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MAPPING OF CRACK EDGES BY SEISMIC METHODS

By J. D. ACHENBACH, A. NORRIS, AND K. VISWANATHAN®

ABSTRACT

The inverse problem of diffraction of elastic waves by the edge of a large
crack has been investigated on the basis of elastodynamic ray theory and the
geometrical theory of diffraction. Two methods are discussed for the mapping
of the edge of a crack-like fiaw in an elastic medium. The methods reguire as
input data the arrival times of diffracted ultrasonic signals. The first method
maps flash points on the crack edge by a process of triangulation with the
source and receiver as given vertices of the triangle. By the use of arrival times
at neighboring positions of the source and/or the receiver, the directions of
signal propagation, which determine the triangle, can be computed. This inverse
mapping is global in the sense that no a priori knowledge of the tocation of the
crack edge is necessary. The second method is a local edge mapping which
determines planes relative to a knawn point close to the crack edge. Each plane
contains a flash point. The envelope of the planes maps an approximation to the
crack edge. The errors due to inaccuracies in the input data and in the compy-
tational procedure have been illustrated by specific examples.

INTRODUCTION

Analytical studies are presented which bear on the feasibility of mapping the edge
of a large crack by methods based on edge diffraction of signals emitted by a point
source.

‘The material containing the crack is taken as a homogeneous, isotropic, linearly
elastic solid. The proposed methods use travel times of signals which propagate
from the source via a point on the crack edge to the receiver. The first diffracted
signal that is received satisfies Fermat’s principle of least time. Hence, it propagates
along a stationary ray path which includes an incident ray from the source to the
point of diffraction on the crack edge (the flash point D), and a diffracted ray from
D to the receiver. In the direct problem the geometry of the crack edge is known,
and the positions of flash points and the associated travel times can be computed by
using the rules of geometrical diffraction theory. In this paper we are, however,
interested in the inverse problem. We assume that the travel times can be measured
and we infer the positions of the flash points. A sufficiently large number of inferred
flash points provides an approximation to the crack edge.

Two methods are discussed in this paper. In the first method, which is a global
triangulation method, the source and the receiver are the given corner points of a
triangle, and the flash point is computed as the third corner point. The triangle may
be completed if the direction of the stationary ray path is known at either the source
or the receiver. This direction can be computed by measuring the spatial gradient
of the travel time. Mathematical details and a fairly detailed error analysis have
been given by Norris and Achenbach {1982).

The second method is a local mapping technique. It is local in the sense that a
point near the crack edge must be known a priori. This point, however, can be
determined by the global triangulation method. The travel times corresponding {o
several different source-receiver pairs form surfaces on whose intersections the flash
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points must be located. To a first approximation, these surfaces can be replaced by
planes, whose intersection approximates the crack edge.

Numerical tests of both methods have been carried out by the use of synthetic
data. For perfect data, these tests provide illustrations of the errors that are
introduced by the computational method. Results of tests with specified induced
errors of the synthetic travel times show that the global triangulation method is
quite sensitive to inaccuracies of the input data. It may, however, be expected that
a point close enough to the crack edge can be obtained to provide a base point for
the local crack-edge mapping procedure. An iteration scheme has been developed to
improve the accuracy of the local mapping. In a test of the local mapping technique,
the synthetic data were perturbed by random errors. For moderate errors, it was
found that even though individual flash point positions may deviate substantially
from the crack edge, a least-square polynomial fit to all computed flash points still
gives good approximation to a segment of the crack edge.

Throughout the paper, the source and receiver have been assumed separate, i.e.,
the measurement method is pitch-catch. The analysis can easily be modified for an
arrangement with an identical source and receiver, to accommodate pulse-echo
measurements.

