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The inverse problem of determining the size, shape and orientation of a flat crack from high-frequency far-field elastic waves 
scattered by the crack is investigated. The results show that desired information on a crack can be obtained from the first 
arriving scattered longitudinal waves only. It is shown that an approximate high-frequency solution to the direct problem, based 
on physical elastodynamics, yields an expression for the scattered far-field of longitudinal motion which suggests a solution to 
the inverse problem by application of Fourier-type inversion integrals to scattering data. Two kinds of inversion integrals are 
examined. The inversion problem becomes relatively simple if some a-priori information is available, either on the orientation 
of the plane of the crack or on a plane of symmetry. The method of inversion is verified for a flat crack of elliptical shape. Some 
computational technicalities are discussed, and the method is also applied to experimental scattering data. 

1. Introduction 

A n  i m p o r t a n t  m e t h o d  of  c rack  de t ec t ion  is based  on sca t te r ing  of  mechan ica l  waves  by  cracks.  T h e  

p re sence  of  a c rack  is re la t ive ly  easy  to de tec t .  The  d e t e r m i n a t i o n  of the  size, shape  and  o r i en t a t i on  f rom the  

s ca t t e r ed  field poses ,  however ,  a difficult inverse  sca t te r ing  p r o b l e m .  

The  w o r k  r e p o r t e d  in this p a p e r  was m o t i v a t e d  in pa r t  by  the  need  for  a m e t h o d  to loca te  hydrau l i ca l ly  

i nduced  f rac tures  in a h o t - d r y - r o c k  g e o t h e r m a l  ene rgy  sys tem,  see  e.g. [1], and  in pa r t  by  m e t h o d s  of  c rack  

de t ec t i on  by  u l t rasonic  waves  in quan t i t a t ive  non-destruct ix/e  eva lua t ion  of ma te r i a l s  [2]. T h e  prac t ica l  

difficulties in  a geophys ica l  se t t ing  are  of  course  much  g rea t e r  than  in a ma te r i a l s - t e s t i ng  s i tua t ion .  T h e  

add i t i ona l  difficulties s t em f rom the m o r e  c o m p l i c a t e d  and  to some  ex ten t  u n k n o w n  mechan ica l  b e h a v i o r  of  

the  ea r th  as well  as f rom the  m o r e  severe  l imi ta t ions  on the p l a c e m e n t  of  measu r ing  e qu ipme n t .  

In  e x p e r i m e n t a l  w o r k  on quan t i t a t ive  flaw def in i t ion  e i the r  the  pu l s e - e c ho  m e t h o d  with  one  t r ansduce r  o r  

the  p i t ch -ca tch  m e t h o d  with  two t r ansduce r s  is used.  Mos t  e x p e r i m e n t a l  se tups  inc lude  i n s t r u m e n t a t i o n  to 

ga te  ou t  and  s p e c t r u m  ana lyze  the  s ignal  d i f f rac ted  by  a flaw. The  raw sca t te r ing  d a t a  gene ra l ly  need  to be  

co r r ec t ed  for  t r an sduce r  t ransfe r  func t ions  and  o t h e r  charac ter i s t ics  of  the  sys tem,  which have  been  

o b t a i n e d  on the basis  of  a p p r o p r i a t e  ca l ibra t ions .  A f t e r  process ing ,  the  i n fo rma t ion  ava i lab le  idea l ly  consists  

of  the  a m p l i t u d e  and  the  phase ,  a lbe i t  ove r  a l imi ted  f r equency  range ,  and  at  a l imi ted  n u m b e r  of  po in t s  of 

obse rva t ion .  

Ins ight  into the  so lu t ion  to the  d i rec t  sca t te r ing  p r o b l e m ,  tha t  is, the  c o m p u t a t i o n  of  the  field g e n e r a t e d  

when  a mechan ica l  wave  is d i f f rac ted  by a known  flaw, is a necessa ry  p r e l i m i n a r y  to the  inverse  p r o b l e m .  

