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Backscatter of time-harmonic longitudinal waves from a surface-breaking crack is investigated in the high-
frequency range. It is assumed that the distance of the transducer to the crack is large as compared to the
crack depth, and that the incident rays are normal to the crack edge. The crack length is assumed much
greater than its depth. A two-dimensional model for the transducer is considered. In the time domain, the
first and second received signals are the edge-diffracted signal and the corner-reflected signal, respectively.
These signals are analyzed in the frequency domain, by using the uniform asymptotic theory of diffraction.
The response of the transducer due to the interference of the two signals is calculated. It is shown that the

transducer’s response is a sensitive function of its position.

PACS numbers: 43.20.Fn, 43.20.Bi, 43.20.Dk

INTRODUCTION

In the geometry shown in Fig, 1 a transducer is pos-
itioned relative to a surface-breaking crack such that
the emitted signal is reflected to the transducer by the
corner at the crack mouth. In the time domain the
corner reflection is, however, preceded by another
distinct signal which is due to diffraction from the
crack edge. As the transducer is moved slightly, the
relative amplitudes of the two signals may change
dramatically. This will happen when the transducer
is located at the boundary of the zone of reflected
waves.

The interference between these two signals, which
can be most graphically displayed in the frequency do-
main, provides essential information for the determin-
ation of the crack depth. The most distinct interfer-
ence is obtained when the two signals are of the same
order of magnitude.

For high-frequency (short) pulses, ray theory pro-
vides a very useful method to analyze interference
phenomena in the frequency domain. In an elastic solid
there are rays of longitudinal motion (L rays) and rays
of transverse motion (7 rays). Unfortunately, it is
rather complicated to analyze fields at shadow boun-
daries and at boundaries of zones of reflected waves.
The simplest high-frequency theories, i.e., geometri-
cal elastodynamics (GE) and geometrical theory of dif-
fraction (GTD) are not valid near such boundaries. In
this paper we estimate the relative amplitude of the
edge diffraction and the corner reflection by using uni-
form asymptotic theory, which provides corrections to
GE and GTD at shadow boundaries and boundaries of
zones of reflected waves.

The results that are presented here are valid at high
frequencies, in the farfield, and for a two-dimensional
approximation. By high frequency we mean that 2, d
> 1 (where &, =w/c, and d is the crack depth), and by
farfield that d/»< 1, where 7 is the distance from
transducer to crack mouth. For a two-dimensional con-
figuration we assume a line source behavior for the

The use of ultrasonic methods to detect internal as
well as surface defects is now well established. In re-
cent years these methods have been refined to deter-
mine the size, skape, and orientation of cracks. For
a review of both bulk and surface wave ultrasonic meth-
ods for the measurement of the depth of surface-break-
ing cracks we refer to a paper by Doyle and Scala.?

A recent paper by Golan et al. 2 describes current work
on ultrasonic diffraction techniques for the characteriza-
tion of fatigue cracks,

It is assumed that the faces of the crack do not inter-
act with each other. Thus the crack never completely
closes. This is a realistic assumption if the crack is
actually a thin slit of finite width, or if a static pre-
stress has been applied. If the crack faces would in-
teract, corner reflection and edge diffraction would
still occur, but these effects would be weaker.

I. RAY GEOMETRY

We consider a surface-breaking crack of depth d nor-
mal to the free surface I, at a distance b from a vertex
of interior angle ¢, 0< ¢<n/2. The transducer is free
to be shifted along the free surface II. A position of
the transducer is defined by x, where x is the distance
of the center of the transducer from Q, the intersection

transducer, Implicitin this two-dimensional modelis that FIG. 1. Ray geometry of transducer and surface-breaking
the crack widthis much larger thanthe transducer width. crack.
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of II and the normal to II from the crack mouth. The
distance x is defined as positive in the direction away
fromthe vertex, so, for example, in Fig. 1: x<0. We
define the distance »=bsin¢ as the distance from Q to
the crack mouth. '

Some insight in the geometry of the boundaries of
zones of reflected waves can easily be obtained on the
basis of simple geometrical ray-theory considerations.
Let us assume that the transducer emits a beam of L
rays (longitudinal waves) of vertex angle 2¢,, The rays
appear to emanate from a virtual source P, as shown in
Fig. 1. Each ray of the beam is defined by an angle
¥, where ye(=9,,9,), and ¢ is measured clockwise from
the central ray.