Crack characterization by wave propagation methods has been successful in the
field of quantitative nondestructive evaluation of materials, as discussed by Ach-
enbach ef al. (1979). The difficulties in a geological setting are, however, much
greater, primarily because wave propagation in rock and rock formations is more
complicated than in metals, and fluid-filled cracks in rock may be weak diffractors
of incident waves. In addition, there may be limited options for the placement of
transmitters and receivers in boreholes, and the shape of the crack may be quite
irregular.

This work was motivated by interest in a method to locate hydraulically induced
water-filled cracks in a hot-dry-rock geothermal energy system [Brown et al, (1978}].
When it is possible to vary arbitrarily the positions of sources and receivers, then
the edge of a plane crack can be determined by the use of reflection and transmission
data. The fracture and wellbore system at the Fenton-Hill site described by Brown
et al. (1978) is, however, vertical, and at a depth of between 2500 and 2800 m. It is
not useful to place transmitters and receivers at the earth’s surface because seismic
signals are damped by a thick layer of tuff. Thus, the instrumentation has to be
lowered in two boreholes that are part of the gecthermal heat-exchange system. As
a consequence, the information obtained by reflection and transmission is limited,
and it is desirable to supplement it with information from diffraction of seismic
waves by the edge of the crack. Diffracted signals generally are of smaller order of
magnitude, and hence are best measured at positions where reflected and transmit-
ted signals do not occur. By locating the source and the receiver above the crack
edge, the reflected and transmitted signals propagate away from the source and the
receiver, and the only signals in addition to the direct signal are pulse-echo and
pitch-catch signals diffracted by the crack edge.

It is usually assumed that hydraulic fractures are vertical, since the principal
stresses are lowest in horizontal directions. A crack may, however, not be vertical,
depending on the local geological configuration. For example, certain hydraulic
fractures that have been considered for the disposal of nuclear wastes are located in
between layers in horizontal planes. The results presented in this paper may also
have application to the mapping of oil-filled cracks, the detection of water-filled
crevasses in ice, and the sizing of magma lenses.
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The reflection and transmission by empty and fluid-filled cracks of plane longi-
tudinal and transverse waves at various angles of incidence have been studied by
Fehler and Aki (1978) in a two-dimensional geometry. Reflection and refraction of
purely longitudinal waves incident on a slipping interface was discussed by Salvado
and Minster {1980).

EDGE DIFFRACTION

"The theory of elastodynamic edge diffraction is based on the result that two cones
of diffracted rays are generated when a ray carrying a high-frequency elastic wave
strikes the edge of a crack. The inner and outer cones consist of rays of longitudinal
and transverse motion, respectively. For cracks in elastic solids, the three-dimen-
sional theory of edge diffraction was discussed by Achenbach and Gautesen (1977).

Figure 1 shows an incident ray of longitudinal motion and the corresponding
cones of diffracted rays. The angle of the incident ray with the edge is ¢;,. Thus

€OS ¢r = p-t {1}

incident
ray

Fic. 1. Propagation vector p of incident ray and cones of diffracted rays at flash point .

where p defines the direction of propagation along the incident ray and ¢ is a unit
vector along the tangent to the edge, chosen in the direction which makes ¢, acute.
The half-angles ¢; of the cones of diffracted rays of type 8(8 = L, T') are given by
¢r and ¢y, where

cos ¢r = (er/cr)cos ¢y, (2)

For time-harmonic motion and kgR; > 1, the field on the diffracted ray of type
B8 = L, T may be expressed in the form

uf = Us[kpRp(1 + Rp/op) 7\ 2D5(0; ¢1., Or)expliksRy) d” (3)

where U, defines the amplitude and phase on the incident ray at the point of
diffraction, Dj{8; ¢v, 81} is the diffraction coefficient, the angle €, follows from cos
¢r = p-n/sin ¢, d* is the unit vector which defines the displacement direction, Ry
is the distance along a diffracted ray measured from the point of diffraction, and o
is the distance from the point of diffraction to the other caustic. An explicit
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expression for pg is
pg = —a sin ¢ela dps/ds + cos .17 (4)

where s is arc length measured along the edge and a is the signed radius of curvature
of the edge.

