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Backscatter of time-harmonic longitudinal waves from a surface-breaking crack is investigated in the high- 
frequency range. It is assumed that the distance of the transducer to the crack is large as compared to the 
crack depth, and that the incident rays are normal to the crack edge. The crack length is assumed much 
greater than its depth. A two-dimensional model for the transducer is considered. In the time domain, the 
first and second received signals are the edge-diffracted signal and the comer-reflected signal, respectively. 
These signals are analyzed in the frequency domain, by using the uniform asymptotic theory of diffraction. 
The response of the transducer due to the interference of the two signals is calculated. It is shown that the 
transducer's response is a sensitive function of its position. 

PACS numbers: 43.20.Fn, 43.20.Bi, 43.20.Dk 

INTRODUCTION 

In the geometry shown in Fig. 1 a transducer is pos- 
itioned relative to a surface-breaking crack such that 
the emitted signal is reflected to the transducer by the 
corner at the crack mouth. In the time domain the 

corner reflection is, however, preceded by another 
distinct signal which is due to diffraction from the 
crack edge. As the transducer is moved slightly, the 
relative amplitudes of the two signals may change 
dramatically. This will happen when the transducer 
is located at the boundary of the zone of reflected 
waves. 

The interference between these two signals, which 
can be most graphically displayed in the frequency do- 
main, provides essential information for the determin- 
ation of the crack depth. The most distinct interfer- 
ence is obtained when the two signals are of the same 
order of magnitude. 

For high-frequency (short) pulses, ray theory pro- 
vides a very useful method to analyze interference 

, 

phenomena in the frequency domain. In an elastic solid 
there are rays of longitudinal motion (L rays) and rays 
of transverse motion (T rays). Unfortunately, it is 
rather complicated to analyze fields at shadow boun- 
daries and at boundaries of zones of reflected waves. 

The simplest high-frequency theories, i.e., geometri- 
cal elastodynamics (GE) and geometrical theory of dif- 
fraction (GTD) are not valid near such boundaries. In 
this paper we estimate the relative amplitude of the 
edge diffraction and the corner reflection by using uni- 
form asymptotic theory, which provides corrections to 
GE and GTD at shadow boundaries and boundaries of 

zones of reflected waves. 

The results that are presented here are valid at high 
frequencies, in the farfield, and for a two-dimensional 
approximation. By high frequency we mean that kLd 
>> 1 (where kL ----w/c• and d is the crack depth), and by 
farfield that d/r<< 1, where r is the distance from 
transducer to crack mouth. For a two-dimensional con- 

figuration we assume a line source behavior for the 
transducer. Implicit in this two-dimensional modelis that 
the crack width is much larger than the transducer width. 

The use of ultrasonic methods to detect internal as 
well as surface defects is now well established. In re- 

cent years these methods have been refined to deter- 
mine the size, shape, and orientation of cracks. For 
a review of both bulk and surface wave ultrasonic meth- 

ods for the measurement of the depth of surface-break- 
ing cracks we refer to a paper by Doyle and Scala. • 
A recent paper by Golan et al. ,2 describes current work 
on ultrasonic diffraction techniques for the characteriza- 
tion of fatigue cracks. 

It is assumed that the faces of the crack do not inter- 

act with each other. Thus the crack never completely 
closes. This is a realistic assumption if the crack is 
actually a thin slit of finite width, or if a static pre- 
stress has been applied. If the crack faces would in- 
teract, corner reflection and edge diffraction would 
still occur, but these effects would be weaker. 

I. RAY GEOMETRY 

We consider a surface-breaking crack of depth d nor- 
mal to the free surface I, at a distance b from a vertex 
of interior angie •b, 0 < •b< •/2. The transducer is free 
to be shifted along the free surface II. A position of 
the transducer is defined by x, where x is the distance 
of the center of the transducer from Q, the intersection 

FIG. 1. Ray geometry of transducer and surface-breaking 
crack. 
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of II and the normal to II from the crack mouth. The 

distance x is defined as •positive in the direction away 
from the vertex, so, for example, in Fig. 1' x < 0o We 
define the distance r---b sin0 as the distance from Q to 
the crack mouth. 