Part of the beam emitted by the transducer will im-
pinge upon the crack. In Fig. 1 the rays 1 and 4 do
not interact with the crack. Ray 2 is diffracted by the
crack edge to produce a cylindrical wave emanating
from the crack edge. The beam between rays 2 and 0
is first reflected by the crack and then reflected from
surface 1. Conversely the beam between rays 0 and 3
is first reflected by I and then reflected by the crack.
Together the crack and surface I generate a “reflection”
which is directed back towards the transducer and which
is referred to as the corner reflection. The corner re-
flection is detected by the transducer as a signal with
a different phase and amplitude than the edge-diffracted
signal.

In addition to corner reflection and edge diffraction
one might consider diffraction at the point where the
crack intersects the free surface (the crack mouth).
For wedges of vertex angle <7, this diffraction is,
however, thought to be negligible.

For the present purpose we are interested only in the
field in a direction close to the direction of the incident
rays. Let us consider an L ray with a signal of initial
amplitude A(y), incident at an angle (7/2 — ¢ + ¢) on the
free surface I. For simplicity we assume that the in-
cident wavefront is essentially plane. After reflection
the amplitude on the reflected L ray then is RE(n/2
- ¢+ P)A(Y), where the reflection coefficient RZ(9,) is
defined by

sin26, sin26 , — k® cos?26 ,

L(g)—

R (6)= sin26, sin26 .+ «* cos?26, ° 1)
Here

k=cy/cp, 2

where ¢, =[(A+24)/p]'/? and ¢ .= (1/p)*/? are the velo-
cities of longitudinal and transverse waves, respective-
ly, and 0, is defined by Snell’s law.

(3)

— g1
cosfp,=k" cosd, .

The rays reflected from I are next reflected by the
crack, and they produce a reflection boundary in the
direction of the incident ray. An incident L ray also
generates mode-converted T rays at surface I. These
T rays are incident upon the crack at an angle less than
the critical angle, and so do not generate reflected L
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FIG. 2. Image beam for corner reflection.

rays. The same T rays do generate diffracted L rays
at the crack edge. However, these cylindrically dif-
fracted L rays are of negligible magnitude as com-
pared with the corner reflected L-L~L rays. This will
- be more evident once we have calculated the corner re-
flection magnitude. Hence for the present purpose only
the L-L-L rays need be considered for reflection of
L rays first from I and then from the crack surface.
It can be verified that the same statements can be made
for rays which are first reflected from the crack, and
then from surface 1.

Thus, for the field near the transducer, we only need
to consider L-~L~L reflections. With this in mind we
may view the reflection problem in terms of an image
source which generates rays carrying waves of ampliL
tude RE(n/2 = ¢ + $)A(9) incident upon a crack of length
2d in an unbounded medium. This change of amplitude
and source direction is equivalent to including the re-
flections at I implicitly, but excluding mode conver-
sions. The geometry is shown in Fig. 2. In Fig. 2
the ray path L,L,L, for the original beam becomes the
path L /L/L,, for the image beam; L,L,L, becomes
L/L,L,, etc.

With respect to the incident image beam and the crack
in an unbounded solid the simple geometrical ray-theory
considerations must now be extended to obtain an ac-
curate representation of the scattered field near the re-
flection boundary of the L rays. This can be done by
uniform asymptotic theory as discussed in the next sec-
tion.