The diffraction coefficient Df(#; ¢, §.) can be obtained by solving the canonical
problem of diffraction of plane waves by a semi-infinite crack. For crack faces which
are free of surface tractions (an empty crack) this was done by Achenbach et al.
(1978). For other conditions on the faces of the crack, a pertinent canonical problem
can be solved in the same manner, provided that the conditions on the crack faces
define a linear problem.

In the direct problem, the positions of the source and the receiver, which are
defined by xs and xg, respectively, are known. Also known is the location of the
edge of the crack. The location of the flash point D, with position vector xp, must
be determined. For L-L diffraction, it follows from (1) and (2) that xp satisfies the
relation

t- {Jxp — xs| (xg — xp) — |¥¢ = Xp| (Xp — xs)} =0, (5)

where the unit vector ¢ is tangent to the edge at x = xp. When the vector xp has
been determined, the total ray length may be computed as

R=R;+ R.
=|x1)—x3|+|xq~xul. (6)
In the time domain, the ray geometry of the incident ray and the cones of
diffracted rays, which is shown in Figure 1, is valid for small times after the arrival
of a diffracted pulse. In general, a solution in the frequency domain at high

frequencies is related to the solution near the wave fronts in the time domain, by
well-known rules of Fourier analysis.

GLoBAL TRIANGULATION METHOD

In the inverse problem, the position vectors xs and x¢ are known, In addition, the
time r{xs, xg), which denotes the time span between emission at xs and reception
of the diffracted signal at x¢ is known. For L-L diffraction we then also know

R = R(xs, xq) = c;_'r(xs, xQ) (7)
where ¢;, is the speed of longitudinal waves. On the basis of ray theory, it then
follows that xp is Tocated on a spheroid E(x), whose foci are at the points xs and xq,
and whose major axis length is R. The eccentricity of the spheroid is

e=|xq—xs|/R=|X|/R (8)

where we have implied

X= Xg — Xs. (9)
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The length of the minor axis is (1 - e*}/*R, and the semi-latus rectum, /, is
{=14(1—e*)R. . (10)

For any point on the spheroid, we have

p={x—xs)/R {11a)
Ri=|x —xsl|. (11b)
We also define
q=(x—xg)/Rr {12a)
Ry = |x—xq|. {12h)

By using the equation for an ellipse in polar coordinates, centered at xg, E(x) may
be represented by

Elx)={x|x=xs+ Rip; Ri=1{1-ep-X/| X |17 |P| = 1}. (13)
The length R, can also be expressed as
R;= W/2(R —~ p-X) (14a)
where
W=R>—|X|% (14b)

Thus, from the travel time (or ray length) from one source position to one receiver
position, it can be concluded that the flash point xp is located on a spheroid with
focal points at S and Q. To determine the actual position of the flash point, we need
travel times for additional source and/or receiver positions. A large shift of the
source and/or the receiver position will give rise to a quite different flash point. The
shift of the flash point-is, however, of second order when either or both the source
and the observer are moved only slightly. This property will be used to determine
the positions of flash points.

Let us first move point @ over a small distance in the direction defined by the
unit vector V. As xp changes, so does the travel distance R and the spheroid E(x).
The distance E; for a point which is on the intersection of the two spheroids satisfies
the equation

VyR; = V.VR; =0, (15)
By the use of (14), we then find
PV X/ W) = Vu(R/W) =0 (16)

where W is defined by (14b). Similarly, if the source is moved over a small distance
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in the direction defined by the unit vector U, we find
q-Vu(X/ W) + Vy(R/W) = 0. (17)

Additional relations follow by tracing the change of R as the source is moved
from S) to Sz, as shown in Figure 2, We have