F r o m  the  theo re t i ca l  po in t  of view a flat c rack  is a p l a n a r  surface  across  which  the  d i s p l a c e m e n t  can be 

d i scont inuous .  T h e  so lu t ion  of  d i rec t  e l a s t o d y n a m i c  sca t te r ing  p r o b l e m s  is r a the r  compl ica ted .  A p p r o x i -  

ma te  m e t h o d s  to solve  the  sca t te r ing  p r o b l e m ,  espec ia l ly  in the  h igh - f r equency  range ,  have  b e e n  p r e s e n t e d  

in Refs .  [3] and  [4]. In  an exac t  f o rmu la t i on  the  d i rec t  p r o b l e m  is a m i x e d  b o u n d a r y  va lue  p r o b l e m ,  which 

can be  r e d u c e d  to one  o r  m o r e  gene ra l ly  s ingular  in tegra l  equa t ions  for  the  d i s p l a c m e n t  d i scont inu i t i es  
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across the crack faces. For a crack of arbitrary shape this integral equation was derived by Budiansky and 

Rice [5]. 
There  is a considerable literature on diffraction of plane waves by slits and penny-shaped cracks. Much of 

this work was recently summarized in a review article by Kraut [6]. Another  review article was recently 
published by Datta  [7]. A great deal of useful information, and an extensive list of references, is also 
contained in the book by Pao and Mow [8]. A comprehensive review of acoustic and electromagnetic 
scattering from discs and other simple shapes has been compiled by Bowman, Senior and Uslenghi [9]. 
Practical aspects, as well as analytical and experimental results on the application of elastic waves in the 
non-destructive testing of materials, have recently been discussed in Ref. [10]. 

In this paper we discuss the inversion of far-field crack-scattering data in the high-frequency range. For 
an acoustic medium inverse problems have been discussed by Lewis [11]. In recent years Cohen and 
Bleistein have made significant contributions to the inverse problem for cavities in acoustic media, see e.g. 
[12]. Surveys of recent work on related inverse problems can be found in Refs. [13, 14]. 

The analysis is for t ime-harmonic motions, but the term exp(-itot)  is generally omitted. The equations 
governing elastodynamic theory relative to a system of Cartesian coordinates are stated in considerable 
detail in Ref. [15]. In a homogeneous,  isotropic, linearly elastic solid the components of the stress tensor, 
r~i(x), are related to the gradients of the displacement components ui.i(x) by 

76 = AUk.k•ii + I,l,(Ui,i + Ui.i) (1.1) 

where ;t and/~ are Lame's elastic constants. Substitution of this relation into the balance equation of linear 

momentum yields the displacement equations of motion 

I,£Ui,jj -+- ( ~ -~- [,~ )Ui.ji -}-[9wZui = - F /  (1.2) 

where p is the mass density and F~ are the components of the body force distribution (per unit volume). 

These equations should be supplemented by 

tt = ~'klnk. (1.3) 

At  a surface S, Eq. (1.3) relates the components of the traction to the components of the stress tensor and 

the unit normal to S. 

2. Scattering of high-frequency elastic waves 

In this section we briefly review some pertinent elastodynamic theory, and we present an approximate 
solution to the direct scattering problems. This solution is for the far-field and in the high-frequency range, 
and it is concerned only with the scattered field of longitudinal motion. 

2.1.  Bas i c  s ingular  solution 

The three-dimensional basic elastodynamic singular solution for an unbounded domain is the solution to 

Eq. (1.2) when F~(x) is of the form 

F~ = f,S(x - X), (2.1) 

i.e., when F is a unit point load applied at xi = Xi, acting in the direction defined by the unit vector f. In this 
solution the components  of u ° depend linearly on the components of f. To express this dependence we 
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introduce a tensor of rank two, u ~,. (x - X) ,  and a tensor of rank three ~-~;,. (x - X) ,  which relate u ~ (x - X)  
and rij (x - X )  to f,. by the relations 

ui ~ = u ~ f m ,  (2.2) 
G G 

rii = rii:mfr~. (2.3) 
G 

The solution for ui;m, which is often called the Green ' s  displacement tensor, is well known. It is 