Some insight in the geometry of the boundaries of 
zones of reflected waves can easily be obtained on the 
basis of simple geometrical ray-theory considerations. 
Let us assume that the transducer emits a beam of L 

rays (longitudinal waves) of vertex angle 2•o , The rays 
appear to emanate from a virtual source P, as shown in 
Fig. 1. Each ray of the beam is defined by an angle 
•, where •(-•o,•o), and • is measured clockwise from 
the central ray. 

Part of the beam emitted by the transducer will im- 
pinge upon the crack. In Fig. 1 the rays 1 and 4 do 
not interact with the crack. Ray 2 is diffracted by the 
crack edge to produce a cylindrical wave emanating 
from the crack edge. The beam between rays 2 and 0 
is first reflected by the crack and then reflected from 
surface 1. Conversely the beam between rays 0 and 3 
is first reflected by I and then reflected by the crack. 
Together the crack and surface I generate a "reflection" 
which is directed back towards the transducer and which 

is referred to as the corner reflection. The corner re- 
flection is detected by the transducer as a signal with 
a different phase and amplitude than the edge-diffracted 
signal. 

In addition to corner reflection and edge diffraction 
one might consider diffraction at the point where the 
crack intersects the free surface (the crack mouth). 
For wedges of vertex angle <•, this diffraction is, 
however, thought to be negligible. 

For the present purpose we are interested only in the 
field in a direction close to the direction of the incident 

rays. Let us consider an L ray with a signal of initial 
amplitude A(•), incident at an angle (•/2 - •b + •) on the 
free surface I. For simplicity we assume that the in- 
cident wavefront is essentially plane. After reflection 
the amplitude on the reflected L ray then is R•(•/2 
-•b + •)A(•), where the reflection coefficient R•(0 L) is 
defined by 

_ K •- cos•.20 (0) = sin20• sin20 r r sin20L sin20 r + K•' cos•'20 r 

Here 

(2) 

where c• =[(X+ 2V)/p] •/•' and cr=(V/p) •/•' are the velo- 
cities of longitudinal and transverse waves, respective- 
ly, and 0 r is defined by Snell's law. 

K-! cos0r= cos0z. (3) 

The rays reflected from I are next reflected by the 
crack, and they produce a reflection boundary in the 
direction of the incident ray. An incident L ray also 
generates mode-converted T rays at surface I. These 
T rays are incident upon the crack at an angle less than 
the critical angle, and so do not generate reflected L 

5 

4 

/ 

//// 

! 

FIG. 2. Image beam for corner reflection. 

rays. The same T rays do generate diffracted L rays 
at the crack edge. However, these cylindrically dif- 
fracted L rays are of negligible magnitude as com- 
pared with the corner reflected L-L-L rays. This will 
be more evident once we have calculated the corner re- 

flection magnitude. Hence for the present purpose only 
the L-L-L rays need be considered for reflection of 
L rays first from I and then from the crack surface. 
It can be verified that the same statements can be made 

for rays which are first reflected from the crack, and 
then from surface I. 

Thus, for the field near the transducer, we only need 
to consider L-L-L reflections. With this in mind we 

may view the reflection problem in terms of an image, 
source which generates rays carrying waves of ampli- 
tude R•(•/2 - 0 + •b)A(•b) incident upon a crack of length 
2d in an unbounded medium. This change of amplitude 
and source direction is equivalent to including the re- 
flections at I implicitly, but excluding mode conver- 
sions. The geometry is shown in Fig. 2. In Fig. 2 
the ray path LsL•.L • for the original beam becomes the 
path L s'LgLx, for the image beam; LxL2L s becomes 
L•L2L s, etc. 