1l. 2-D SCATTERING OF A PLANE LONGITUDINAL
WAVE BY A CRACK

As a preliminary to the analysis of scattering by a
surface-breaking crack we investigate the scattering
of a plane longitudinal wave by an interior crack. A
crack of uniform width 2d is shown in Fig. 3. The x,
axis is parallel to the edges of the crack, and the crack
is defined by x,=0, |x,| <d. An incident plane longitudi-
nal wave is defined by

u! =Apexplik,p *x), 4)
where
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p=(cosé, ,sing,,0). ()

Since both the incident wave and the scattering obstacle
are independent of the x; coordinate, the scattering
problem is two-dimensional in character.

A. Geometrical elastodynamics (GE)

We will first consider the geometrical elastodynam-
ics field. In GE the incident wave and the geometrical
reflection from the illuminated face of the crack are
taken into account. For an unbounded plane of reflec-
tion the reflected wave is

u= Z uB, (6)
B<L, T

where

uP=AR%(0, )d®exp(iksp® - x). ("
In Eq. (7), R%(6,) is the reflection coefficient for re-
flection of an incident longitudinal wave as a wave of
type 8 (B=L or B=T). Also

p?=(cosf,, —sind,,0), (®
where 8, satisfies Snell’s law given by Eq. (3), and

d&* =p*, dT=(siné,,cos6,,0). 9)

Quantities associated with the crack edges at x, =-d
and x, =+ darelabeledby 1and 2, respectively. Inac-
cordance with Eq. (6) the GE field can then be written
as ‘

we=[H(t,)+H(t,) = H(-x,) Ju!
+ BZL: [H(sg,) + Hsg,) — H(=x,)Ju®. (10)
=L, T

Here H(-) is the Heaviside step function, and ¢, and s,
are defined as

t,=(2k,R,)"/*sinz(6, - 6,,) , (11)
sy =—-(2keR,)'/2sin(6, + 65 ) , (12)
where
X2
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FIG. 3. 2-D scattering by a crack.
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981=Gﬂ’ emzﬂ—ss, ﬁ=L,T, (13)

and 8, and 6, are related by Snell’s law (3). The angles
6, and 6, are defined in Fig. 3. Equation (10) shows
that the GE field is discontinuous at the shadow boun-
daries B, and Bf,, and at the houndaries of the geo-
metrically reflected field, Bf,. These boundaries are
also shown in Fig. 3.

B. Geometrical theory of diffraction (GTD)

Within the context of GTD, the field carried by the
primary diffracted body-wave rays are

uf=A(kgR,)*/?D§(6,;0,,) expli(ksR, = ky, pyd)d*
+ Ak aRz)-I/ZDg (855 6,5) expli(ksR, + kLpld)]daz ’
(14)

where =L or B=T. The angles 6, and §,, as well as
the distances along the rays. R, and R,, are shown in
Fig. 3. The unit vectors d*/ are

d,,,={[(—1)’”cosej,sin8,,0], B=L; j=1,2, (15)
[(~1Y sin6,,cos6,,0], B=T; j=1,2.
In terms of the polar coordinates » and 6,R, and 6,
may be expressed as
R,=[d?+7* - 2(-1¥ drcosf]/?, (16)
siné, =(r/R,)sing . - am

Expressions for the two-dimensional diffraction coef-
ficients D%4(6;6,) follow from Ref. 3. In the sequel we
will only consider the contribution from the primary
diffracted longitudinal wave. The relevant diffraction
coefficient is

DE(636,)= 2(2")3;;(:2_1,5(‘22;’;“(9) , (18)
where
£1(8)= (k® -2 cos?8)(k* — 2 cos?4, )

x (1-cos§)/2(1 +coso, )%, (192)
f2(8)=5in26 5in26,(x — cos6)'/?(k +cos8, )2,  (19b)
f3(8)=(cos8 — cosf, N« —cosb)