G 
Ui;m -~ ( p ~ 2 ) - I [ - G L  ( R  ) q- G T ( g  ) ],im q- l~ , -1GT(g  )gim ( 2 . 4 )  

where 

G~(R) = (1/4"rrR) exp(ik~R) (fl = L ,  T); (2.5) 

R = Ix - X[; (2.6) 

kL =tO/CL, C 2 = (A +2 /z ) /p ;  (2.7) 

kT = O.)/CT, C 2 = tz/p. (2.8) 

The corresponding expression for r~i:,, follows f rom Hooke ' s  law, which is given by Eq. (1.1). 

2.2. Integral representation for the displacement 

Let V be a bounded domain and let S be its boundary surface. Let  Sr be a sphere with radius F around a 
point of observation Q (outside V), and let Vr denote the domain interior to St, where F is chosen so large 
that Sr completely surrounds S. By using the elastodynamic reciprocity relation and the appropriate  
radiation condition, the displacement in Voo, where V~o = limr~oo Vr - V, is expressed in terms of ul and ~'ii 
on S by the following integral representation, see e.g. [16], 

urn(x) Is = - [ z i i ; , , ( x - X ) u i ( X ) -  u~m(x-X)Ti i (X)]ni  d A ( X )  (2.9) 

where ni is the outer  normal,  i.e. in this case ni points into V. 

Now consider an isolated flat crack of area A in an unbounded solid as shown in Fig. 1. The origin of the x~ 
coordinate system is near the crack. We also define a coordinate system s~, whose origin O '  is in the plane of 

2 / °  ^ 

Fig. 1. Flat crack, with source point S and point of observation Q. 
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the crack, and whose ~:3-axis is normal to that plane. Suppose the crack faces A+(~:3 = 0 +) and A-(¢3 = 0-) 
are subjected to tractions t + (X) and t i  (X). If, as is typically the case, no net tractions act on the crack, we 

have At i = t7 - t r  = 0, which implies A~'i i = 0. For a point in the body Eq. (2.9) then reduces to 

I A  G + 
U r n ( X )  = + r i i ; m ( x - X )  A u i ( X ) n j  dA(X) .  (2.10) 

Here  n 7 is still an outer  normal,  and it is thus directed f rom the + to the - face of the crack. 
Suppose a displacement wave li~"(x) is incident on the traction-free flat crack. The components  of the 

stress tensor corresponding to the incident wave are rii~ (x). The incident wave generates a scattered field 
uSC(x), such that the total displacement field is defined as 

ut(x)  = ui"(x) + u SO(x). (2.11)  

The scattered field does of course satisfy Eqs. (1.1)-(1.3), and consequently the representat ion (2.10) is 

valid for the scattered field. 

2.3. Far-field integral representation 

If terms of order O([X]/lx]) are neglected, Eq. (2.4) yields the following expression for the far-field 

stresses 

G • G ' L  ^ . a 
. • lkTbq'm ( ~ ) G r ( x )  e x p ( - i k r l  • X)  (2.12) ~- i j ;m=lkLb i r~ (x )GL(x )exp ( - l kLx  X ) + "  c r  

where ~ is the unit vector in the direction of x, and x = Ix]. Also 

G ; L  A bii;m (x) = (A + 2 tz) -~(2 /z~i  + A6#)~,,, (2.13) 

G ; T  A ^ b ij;,,, (x) = 6i~xj + 6i,,,.fi - 2.~i.ri.f,,,. (2.14) 