With respect to the incident image beam and the crack 
in an unbounded solid the simple geometrical ray-theory 
considerations must now be extended to obtain an ac- 

curate representation of the scattered field near the re- 
flection boundary of the L rays. This can be done by 
uniform asymptotic theory as discussed in the next sec- 
tion. 

II. 2-D SCATTERING OF A PLANE LONGITUDINAL 

WAVE BY A CRACK 

As a preliminary to the analysis of scattering by a 
surface-breaking crack we investigate the scattering 
of a plane longitudinal wave by an interior crack. A 
crack of uniform width 2d is shown in Fig. 3. The x s 
axis is parallel to the edges of the crack, and the crack 
is defined by •.-0, Ix•l •<d. An incident plane longitudi- 
nal wave is defined by , 

u • = Ap exp(ikr•p ß x), (4) 

where 
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p = (cosSr, sinSr, 0). (5) 

Since both the incident wave and the scattering obstacle 
are independent of the x s coordinate, the scattering 
problem is two-dimensional in character. 

A. Geometrical elastodynamics (G E) 

We will first consider the geometrical elastodynam- 
ics field. In GE the incident wave and the geometrical 
reflection from the illuminated face of the crack are 

taken into account. For an unbounded plane of reflec- 
tion the reflected wave is 

u'= Y'. u (6) 
S=L, T 

where 

uS=AR• (•L)dS exp(iksp s. x). (7) 

In Eq. (7), R•(0r) is the reflection coefficient for re- 
flection of an incident longitudinal wave as a wave of 
type•(B-L or •--T). Also 

pS= (cos0s, -sinOs, 0), (8) 
where Or satisfies Snell's law given by Eq. (3), and 

• = pt, d r = (sin0 r, cos0 r, 0). (9) 

Quantities associated with the crack edges at x• =-d 
and x• = + d are labeled by 1 and 2, respectively. In ac- 
cordance with Eq. (6) the GE field can then be written 
as 

u" = [H(t, ) + H(t•.) - H(-x•.)]u • 

+ • [H(s•,)+H(s•.)-H(-x•.)]u •. (•0) 
B=L, T 

Here H(. ) is the Heaviside step function, and t• and $• 
are defined as 

% = (2• • )•/•- sin «(% - • ), (• •) 
' ) (12) ss• =-(2k•R•)X/2sin•(O s + Os s , 

where 

FIG. 3. 2-D scattering by a crack. 

Os•=Os, O•=?r-Os, •=L,T, (13) 
and 0 r and O r are related by Snell's law (3). The angles 
0• and 02 are defined in Fig. 3. Equation (10) shows 
that the GE field is discontinuous at the shadow boun- 

daries B• and B•2 , and at the boundaries of the geo- 
metrically reflected field, B•s. These boundaries are 
also shown in Fig. 3. 

B. Geometrical theory of diffraction (GTD) 

Within the context of GTD, the field carried by the 
primary diffracted body-wave rays are 

u• = A (k s R•)-• / •'D• (0•; 0r•) exp[i(k sR• - k r pid)d s• 

+ A(ksR2)-•/2D•(02; O•,.)exp[i(ksR 2 + krp•d)]d $2 , 

(14) 

where •-L or •-- T. The angles 0• and 0•., as well as 
the distances along the rays. R• and R•., are shown in 
Fig. 3. The unit vectors dss are 

dS s={[(-1)s+•cosOs,sinOs,O], B=L; j=l,2, (15) [(-1) ssin0s,cos0s,0], fi=T; j=1,2. 