X (kg +cos8; )K*(—cos8)K *(cosh, ). (19¢)

In these expressions

k=cy/cp, Kg=cy/cp, (20

R B e =l
(21)

It can be shown that D%(6;6,) becomes unbounded at the
shadow boundary (6=#6,) and at the houndary of the
zones of reflected L waves (§=27-6,). For lel«1
we have ’

i7/4
9=6, ¢, D’,:(G;GL)=(;T)1;51?+O(1), (22)
el™/t 1 L
6=271~-6, —¢, Df(e;eL)=W?E—RL(9L)+O(1),

(23)
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where RE(6,) is defined in (1).

The total field according to GTD is

uf =ufe + E uf + O[(ksgr) ], (24)
T

8=,
where u#¢ and u§ are given by (10) and (14), respectively.
C. Uniform asymptotic theory (UAT)

The GE field, u¥¢, is discontinuous across the boun-
daries Bji, and Bf,, and the edge-diffracted field, uj,
blows up at these boundaries. Appropriate corrections
to (24) have been discussed by Achenbach ef al.® The
correction produces a result which is equivalent to the -
uniform asymptotic theory (UAT) which has been worked
out for acoustics and for electromagnetic theory, see
Refs. 4 and 5.

The total field according to UAT is given hy

w=u+ 2, uk+0[ks], (25)
8=L, T
where u€ is the following modification of ufe:
ub =[F(¢,) + F(t,) = H(—x,)u}
+ 2 [Flsg)+ Flsgy) - H(=x)]a® . (26)
8=L, T
Here ¢, and sq, are given by (11) and (12), and
1 * i(t2-r/4) 1 1 i @2+v/4)
=—= +oe=—¢' .
F(z) 7). e dt = ¢ k4]
The function F(z) has the following asymptotic behavior
F(z)=H(z)+0(z®), | z| =, (28)
and
_LL ir/4 l 2 -ir/a 3 -
F(z)—zﬁze ty e +0(z%, lzl-0.
(29)

It follows from (29) that F(z), and thus u® becomes sin-
gular at the boundaries of the shadow zone (9, =0, j)
and the zones of reflected waves (6, =27 —64,). It can,
however, be verified that these singularities are exact-
ly canceled by similar singularities in u%, and thus the
total field remains bounded, see (14), (22), and (23) for
B=L. Away from these boundaries L and Sg; are
large, because (kLR,)” 2> 1, hence (28) applies and we
find u® ~uwf¢. Thus at Bf, and B, the field is contin-
uous, and away from these boundaries the total field ac-
cording to UAT reduces to that of GTD.

I1l. CORNER REFLECTION

We now return to the surface-breaking crack, to con-
sider the application of uniform asymptotic theory. The
part of the beam which produces a corner reflection
consists of rays defined by the angle i, where Ye(¥,,¥,),
and ¢, and ¥, follow from Fig, 1as

Yy =max(—4,97), P=min(Yp, 9", (30)
where
—=,=%___ (r+r,)sing —~xcos¢
tan(¢ - y*) =SP/SO" = id+(r+°ro)cos¢+xsin¢ . o
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A neceséary and sufficient condition for the reflected
signal to exist is that y,> y,.

As discussed above the corner reflection of longitud-
inal waves is equivalent to determining the reflection
by an interior crack of an image beam of amplitude
Ri(n/2 - ¢+ P)A@). It is now assumed that ¢, is small
enough to approximate RZ (/2 — ¢ + §) by RE(n/2 = ¢)
throughout the interval (¢;,¢,). To analyze the reflec-
tion, the inhomogeneous beam with amplitude A(y) is
simplified to an homogeneous beam of amplitude A,
where

1 by
A0=—f AW dyp.
‘pz - ‘I)l b,

Thus A, is the average of A(y) across the crack. As
far as the reflection is concerned the incident beam is
now a plane longitudinal wave of amplitude RZ(n/2
- $)A,. Inaddition it is assumed that the scattering is
in the high-frequency range, i.e.,