It is easily checked that the longitudinal and transverse parts of the far field displacements have only 

components  parallel and normal  to x, respectively. 
By virtue of Eq. (2.12) the representat ion integral for scattered far-field longitudinal motions now 

reduces to the form 

[ u ~ ( x ) ] ' -  " ~ ' ~  ~ ~ ~ = -lkLbii;~ (X)GL(X)niIi  (x) (2.15) 

where 

I~  ( ; )  = fA + exp(--ikL.~ • X )  Au~ c dA (X). (2.16) 

2.4. Physical  elastodynamics 

The simplest way to proceed f rom here is to employ an approximation analogous to the one of "physical 
optics". In this approximation,  which we label the "physical e lastodynamics" approximation,  it is assumed 
that the displacement on the crack face in the shadow zone (i.e. at ~:3 = 0 +) is zero, and that on the 
illuminated crack face the total displacement u '  is given by the total field associated with reflection of the 
incident wave f rom a traction-free plane surface. The latter is given by (u i° + ure)e3=o , where u re represents 
the reflected displacement.  Since u t=  uin+ u so, see Eq. (2.11), it follows that 

A~Isc  = ( l i t _  liin)~53 =0  + __ ( l i t _ _  uin)~¢3=0 - = __( l i in )~3= 0 __ ( l i i n  .. l_ l i r e  liin)~j3 =0  (2.17) 
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o r  

A U  sc = - -  ( K  in -~ u r e ) ~ : 3 = 0 - .  (2.18) 

Let  us consider a spherical wave emanating from the source point S shown in Fig. 1. The incident 
displacement wave may then be expressed in the form 

i, _ ( iA/  kL)V GL( lX-  Xs]) (2.19) ig = 

where GL(-) is defined by Eq. (2.5). For Xs >>X we then have on the faces of the crack 

u i " -  -A~sGL(xs )  exp(-ikL~s • X).  (2.20) 

As before we define xs = ]xs I and X = Ixl. Equation (2.20) represents a plane wave. The reflection of a plane 
wave from a traction-free surface is a simple problem whose solution can be found in textbooks, see e.g. 
[15]. On the reflecting surface sx3 = 0-  we may write 

in re m " (u + u  )e3=o = -  a(xs)GL(xs)  exp(-ikL.f's" X).  (2.21) 

The vector a(.~s), which depends on the direction (defined by Xs) of the incident wave, is stated in the 
Appendix. Combining (2.21) and (2.18), and substituting the result in Eq. (2.15) yields 

GL ( xs ) GL ( xo ) - - A a i  (xs ) b ii:m (xo )niI ( kL ) (2.22) 

where 

and 

I(kL) = ikL IA+ exp(--ikLq • X)  dA(X)  (2.23) 

where 

we find 

I(kL) =ikL exp(- ikLx)  f fA + exp(--ikLq . s ~) d~l dsC2 

A + A  
X = (xo Xs)" X o  (2.26) 

It should be noted that in the general inverse problem the position of O is selected and thus xo + ~s is 
known. The plane of the crack is, however, generally unknown, hence X o  is unknown. The area integral in 
Eq. (2.25) can be reduced to a line integral over the crack edge C by noting that I(kL) can also be expressed 
in the form 

exp(- ikLx)  I I  A o I(kL) = q~ +q2 z + -~i[qi exp(--lkLq" ~)] d~l d~:2; i = 1, 2 (2.27) 

(2.25) 

q = -fo + ~s. (2.24) 

It is convenient to express the area integral given by Eq. (2.23) in terms of the ~:i coordinate system whose 
origin O'  is located in the plane of the crack as shown in Fig. 1. Writing 

X = X o  +g ;  q =£ o  +.~s = (5£0 + g o ) / x o  + ( X o  +sCs)/Xs (2.25a,b) 
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where qx and q2 are the components of q in the ~Ci-system. An application of the divergence theorem 
subsequently yields 

exp(-ikLx) fc I (kD - q~ + q2 ~'iq, exp(-ikLq • g) ds (2.28) 

where u~ (i = 1, 2) is the outward unit normal to the crack edge, and s is arc length measured along the crack 
edge. By means of Eqs. (2.28) and (2.22) the scattered longitudinal field is expressed as radiation generated 
by a superposition of sources over the edge of the crack. This kind of representation seems to be analogous 
to the method of equivalent currents, which has been explored by several authors in electromagnetic 
scattering, see eg. Knott and Senior [17]. 