In terms of the polar coordinates r and O,R s and 0 s 
may be expressed as 

R s = [d 2 + r • - 2(-1) s drcosO] •/•', (16) 
sin0 s = (r/R s ) sin0. (17) 

Expressions for the two-dimensional diffraction coef- 
ficients D•(0;0z) follow from Ref. 3. In the sequel we 
will only consider the contribution from the primary 
diffracted longitudinal wave. The relevant diffraction 
coefficient is 

e "/4 A(O)+f•(O) o•(0;0•)= , 2(2,rY/•'(g •'- 1) fa(O) ' (18) 
where ' 

A (0)= (•' - 2 cos•'0)(• •' - 2 cos•'0• ) 

x (1 - eos0P/•'(1 + eos0r P/•' , (19a) 

f•.(O)=sin20.sin20r(g - cos0P/•'(g + eos0r) z/•' , (19b) 

fs(0) = (cos0 - cos0 r )(ga - cos0) 

x (• + eosOr)K+(-eosO)K+(eosOr). (19e) 

In these expressions 

• =c•/c•, • =c•/c•, (20) 

( ) ] K+(•)=exp tan_ • 4s•'(s •'-l)•/•'(g •'-s•'P/•' ds (• -2s•') •' ' s + • ' 

(2•) 

It can be shown that D•(0;0 r) becomes unbounded at the 
shadow boundary (0 = O r ) and at the boundary of the 
zones of reflected L waves (0=2•-0r). For lel << 1 
we have 

e i'/4 1 

0=0 r -e, Drr•(0;0r)= (2•r)•/•. T+O(1), (22) 
O=2,•-Or -e , e i'/4 1__/•œ (0r) + O(l ) (2•) •/•' e • ' 

(23) 

167 J. Acoust. Soc. Am., Vol. 70, No. 1, July 1981 J.D. Achenbach and A. N. Norris: Diffracted signals for a crack 167 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  165.230.224.136 On: Sat, 19 Mar 2016 22:24:57



where R•(0 L) is defined in (1). 

The total field according to GTD is 

u•-u'•+ E u• +O[(ksr)-•], (24) 
8=L, T 

where u • and u• are given by (10) and (14), respectively. 

C. Uaiform asymptotic theory (OAT) 

The GE field, u •, is discontinuous across the boun- 
daries B s and B• and the edge-diffracted field, u•, L• , 

blows up at these boundaries. Appropriate corrections 
to (24) have been discussed by Achenbach ½t al. • The 
correction produces a result which is equivalent to the • 
uniform asymptotic theory (UAT) which has been worked 
out for acoustics and for electromagnetic theory, see 
Refs. 4 and 5. 

The total field according to UAT is given by 

u'=u + + 
B=L, T 

where u • is the following modification of u•: 

u s = [F(t•) + F(t 2) - H(-x2)]u • 

+ E [F(ssi) + F(ss2) -H(-x2)] us. (26) 
B=L, T 

Here /• and sss are given by (11) and (12), and 

1 f_• e• (t2_,/4 1 1 { (•2+•r/4) (27) F(z) • )tit+ 24-Z z 
The function F(z) has the following asymptotic behavior 

F(z) = H(z) + O(z-•), I z[ -oo , (28) 

and 

1 1 ei,/4+ 1 z e_i,/4 F(z)- 24-• z -•- + • + O(za), Iz[ -0. 
(29) 

It follows from (29) that F(z), and thus u s becomes sin- 
gular at the boundaries of the shadow zone (0 s -0Ls) 
and the zones of reflected waves (0 s -2•r-0•s). It can, 
however, be verified that these singularities are exact- 
ly canceled by similar singularities in u•, and thus the 
total field remains bounded, see (14), (22), and (23) for 
fi= L. Away from these boundaries tj and s•j are 
large, because (k•R•) •/•' >> 1, hence (28) applies and we 
find u a -u ge. Thus at B•S• and B• the field is contin- 
uous, and away from these boundaries the total field ac- 
cording to UAT reduces to that of GTD. 