AR = 8;D; + DyQ — S1Dy — D\ Q. (18)
To first order this relation can be reduced to
AR = ﬂmp-U+ D\D, cos{or + Agr) — DhD; cos ¢, (19
from which it follows that

p-U+ Vy(R) =0, (20)

Fra. 2. Receiver position @, source positions Si and Sy, and corresponding flash peints D, and D».
In a similar manner we obtain
q-V+Vy(R) =0 (21)
The system of equations (16) and (17) and (20) and (21) must be supplemented by
ipl=1 (22a)
and
lgi=1L (22b)
The unit vector p can be solved from (16), (20), and (22a). Equations (16} and (20)
represent planes, while (22a) is a unit sphere. The intersection of each plane with
the unit sphere provides a circle. The two circles have two points of intersection.

The simultanecus equations are of the general form

pa+C=0 pU+C=0 lp|=1 (23)
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where
a=V(X/W)/|Ve(X/W)|, W=R*-|X]? (24)
Ci = ~Vu(R/W)/|Ve(X/W)| (25)
C = Vy(R). (26)
It is noted that
la|=|U|=1 =1=0C,C=s1, (27)

and we assume that @ and U are not parallel. The solution to (23) may be written
as

p*-—m{(Cza—ClU)A(aAU)i[!aAsz (28)
~|Cya— QU] a » U)}/]a A U™

In the same manner, we can solve for ¢ from (17}, (21), and (22b). Whether we
determine p or g, there will be some ambiguity in the location of the flash point. For
example, the point corresponding to p* is different from the point for p~. However,
in practice it should be simple to decide which of p* or p~ is the correct vector. For
instance, if both source and receiver are located on a free surface, then only one of
p™ will point into the solid. Once p has been determined, the position xp may be
expressed as

xp=xg+ R;p. (29)

In summary then, the crack-edge mapping proceeds as follows. We start with a
source point S, defined by x¢, and a receiver @), defined by xg. For these two
points, we have a total ray length R. We then define unit vectors U and V at S, and
@1, respectively, and we consider a source point S; and a point of observation Qs at
distances Au and Av along U and V, respectively. For the combinations of S; and @,
and Si and @:, we then find the total ray lengths from the observed travel times.
The new ray lengths can be used to make first order computations of the gradients
appearing in (24) to (26). Substitution of the results in (28) yields the position of the
flash points corresponding to source S, and observer @.

In an alternative method for determining the flash point, the position of the
source is kept unchanged, but a total of three receiver positions are employed. In
addition to the receiver position @i, we consider positions Q. and Qs which are
short distances from @, along the unit vectors V, and V;, respectively, where V, A
V2 # 0. According to equation (16), the unit vector p can then be solved from

PV X/ W) — Vy,(R/W) =0, Jj=12, {30)

Here, Wis defined by equation (14b). It follows from (21) that the unit vector qQ can
be solved from

q-Vi+Vy(R)=0, j=1,2 (31)
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Equations (30) and {31) may be shown to be equivalent, and either set of equations
can be solved to give the flash point.

Similarly, the flash point can be determined by keeping the receiver fixed and
moving the source in two nonparallel directions. Therefore, in terms of discrete
measurements, the following combinations can be used in order to determine one
flash point

I. One source and three noncollinear receivers
IL. Two sources and two receivers, the four being noncollinear
ITI. Three noncollinear sources and one receiver.

The method of this section is a global triangulation method, i.e., it completes the
triangle with vertices at the source, the receiver, and the flash point. In principle,
the complete crack edge can be mapped by using data from one pair of source
positions and N pairs of receiver positions. Each pair of receiver positions provides
a flash point. Three not necessarily adjacent flash points determine the plane of a
flat crack. When we know the plane of the crack, we can determine the tangent at
each flash point by the use of (1) or {5). In order that the flash points will not cluster
too closely, and in order that a sizable segment of the crack edge will be mapped,
the pairs of observation points should be at some distance from each other.
Unfortunately, the method is rather sensitive to errors in the input data. It may,
however, be expected that a single point close enough to the crack can be determined.
This point can then be used as a base point for a local crack-edge mapping, which
is discussed in the next section.