A convenient alternate form of Eq. (2.28) is obtained by introducing a new set of coordinates (~,  ~c2) in 
the plane of the crack. The (1 coordinate is taken along the projection of q on the plane of the crack, see Fig. 
2. The coordinate transformation is given by 

(1 = q l ~ l  q'- q2~:2, ( 2 .29 )  

~2 = - -q2~l  + q1~72 • ( 2 . 3 0 )  

"l \ 
L A \ . L  

(~,, r t z ) ~  G 

X 
Fig. 2. Coordinates in the plane of the crack. 

It is easily checked that Eq. (2.28) can then be rewritten as 

exp(-ikLx) Ic I(kL) = q~ +q~ exp(-ikL~l) d~2. (2.31) 

A useful approximation to the integral in Eq. (2.31) can be derived by making use of a system of local 
coordinates for the curve C. Let the two tangents parallel to ~1 = constant touch the edge C at the points 
(~'~, ~'2) and (rh, r12) defined in the (~:1, ~:2) system in the plane of the crack. Near (~'1, ~'2) the points of C can 
be expressed approximately by 

1 1 
~1 = ~1 -I- ~-, $2/30 -~- 31S /31, 

3 
Z. ~ 

(2.32) 

1 3 2 
~2 = ~ ' 2 + s - ~ s  /30 (2.33) 
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where/30 and/3a denote the curvature of C and its derivative w.r.t s at (~'1, ~2) and s is the arc length 
measured from this point, which can be positive or negative. Substituting Eqs. (2.32) and (2.33) into Eq. 
(2.31) and retaining terms of O(s 2) only, the contribution to I(km) from the neighborhood of (st1, ~'2) is 
obtained as 

I (2~) 1/2 e -i'~/4 exp(--ikL(g + ~'1)) 
I ( k D  ~ - exp(-ikL(~_____+ st1))  exp(-ikLs2/3o/2!) ds ~ k[/2 (2.34) 

ql +q2 sl<<l (q21 +q2)(/3o)1/2 

where the stationary phase approximation, which is valid for high frequencies, has been used. When 
combined with (2.22) the above approximation confirms the familiar (1/k[/2) behavior predicted by 
geometrical diffraction theory. A similar conclusion holds good for the contribution from the neighborhood 
of the other point (r/l, 7/2) whose tangent is also parallel to ~1 = constant. 

3. Inversion integrals 

We will now turn our attention to the inverse problem, i.e., to the problems of determining size, shape 
and orientation of a crack from the scattered field. 

The general forms of Eqs. (2.28), (2.31) and (2.34) suggest a formal application of an exponential 
Fourier-type integral, with km as the variable, to both sides of Eq. (2.22). We will consider two inversion 
integrals: 

/ *  cO 

fl* = o¢l{f(kL)} = / exp(iktq • A)f(kL) dkm, (3.1) 
d - -  cO 

f* = ~¢z{f(kD} = k 1/z exp(iktq • ,t ) f (kD dkm. (3.2) 
oc)  

Both inversion integrals will be evaluated by using the following general property 

cO 

I_ exp(ikL(q • ~t -- y)) dkL = 2w6(q • A - y). (3.3) 
cO 

In Eqs. (3.1)-(3.3) the vector ,I defines a test point in the body, defined either in the x~ or the ~:~ coordinate 
system. The vector q is either q=.~o+.~s or q = ( X o + ~ o ) / x o + ( X o + ~ s ) / X s ,  depending on which 
coordinate system is operational. 