(32)

kpd>1, (33)
and that we seek a solution in the farfield, i.e.,
d/r<1. (34)

With these three assumptions we can use UAT as de-
scribed in the previous section,

Let the point on the transducer be at x +y in the coor-
dinate system on II as defined in Fig. 4. Here x is the
coordinate of the transducer center, and y specifies the
point on the transducer. Since the transducer length is
21, we have -l <y <[,

We now make a final assumption, which is not essen-
tial to the analysis, but which helps simplify the ex-
pressions for the diffraction angles 6, (i=1,2) of Fig.
4. The assumption is that

(x/d),@/d)=0(1), (35)

which implies that all observations are made near the
boundary of the reflection zone. With this assumption,
we have

8, =21 = ¢+ [(x+y +dsing)/7][1+0(d/7r)], (36)
I
6,
¢
FIG. 4. Scattering angles for corner reflection.
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Oy=m+ O =[(x+y —dsin¢)/¢][1+0(d/r)], 37

thus the delay factors ¢,,s,,,7=1,2 of Egs. (11) and (12)
become

t, =2k, 7) 2sing[1+0d/7)], (38)

t,=4[1+0@d/7)], (39)
and

sp1= (2, P2 (x +y +d sing)/r][1+ 0d/7)], (40)

spo=—(3k, ¥ 2(x +y ~dsing)/r][1+0@d/r)]. (41)
Hence,

hyt,>1, (42)

and we may use the asymptotic form of F(z) from (28) to
obtain

F(t,) + F(t,) —H(—x,)=1+O[ (&, 7)%/?]. (43)

In the total field according to UAT from Eq. (25), the
diffracted field u? is canceled by the singular part of
F(s;,)+ F(sg,), to leave

¢ i ofT e'l’4
W -w =Ryl 5 =940 7w

8,

L
X (f e dt + =~
1,2 1) 2

(ei"ii - 1)) ut s

J=1, Lj
(44)
where u* is the reflected L wave of Eq. (7). We may
use the expressions for s;, of Egs. (40) and (41),
S
f “ e"zdt+f ‘it dt= f ettt de (45)
0 to~t1
where,
=2k, ) (x +y)/7], (46)
& = (zky )t /2(d/7) sing. 47

Therefore,

u’ - ut =rARE(P)RE(n/2 - ¢)Tz—

&1 2 ei™/e
x( A
eo-cl -8

x {et 43+D)[£, cos(2£,¢,) - i&,sin(2£¢,)] - 51}) ,

(48)

where r is the unit vector in the direction of the trans-
ducer. This expression gives the corner reflection at
any point on the transducer.

IV. TRANSDUCER

In the preceding two-dimensional analysis the dimen-
sions and the properties of the transducer have not en-
tered explicitly., The modeling of the transducer is
briefly considered in this section.

The transducer is in contact with the free surface I,
as shown in Fig, 1. It is assumed that the contact sur-
face is a circle of radius !, which transmits a beam of
essentially longitudinal waves. The signal may not be
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uniform across the beam, but it is axially symmetric
about a central ray. The beam may be convergent (fo-
cused) or divergent (as considered in this paper). The
transmission properties of the transducer are defined
by a function f{p), where p is the radial distance from
the center, with the normalization
2 1
7 J rewar=1. (49)

The transducer diameter 2] is small as compared to
the crack width and as compared to the distance between
the transducer and the crack. For the present geo-
metry, which is shown in Fig. 1, it is then justifiable
to consider the scattering as confined to planes normal
to the crack edge, i.e., normal to planes I and II. Let
III denote the plane through the center of the transducer
normal to the crack edge. There will be scattering
under angles with plane III, but its effect on the back-
scattered field measured over the width 27 of the trans-
ducer will be small, and it will not change much as the
transducer is moved along II. Since 2] is of the same
order of magnitude as the crack depth d, we must, how-
ever, maintain the length dimension 2! in the plane II.