The computed position of a flash point will contain errors due to inaccuracies in
the data and in the method of computation. The former are the inevitable result of
errors in the measurement of the travel time of the first-arriving diffracted signal.
The computational errors are incurred in using a finite difference approximation to
the gradients V¢ (R) and V¢ (R). These errors can be illustrated by an application of
the inverse method to synthetic diffraction data. In the remainder of this section we
consider an example, wherein for a given source, receiver, and crack edge, the ray
lengths have been calculated to produce synthetic data. By using this perfect data
in the inverse method, the magnitude of the error with increasing source/receiver
shifts has been demonstrated. Next, we have introduced artificial errors in the
perfect data to show their effect on the computed flash point positions.

Example
Let us consider an ellipse in the plane x = 0, defined by
x4yt —-1=0, 2z2=0 (32)
Thus, the semi-major axis is unity, and the semi-minor axis is 0.5. Here, the unit
length can be chosen arbitrarily, for example, one unit could be 10 m. We consider
three positions defined by

1 {9, 1, 10); 2. (=3, 17, 10% 3: (=15, 13, 10).

These three points serve alternatively as source and receiver positions. The notation
(1, 3) means that point 1 is the source and point 3 is the receiver. The exact flash
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points are
(1, 2): (0.757, 0.327, 0.000) (33)
(1, 3): (—0.041, 0.500, 0.000) (34)
(2, 3} (—0.826, 0.282, 0.000}, (85)

Approximations to the flash points have been found by using method II. The
procedure works as follows: at each source/receiver position, a unit vector defined
by (1, 2, 0)/ V5 is taken as the direction of U or V, as the case requires. A shift
distance Av defines the source/receiver pair Sz, Q: corresponding to the original
pair 51, @1. The four travel times 7;;(f, j = 1, 2) corresponding to source S; and
receiver &, are calculated. A new source position is defined as the mid-point between
81 and 8, and similarly a new receiver point is defined as the mid-point between

TABLE 1

PostTIONS oF FLaSH PoiNTs AND CORRESPONDING
RELATIVE ERRORS FOR INCREASING SHIFTS OF SOURCES
AND RECEIVERS

Source

ap Observer Fiash point ¥eror
(1, 2) (0.757, 0.327, —0.000} 0.000
&1 (1, 3) (~-0.041, 0.500, —0.000) 0.000
(2,3) (~—0.826, 0.282, ~0.000) 0.000
(1, 2) (0.757, 327, —0.000) 3.601
0.2 (1, 3) (~0.042, 0.500, —0.000) (001
2, 3) (—0.827, 0.282, —0.001) 0.001
(1,2) (0.755, 0.328, ~0.003) 0.004
0.5 (1, 3) (—0.044, 500, —0.003) (.004
(2, 3) (—0.828, 0.282, —0.004} 0.004
{1,2) {0,746, 0.330, —0.010) 0.015
1.0 (1,3} (0.051, 0.501, —0.012) 0.016
2, 3} {~0.833, 0.283, ~0.016} 0.018

and .. With respect to these new positions we have, for example, that
Vyuw = er(Ta + 722 — Ta — 7i2)/2480 + O (Av)F). (36)

Thus, the directional derivatives are correct to second order in the shift Av. The
results, stated to three decimal points, are presented in T'able 1. The error is defined
as the distance between the actual and the computed flash point. Very good
agreement is achieved for an intertransducer distance of Av = (0.1, but acceptable
agreement is still found for Av = 1. Whatever value of Av is taken, the three flash
points define a significant segment of the crack edge.