For  two special cases the inversion integrals given by (3.1) and (3.2) yield explicit information on the 
crack in a simple manner from the scattered field at a limited number of points. These special cases are that 
either the plane of the crack is known a-priori or that a plane of symmetry of the crack is known. In both 
cases it must also be assumed that an origin of the ~i-system can be selected in the vicinity of the crack. 

3.1. Plane of  the crack is known a-priori 

If the plane in which the crack is located is known a-priori, the xi coordinate system can be taken to 
coincide with the ~i system. Thus we have X0 = 0, and Eq. (2.22) becomes 

[ u ~ ( g o ) ]  L A o . L  
= Aai  (~s)b iai,, (~O)I(kL) (3.4) 

GL(~S)GL(~O) 
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where it has been taken into account that in the ~i-system n 7 is a unit vector in the -~3 direction. The 
integral I(kL) is defined by one of the forms (2.28), (2.31) or (2.34) and 

q = ( 3 . 5 )  

For this special case we will apply both the inversion integrals ~1 and `92, which are defined by Eqs. (3.1) and 
(3.2),  respectively. 

The formal operation defined by Eq. (3.1) can conveniently be applied to the line integral given by Eq. 
(2.31). After  an interchange of the order  of integration and employing Eq. (3.3) we obtain 

II* = q2 +q2 ~(q" '~ --~1) d~2. (3.6) 

On the crack edge C, ~1 is a function of ~72, which suggests a change of integration variable to yield 

2~r i "  - d~2 
I1.  - ( 3 . 7 )  

Now we select A in the plane of the crack. Then, q • A defines the component  AI in the S?l direction, see Eq. 
(2.29). The relation q • A = constant, say q .  A = ~" defines a line normal to the (1 axis. When this line 
intersects the crack edge C the delta-function in Eq. (3.7) becomes operative, and it sifts out the values of 
ds?2/d~71 at ~a = ~'. We obtain 

11" - 2--- 2 L ~ - ~  / \~ -~ j  J (3.8) qx +q2 

where the points A and B are defined in Fig. 2. When ~/~ < q  • A <~'1, the integral given by Eq. (3.8) is 
bounded. Clearly when q • A < r/1 or q • A > ~'~ the integral is identically zero. For a smooth crack edge the 
integral becomes singular when either q • A = rll or q • A = ~'1, with a singularity of square root order (see, 
for example, the discussion of an elliptical crack in the next section). 

Next we investigate the application of the formal operator  ~2, defined by Eq. (3.2). This operator  is most 
conveniently applied to the stationary phase approximation of the line integral, which is given by Eq. (2.34). 
The result is 

I*  = (2"rr)3/2 e-i'~/4 
B~/2 q2 +q22 6(q . a-~'l). (3.9) 

As before we take A in the lalane of the crack, which implies that q • )t defines the component  A~ of A in the 
~1 direction. Equation (3.9) then shows that I*  displays a S-function behavior when A1 = (1. The same 
conclusion holds for A1 = r/1. Thus, application of `92 to (2.34) yields an identically vanishing result when A1 
is not equal to either st1 or rh. 

The results of this section may now be summarized as follows. Equation (3.4) is a high frequency 
representation of the scattered longitudinal far-field. In this equation u~ (~o) may be considered as known, 
say from experiments. Then, if we select a test point A in the plane of the crack (which is known), then either 
the application of the operator  ~1 or  the operator  ,92 to the right hand side of (3.4) yields a singularity at two 
values of q • A = A1. These are A1 = ~'x and Ax = r/1. For `91 the singularity is of the square root type, while for 
`92 the singularity is a Dirac delta function. Equation (3.4) then implies that the application of these 
operators to the left-hand side of Eq. (3.4), i.e., to u~(~o)/GL(~s)GL(~O), where u~(~o) represent 
experimental  data at the point of observation ~:o, should also produce singular behavior at two lines in the 
SCl~2-plane. These lines define a strip r / l<Al<~ ' l  containing the crack. By taking several points of 



.I.D. Achenbach, K. Viswanathan and A. Norris/Inversion of crack-scattering data 3 0 7  

observation,  i.e., several vectors q, we can then construct an envelope of the crack edge. For a crack with a 
smooth edge four such strips should give a quite acceptable estimate of the crack size. 