In view of these observations we will integrate the
transducer properties in the direction normal to III,
but maintain its length dimensions in the intersection
of Il and 1. In this manner the transducer is modeled
in a two-dimensional geometry as a line element of
length 21, as shown in Fig. 1.

The beam generated by the line element has a radius
of curvature 7,, and it subtends an angle of 23,, where

(50)

The displacement amplitude is not uniform across the
beam, but it is symmetric about the central ray. Let
the angle ye(—y,,¥,) denote a single ray, then the cross-
sectional width of the circular transducer at the point
on the line model where the ray defined by § crosses

is 2I(1 ~tan?y/tan®y,)t /2, By virtue of the integration of
the transducer in the direction normal to plane III, the
amplitude A(y) corresponding to the line model is

A(p)=2C 1(1 _lany )” f AeOat,

where the function f(») defined by (49) has been used
and

p(t)=1 (t2+(1 f)ﬂ‘;”-)m

tan“y,

l=rytany,.

(51)

(52)

In Eq. (51) C, is a constant which depends on the trans-
ducer and its coupling to the free surface.

When the transducer acts as a measuring device, we
assume that the line model receives in the same way
that it emits, except that the characteristic function is
taken as g(p). Thus if «(y) is the displacement from a
normally incident wave at the point on the line model
crossed by the ray, then the displacement as measured
by the whole transducer is U,

7y [0
=51 u@B®y) sec®ypdy, (53)
wl® g,
0
J. D. Achenbach and A. N. Norris: Diffracted signals for a crack 169



where
_ -tanz 1/2 1
B(y)=2C, (1 —"’—tanz %) jo' glo(Oat . (54)

Here C, is another transducer constant and p(¢) is de-
fined by Eq. (52). For example, if u()=u,, a constant,
then U= Czuo.

For our purposes we shall take the characteristic
functions to be constants, therefore

fp)=glp)=1, (55)
A@)=2C, (1% - r2tan®p) /2, (56)
B()=2C,(I? - r3tan?y)*/2, (57)

/

V. INTERFERENCE OF CORNER REFLECTION AND
EDGE DIFFRACTION

We have already examined the corner reflection. Be-
low, we shall derive the field on the transducer due to
the edge diffraction. Then we will sum the two distinct
effects and use the transducer model of the previous
section to determine the response as a function of fre-
quency and transducer position.

The édge-diffracted rays have the shortest travel time,
The angles of incidence and diffraction are approximately
¢ and 7+ ¢, see Fig, 1, Thus the diffraction coefficientis
approximately D% (7 + ¢ ;¢), where Df (6;6,) is definedby Eq.
(18). The ray which strikes the cracktipis definedby the
angle y~, givenby Eq. (31). I |¢~| >¥,, then no ray strikes
the crack tip and no edge diffractionis observed, although
corner reflection maybe observed. However,if thereis
edge diffractionthenthere will alsobe corner reflection.
Assuming that |~ |<y,, then the diffractedfieldin the neigh-
borhood of the transducer is u?, where

wl =A@ )k, 7) V2D (1 + ¢; pletre 2 coso) (58)

The phase due to the path length traveled has been cal-
culated by using the assumption of Eq. (34) that d/»
«1.

The total displacement amplitude at the point y on the
transducer due to corner-reflected rays and edge-dif-

fracted rays follows from Eqgs. (48) and (58) as u(y):
u(9)=[A( W, 7)™ /DL (n + ¢p; p)e2ikLdcoso

+ 7724 RE(SIRE (1/2 - $)G(p)]etter (59)
where
A $] T pir/a
G(y)= ];0_“ el /v ge ﬁ{[‘g’1 cos(2&.¢,)
- i£,8in(2E,¢, ) ]! €1 — g} (60)

and £, & are given by Eqs, (46) and (47). It ismoted
that u( y) is the superposition of two waves whose phase
difference depends on d.