Table 2 shows results for the case of various uniform ray length errors. Not
unexpectedly, ray length errors of unity can introduce errors in the flash point
positions of the order of 0.5, i.e.,, of the order of the semi-minor axis of the ellipse. If
the unit is 10 m, and we consider a velocity of ¢; = 6.10° m/sec, a ray length error
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of a unit corresponds to an error in the time measurement of about 0.0015 sec. It is
apparent that the global triangulation method can give rise to substantial errors if
it were to be used for the mapping of the complete crack edge, and if the errors were
uniform for each set of data, but quite different for different data sets.

The uniform ray length errors considered do not produce a sizable error in the
computed directional derivative, but rather, have the effect of spatially translating
the flash points. However, if the errors are allowed to be nonuniform for the same
data set, the gradient approximation can become very erroneous, leading to much
larger errors for the computed flash points. In the next section, we present results
for the alternate method proposed in this paper, the local crack-edge mapping, for
the case of random errors.

LocaL Crack-Epce MAPPING

The global triangulation method can be used to determine a point on or near the
crack edge. In this section, it is shown that such a point can subsequently be used

TABLE 2
FrasH PoinT ERRORS (FPE) FOR INCREASING RAY
LENGTH ERRORS (RLE} AND INCREASING SHIFTS OF
SOURCES AND RECEIVERS

Source rie = 0.5 rle = 1,0 rle = ~1.0
ae Ol.hs"m‘vur T
) fpe fpe fpe
(1, 2) 0.295 0.587 0.596
0.1 (1, 3) 0.387 0.766 0.798
(2, 3) 0.3566 0.717 0.700
{1, 2) 0.295 0.687 0.596
0.2 {1, 3} 0.387 0.766 (.798
(2, 3} 0.356 6.716 0.699
(1, 2) 0.297 0.590 0.6594
0.5 (1, 3) 0.388 0.768 0.796
(2, 3) 0.354 0.715 0.700
(1,2) 0.305 0.600 0.586
1.0 (1, 3) 0.394 0.773 0.791
2,3 0.350 0.711 0.704

as a base point. Relative to the base point other points on the crack edge can be
determined by a local crack-edge mapping. The local mapping is also based on travel
times from source to receiver via a flash point. However, instead of using single
travel times to produce single flash points, we now use a set of travel times to
simultaneously produce a set of flash points. The local crack-edge mapping should
have greater accuracy than the global triangulation method.

As before, we have a source S at x5 and a receiver @ at x¢. The travel time 7 for
the diffracted signal is assumed known. Then the flash point x, lies on the surface
Iy defined by equation (13). The unit vectors p and ¢ and the distances R; and R,
are defined by equations (11) and (12). With respect to the base point B, whose
position is defined by xr, we define the unit vectors py and g, and the distances
Rsp, R, and Ry as follows

xp=xs+ Reppn =x¢9 + Rangy (37)



Y

MAPPING OF CRACK EDGES BY SEISMIC METHODS 789

Rp = Rgs + Ros. (38)

The geometry is shown in Figure 3.
Now, we consider

ct.tr— Rp=R— Rg=R;— Rsg+ Rt — Egp. (39)

Since
R; — Rsg = (xp — XB)-Dn (40)
Ry — Rgp = (xp ~ x8)-qs, (41)

equation {39} yields
(xp — x8)-(ps + qa) = c.7 — Rs. (42)

Equation {42) represents a plane which approximates the surface E near the flash
point I,

Fic. 3. Base point B near crack edge for local mapping technique.

To map the edge of a crack, we consider n source positions S;, i = 1, n and m
observer positions @;, j = 1, m. For each source observer pair (S;, @), there is an
associated travel time, which provides an input to equation (42). The base point
defined by xz remains the same for all cases. The planes that are obtained in this
manner pass very close to the crack edge, in fact they envelope a curve which is an
approximation to a segment of the crack edge. The inversion thus reduces to finding
the congruence of all the planes. Since our data are finite, we will obtain a polygon
of points which approximates a segment of the crack edge.

