator V is equal to d /dp. Since the vector pis of

unit magnitude, it follows that V is the angular gradient op-
erator and that

p-Ve=0. (A8)
This result, combined with the definition of H, implies that
the “Hamiltonian” is identically zero.

Now consider the variation in the stationary value of T
due to a variation in the position of the endpoint x. Keeping
the other endpoint x,, fixed, let the variation in x be of the
most general type:

m=(p—Vinc)/ec,

Sxg = [x(¢) + %6t 1|, .- (A9)
The variation of T is
ST = — L (x,%;1,)82, + I .((Sx-rh + 5x-mdt,
fa
= — (L&t + mbx)|,_, - (A10)

Here we have used the Euler-Lagrange equations (A9), and
the fact that x,, is fixed. Therefore, by Eqgs. (A9) and (A10),
we have

9T _ b (x,51)=0 (A11)
at,
and .
V.T=—mit)= —(p—Vinciel,_,., (A12)
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where the subscript S indicates that the gradient is evaluated
at the endpoint x . This is our basic result relating the spatial
gradient of the time delay T to the ray direction p and the
(anisotropic) speed c. In the case of isotropy, Ve = 0, and we
have the simple result

cVsT+p=0. (A13)

Finally, we note that in homogeneous linear anisotropic
elastic materials, the velocity of signal propagation, which is
the velocity with which energy is propagated, is not equal to
the phase velocity. Let vn, |n| = 1, be the phase velocity cor-
responding to the energy propagation or group velocity cp,
[p| = 1. Define the phase slowness s in the direction n as the
inverse of the phase speed v. Then it may be shown that the
group and phase velocities are related by

sn={(p—Ving¢)e, (A14)

see, for example, Musgrave.!! Therefore, combining Egs.
(A12) and (A14), we see that

wWsT+n=0 (A15)

in homogeneous linear elastic media. Equation (A 14) states
that the points ¢p and sn are polar reciprocal (see Ref. 11} to
each other. The inverse relationship is

cp=(n—Vins)s, (A16)

where V=d/n is the angular gradient operator with respect
ton. By combining Eqgs. (A15) and (A 16) we see that thereisa
one-to-one relationship between the spatial gradient of the
travel time V7 and the ray direction p.
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