III. CORNER REFLECTION 

We now return to the surface-breaking crack, to con- 
sider the application of uniform asymptotic theory. The 
part of the beam which produces a corner reflection 
consists of rays defined by the angle •, where ½e(•,½2) , 
and • and •2 follow from Fig. I as 

½• = max(-½o, ½-), ½2 = min(½o, ½+), (30) 
where 

(r + to) sing) - x cos4) 
tan(qb - ½•) = SP/SO* = +d + (r + to) eosqb + x sinqb ' 

(31) 

168 J. Acoust. Soc. Am., Vol. 70, No. 1, July 1981 

A necessary and sufficient condition for the reflected 
signal to exist is that •2 > •- 

As discussed above the corner reflection of longitud- 
inal waves is equivalent to determining the reflection 
by an interior crack of an image beam of amplitude 
R•(•/2- d• + ½)A(½). It is now assumed that •o is small 
enough to approximate R•(•/2- qb + •) by R•(•/2- 6p) 
throughout the interval (•, •.). To analyze the reflec- 
tion, the inhomogeneous beam with amplitude A(•) is 
simplified to an homogeneous beam of amplitude Ao, 
where 

Aø- ½2 - ½t A(½)d½. (32) 
1 

Thus A o is the average of A(½) across the crack. As 
far as the reflection is concerned the incident beam is 

now a plane longitudinal wave of amplitude R•(•/2 
-qb)A o. In addition it is assumed that the scattering is 
in the high-frequency range, i.e., 

k•d>> 1 , (33) 

and that we seek a solution in the farfield, i.e., 

d/r<< 1. (34) 

With these three assumptions we can use UAT as de- 
scribed in the previous section. 

Let the point on the transducer be at x + y in the coor- 
dinate system on II as defined in Fig. 4. Here x is the 
coordinate of the transducer center, and y specifies the 
point on the transducer. Since the transducer length is 
2l, we have -l•<y•<l. 

We now make a final assumption, which is not essen- 
tial to the analysis, but which helps simplify the ex- 
pressions for the diffraction angles 0 s (j= 1,2) of Fig. 
4. The assumption is that 

(x/d), (Z/d)=O(•) , (35) 

which implies that all observations are made near the 
boundary of the reflection zone. With this assumption, 
we have 

0t = 2•r - qb+ [(x +y + d sin qS ) /r] [1 + o(a/r) ], (36) 

FIG. 4. Scattering angles for corner reflection. 
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•.=• + 4•- [(x+y -dsinc))/r][1 +O(d/r)], (37) 
thus the delay factors t•,s•,j= 1,2 of Eqs. (11) and (12) 
become 

t• - (2kg r)' TM sin•[ 1 + O(d/r)], 

t,. = [ + o(a/r)] , 

and 

(38) 

(39) 

SL•--(«kLr)•/2[(X +y +dsinq•)/r][1 + O(d/r)], (40) 

sL2= -(«kg rP/2[(x + y -dsin½)/r][1 + O(d/r)] . (41) 

Hence, 

t•, t•. >> 1, (42) 

and we may use the asymptotic form of F(z) from (28) to 
obtain 

F(t•) + F(t2) - H(-x2)---- 1 + O[(kgr)-3/2]. (43) 

In the total field according to UAT from Eq. (25), the 
diffracted field u• is canceled by the singular part of 
F(sg•) + F(sg2), to leave 

U t-u i=R• -- Ao 7r•/2 

X e ira dt + - 1 u • , 
j 2 "o 2Sœj 

(44) 

where u g is the reflected L wave of Eq. (7). We may 
use the expressions for sg• of Eqs. (40)and (41), 

•• e • at+f e • at=f e •½ d•, (45) 1 t 2 SL 2 t2 • 0 +• 1 2 
• 0 •0-• 

where • 

+ y)/r] , 

• = ( •k• r) • /2(d/r) sin•. (47) 

Therefore, 

ei• L • 
u - u = - 

• ei*/4 •o+• e•{•_,/•d• + •-•• v (o-(1 o 

x {e * {•+•[•[• cos(2•o•) - i•o sin(2•o•)] - 
(48) 

where f is the unit vector in the direction of the trans- 
ducer. This expression gives the corner reflection at 
any point on the transducer. 

IV. TRANSDUCER 

In the preceding two-dimensional analysis the dimen- 
sions and the properties of the transducer have not en- 
tered explicitly. The modeling of the transducer is 
briefly considered in this section. 