For specificity, we consider the case that there are two sources and 20 receivers.
The corresponding travel times give 40 planes of the type defined by (42}. Let Q(,
J), i=1,2,j= 1,20 be such a set of planes. Points on the crack edge may be found
as follows: consider the intersection of the planes §(1, j), / = 1, 20 with any one of
the planes (2, ),/ = 1, 20, say £(2, k). The locus of intersection is a polygon, which
we denote by I'(2, k). To obtain points which approximate the flash points, we test
to see if any of the planes Q(2, /), J # k intersect the polygon (2, k). For such a
point of intersection to exist, the flash point of (2, /) at j = k must be interspersed
with the flash points of £(2, 7), j = 1, 20, # k. Also, we require that the segment of
the crack edge containing the flash points of Q(1, j), s = 1, 20 has a section in
common with the segment for the planes Q(2, 7}, j = 1, 20.
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In the general procedure, we first obtain three points in order to specify the plane
of the crack. Once this has been achieved, the remaining approximate flash points
are easily determined as being on the polygon formed by the set of planes Q(Z, j), {
=1, 2,7 =1, 20 and the crack plane. Since the accuracy is unknown, an iterative
procedure should be used. In this procedure, a new initial point is taken, say at one
of the estimated flash points, Then the mapping procedure is repeated. In general,
such an iteration can be performed several times until all the points converge to
fixed points on the edge.

Example

The same ellipse in the z = 0 plane described by equation (32} is considered. The
two source positions and the array of 20 receiver positions are all taken in the plane
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o) “w&
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z ¥
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Fic. 4. Computed points and crack edge: a (fop) base peint (1, 3, 3); b (middle} base point (1.2, 1.3,
1.2); and ¢ (boftom) base point (0.2, 0.5, 0).

z = 10. The x, y coordinates are
Si: (—10, 10, Sa: (=5, 10), @;= (5,200 +/7(05, —0.75), j=1,20

In a trial calculation, the point (1, 3, 3) was arbitrarily chosen as the initial base
point. Figure 4 shows the projections of the computed points on the planes y = 0(a)
and z = 0(b), respectively. A least-square quadratic fit is plotted through the points.
The actual crack edge is also shown. Very poor agreement is noted for this base
point. For the first iteration, one of the cluster of points in Figure 4a was chosen as
a new base point, namely (1.2, 1.3, 1.2}. The resulis, shown in Figure 4b are seen to
be much closer to the crack edge. From these points, we select the base point (0.2,
0.5, 0} and proceed with the next iteration to obtain Figure 4c.

Figure 5 shows the same results for the case that the synthetic travel times (or
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ray lengths) have been perturbed with random errors. The error in the ray length
was taken at random from (—0.01, 0.01) for each ray path between source S; and
receiver @;; { = 1, 2, j = 1, 20. It is observed that the points do not define a curve as
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F1G. 5. Computed points and crack edge for random errors of ray lengths in range (—0.01, 0.01); a
{top) base point (1, 3, 3); b (middle) base point (1.2, 1.3, 1.2); and ¢ {botiom) base point (0.2, 0.5, 0).
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Fi6. 6. Computed points and crack edge for random errors of ray tengths in range {—0.05, 0.05), base
point (0.2, 0.5, G).

clearly as in the case of error-free data. However, the least-square quadratic fit gives
a reasonable approximation. If a random error between ~0.05 and +0.05 is allowed
(see Figure 6), then there is no discernible edge present in the computed points.
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This suggests that an error between 0.01 and 0.05 is an upper limit on the magnitude
of permissible random errors in the ray length. If one unit is 10 m and the velocity
is er = 6.10°m/sec, the error 0.01 translates into a time error of 15 usec.

We note that the errors considered here are random, as opposed to the uniform
errors considered in the previous section for the global triangulation method.
Uniform errors have the same net effect on the local edge mapping as on the global
triangulation, i.e., the edge will be translated by an amount which is approximately
proportional to the error.
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