We assume a constant characteristic function, so that
A(y") is given by Eq. (56). The amplitude 4, then fol-
lows from Eq. (31) as

2C 0
= 1 2_ .2 2,0)1/2
A, @ - lpl)j‘; (12 - ritan®y)'/2dy. (61)

In Eq. (59) we now use the substitution

y= —Tota.l'ld) ’ (62)

and we substitute the result in Eq. (53), to obtain
U= Cz[A(IIJ-)(kL’V)'l /sz(n' + ¢; ¢)e‘2ide cose
+2"'3/21'2A0R£(¢)R£("/2 _ ¢)

i
x [ @ -yrrrciyayleter. (63)
-t
It is noted that U/C,C, is a function of the seven param-
eters k;, 7, ¢, d, x, 1, and 7,

VI. RESULTS AND DISCUSSION

For ¢=u/4, d=1, r=20, and [=0.5 the dimension-
less transducer response U, where U=U/C,C, and U
is given by Eq. (63), has been plotted versus the di-
mensionless frequency wd/c; , for several values of
x and two values of 7. Inthe computations ¢;/c =2,
which corresponds approximately to aluminum or titan~
ium.

15+ X=0.0 .15 A5 X= -6
.10 .10 .10
U
.05 .05 .05
N\
0.00 5 5 .10 0.00 5 + 8 0 0.00 5 5 0 FIG. 5. Amplitude versus
wd/e, frequency curves for vari-
.15 .15 15 gus pos:tions _o; ;he trans-
X= .9 X= 1.2 X= 1.5 ucer, lor 7,=20.
.10 JA0 7T .10
U
.05 .05 /\/\/ .05
0-00% 6 10 0.00 5 6 10 0:005 6 10
wd/c,
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.15 = 0.0 .15 51
.10 .10 Jd07t
U
.05 .05 .05
FIG. 6. Amplitude versus
0.00% 6 10 0-00% 1) 10 0.005 6 10 frequency curves for vari-
wd/c, ous positions of the trans-
.15 .15 .15 ducer, for ry=17,
X= 1.5 X= 2.0 X= 2.5
.10 10 .10
’ /\/\/
.05 .05 W .05
e — ]
0-002 5 0 0.002 & 0 l].lfll')2 + 5 0
wd/c,

In Fig. 5, r,=20 and x varies from 0 to 1.5 in incre-
ments of 0.3. In Fig. 6, »,=7 and x varies from 0 to
2.5 in increments of 0.5. The trend is similar in both
cases. For small x, the response increases with the
frequency. This is to be expected since at x =0 the
transducer is in the region of maximum corner reflec-
tion. The edge diffraction is also present, but it pro-
duces oscillations which are small relative to the total
amplitude. As x is increased, the contribution of the
corner reflection decreases faster than that of the edge
diffraction. Just before a cutoff distance is reached at
which the corner reflection virtually vanishes, the two
effects are of approximately equal magnitude, giving a
goodinterference patternin which the “peak to valley” ra-
tiois large. For this position of the transducer the inter-
ference pattern would probably be best recognizable
from experimental data. However, the region in which
this effect is present is confined to a small zone just
before the cutoff distance. I the transducer is moved
slightly away from this zone, then the distinct interfer-
ence disappears.

It is noted that the period of oscillation correlates
with the simple interference equation

(wd/cy)cosp=m, (64)

for which, wd/c; =4.44 in our example. Thus mea-
surement of the period leads to an estimation of the
crack depth.
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Finally, the fact that the cutoff distance is larger for
7,="T than it is for »,=20 is attributable to the wider
spreading of the beam in the former case; thus the
transducer may be moved over a greater range while
still permitting a significant part of the beam to inter-
act with the crack.
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