The transducer is in contact with the free surface I, 
as shown in Fig. 1. It is assumed that the contact sur- 
face is a circle of radius l, which transmits a beam of 
essentially longitudinal waves. The signal may not be 

uniform across the beam, but it is axially symmetric 
about a central ray. The beam may be convergent (fo- 
cused) or divergent (as considered in this paper). The 
transmission properties of the transducer are defined 
by a function f(p), where p is the radial distance from 
the center, with the normalization 

• f(p)pdp= 1. (49) 
The transducer diameter 2l is small as compared to 

the crack width and as compared to the distance between 
the transducer and the crack. For the present geo- 
metry, which is shown in Fig. 1, it is then justifiable 
to consider the scattering as confined to planes normal 
to the crack edge, i.e., normal to planes I and II. Let 
III denote the plane through the center of the transducer 
normal to the crack edge. There will be scattering 
under angles with plane III, but its effect on the back- 
scattered field measured over the width 2l of the trans- 

ducer will be small, and it will not change much as the 
transducer is moved along II. Since 2l is of the same 
order of magnitude as the crack depth d, we must, how- 
ever, maintain the length dimension 2l in the plane II. 

In view of these observations we will integrate the 
transducer properties in the direction normal to III, 
but maintain its length dimensions in the intersection 
of II and III. In this manner the transducer is modeled 

in a two-dimensional geometry as a line element of 
length 2l, as shown in Fig. 1. 

The beam generated by the line element has a radius 
of curvature ro, and it subtends an angle of 2½0 , where 

l = rotanCo . (50) 

The displacement amplitude is not uniform across the 
beam, but it is symmetric about the central ray. Let 
the angle •e(-•o, •o) denote a single ray, then the cross- 
sectional width of the circular transducer at the point 
on the line model where the ray defined by • crosses 
is 2/(1-tan2•/tan2•o)•/2. By virtue of the integration of 
the transducer in the direction normal to plane III, the 
amplitude A(•) corresponding to the line model is 

A(½)= 2C•l -tan2½o •p(t)]dt , 
where the function f(r) defined by (49) has been used 
and 

(51) 

t tan2½ )•/• p(t) = l •' + (1 - t 2) tan2•o . (52) 
In Eq. (51) Cx is a constant which depends on the trans- 
dueer and its coupling to the free surface. 

When the transducer acts as a measuring device, we 
assume that the line model receives in the same way 
that it emits, except that the characteristic function is 
taken as g(p). Thus if u(½) is the displacement from a 
normally incident wave at the point on the line model 
crossed by the ray, then the displacement as measured 
by the whole transducer is U, 

T O f•o 
V= •t•. J-•o u(½)B(½)sec•'½a½, (53) 
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where 

( tan•'• ) •/•' • B(•)--2C•l 1-tan•.•o f g[p(t)]dt. (54) •0 

Here C•. is another transducer constant and p(t) is de- 
fined by Eq. (52). For example, if u(O) = uo, a constant, 
then U = C•u o. 

For our purposes we shall take the characteristic 
functions to be constants• therefore 

/(P) = •(p) = •, 

A(½)= 2C•(F' - • tan•'½) TM , 
2 /2 B(½) = 2C•.(F' - ro tan•'½) • ß 

/ 

V. INTERFERENCE OF CORNER REFLECTION AND 
EDGE DIFFRACTION 

We have already examined the corner reflection. Be- 
low, we shall derive the field on the transducer due to 
the edge diffraction. Then we will sum the two distinct 
effects and use the transducer model of the previous 
section to determine the response as a function of fre- 
quency and transducer position. 

The edge-diffracted rays have the shortest travel time. 
The angles of incidence and diffraction are approximately 
q• and •r + q•, see Fig. 1. Thus the diffraction coefficient is 
approximately/• 0r + q• ;q•), where/• (0;0L) is definedby Eq. 
(18). The ray which strikes the crack tip is defined by the 
angie ½-, given by Eq. (31). If I½-I >½o, then no ray strikes 
the crack tip and no edge diffraction is observed, although 
corner reflection maybe observed. However, if there is 
edge diffraction then there will also be corner reflection. 
Assuming that {½-I<½o, then the diffracted field in the neigh- 
borhood of the transducer is t•, where 

u = r) / + ½; (58) 

The phase due to the path length traveled has been cal- 
culated by using the assumption of Eq. (34) that d/r 
<< 1. 

(55) 

(56) 

(57) 

The total displacement amplitude at the point y on the 
transducer due to corner-reflected rays and edge-dif- 

fraeted rays follows from Eqs. (48) and (58) as u(y)' 

u(y)= [A(½-)(/• L r )-• / •'D• ( rr + cp ; cp )e 

+ •-X/•AoR•(½)R•(•/2 - ½)G(y)]e • , (59) 
where 

f •ø+•1 2 e i*/4 G(y)= e • (• -'/4)a• + ,• _ •g 1•1 cos(2•o•1) •o-• 

-/•o sin(2•o•,)] e• (•+•> - •x}, (60) 
and •o, •l are given by Eqs. (46)and (47). It is .noted 
t•t u(y) is the superposition of two waves whose p•se 
difference depends on d. 

We assume a constant characteristic function, so t•t 
A(• •) is given by Eq. (56). The amplitude A o then fol- 
lows from Eq. (31) as 

• • VO A o (•_•) (l • •mn•½)•/•d½. (61) 
In Eq. (59)we now use the substitution 

y = -r o tan•, (62) 

and we substitute the result in Eq. (53), to ob•in 

= + 

+ 2u-s/•I-•A•(•)R•(u/2 - •) 

x (l • -•)•/•G(y)dy]ei•z r . (63) 

It is noted that U/CxC• is a •nction of the seven param- 
eters kz, r, •, d, x, l, andr o. 

Vl. RESULTS AND DISCUSSION 

For (p=n/4, d=l, r=20, andl=0.5thedimension- 
less transducer response D, where •= U/CxC 2 and U 
is given by Eq. (63), has been plotted versus the di- 
mensionless frequency wd/c•, for several values of 
x and two values of to. In the computations c•/c r= 2, 
which corresponds approximately to aluminum or titan- 
ium. 
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FIG. 5. Amplitude versus 
frequency curves for vari- 
ous positions of the trans- 
ducer, for z0 = 20. 
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FIG. 6. Amplitude versus 
frequency curves for vari- 
ous positions of the trans- 
ducer, for r 0 = 7, 

In Fig. 5, to----20 and x varies from 0 to 1.5 in incre- 
ments of 0.3. In Fig. 6, r o--7andxvaries from0to 
2.5 in increments of 0.5. The trend is similar in both 

cases. For small x, the response increases with the 
frequency. This is to be expected since at x--0 the 
transducer is in the region of maximum corner reflec- 
tion. The edge diffraction is also present, but it pro- 
duces oscillations which are small relative to the total 

amplitude. As x is increased, the contribution of the 
corner reflection decreases faster than that of the edge 
diffraction. Just before a cutoff distance is reached at 

which the corner reflection virtually vanishes, the two 
effects are of approximately equal magnitude, giving a 
good interference pattern in which the "peak to valley" ra- 
tio is large. For this position of the transducer the inter- 
ference pattern would probably be best recognizable 
from experimental data. However, the region in which 
this effect is present is confined to a small zone just 
before the cutoff distance. If the transducer is moved 

slightly away from this zone, then the distinct interfer- 
ence disappears. 

It is noted that the period of oscillation correlates 
with the simple interference equation 

(.,d/c•) cos • = •, 

for which, wd/c L =4.44 in our example. Thus mea- 
surement of the period leads to an estimation of the 
crack depth. 

(64) 

Finally, the fact that the cutoff distance is larger for 
to= 7 than it is for ro = 20 is attributable to the wider 
spreading of the beam in the former case; thus the 
transducer may be moved over a greater range while 
still permitting a significant part of the beam to inter- 
act with the crack. 
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