It would seem that a delta function has a more  characteristic signature, and hence the opera tor  oCz may be 
preferable f rom the practical point of view. 

3.2. Source and receiver are located in a known plane of symmetry of the crack 

The geometry  for this case is shown in Fig. 3. The position of the origin O of the coordinate system xi is 
arbitrary, but O must be chosen close to the crack. The scattered field is given by Eq. (2.22). By using (2.25) 
and (2.34) we find 

1 "2"¢r" ~/2 
I ( k L ) = - q ~  +q~(-kT) J (3.10) 

A ^ 
!s + xo 

A 

X s ~  xz ~ ...0~ 

O0~l-- ""- --..V~'02 

Fig.  3. S o u r c e  a n d  r e c e i v e r  in p l a n e  o f  s y m m e t r y  o f  t he  c r ack .  

where 

2 
J = Z Di e x p ( - i k L ( ; o + ; s ) .  X i) (3.11) 

i = 1  

1 -i,,/4 1 i-rr/4 
D1 = (1801/2)-----~ e , D2 = - -  (/301/2)2 e . (3.12) 

It  is of interest to examine the absolute magnitude of J :  

IJI --- {[DI[ 2 + ID2I 2 + 21D1[ 1921 sin[kL(.~o +.l~s) • c]} 1/2 (3.13) 

where c is the "crack vector" ,  which is defined as 

c = X1 - X2. (3.14) 

Equat ion (3.13) implies that the amplitude of the pr imary diffracted field is modulated with respect to 
kL = to/cL with period 

2rr 
P = (xo +Xs)" c" (3.15) 

Experimental  results for the amplitude spectrum, see e.g. Ref. [18], do indeed show this periodicity. Thus, if 
[u~(xo)] t" on the left-hand side of Eq. (2.22) represents experimental  data, we can define Po as the period 
of I[u~(xo)]~l. By virtue of Eq. (3.15) we then obtain 

(xo + Xs) " c = 21r/Po. (3.16) 
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Consequently from the observation at one location Q we obtain one strip normal to the bisector of OQ and 
OS, and of width 2~r/Po, which contains 2 where X is the trace of the crack in the plane of symmetry. For 
backscattering we take S as the second point of observation, to obtain 

Xs • c = lr/Ps (3.17) 

sc L where Ps is the period of I[u,,(Xs)] 1. Equation (3.17) defines a second strip, whose intersection with the 

first strip then leads us to four points of interaction out of which two alternate well defined possibilities for 
emerge. The final determination of X is obtained by making use of data from just one more point of 
observation leading to a third strip whose intersections with the first two defines the vector c, i.e., the cross 
section of the crack with the normal plane containing source and observer. 

The same conclusions are reached if the operator  ~2 is applied to Eq. (3.10). 

4. Application oI the inversion technique to analytic and experimental examples 

We now examine the application of the inversion technique to some analytical and experimental 
examples. 

The first analytical example we consider is that of a crack of an elliptical shape for which a direct solution 
is known. 

4.1. Crack of elliptical shape 

For an elliptical crack of major axis a minor axis b the line integral over the edge C given by Eq. (2.28) 
can be evaluated explicitly. The simple expression that is obtained can be used to check the manipulations in 
the corresponding inverse problem. 

Assuming that the origin is taken in the plane of the crack, we have Xo-= 0 and therefore X = 0. 
To evaluate Eq. (2.28) we introduce new variables ~ and 6 by the relations 

(~:1, ~2) -- [a cos(~ + 6), b sin(~ + 6)], 0~<~ ~<2~r, (4.1) 

(cos 6, sin 4') = p-l(aql ,  bq2), (4.2) 

p = (a2q 2 +b2q~) 1/2. (4.3) 

It then follows that 

0'1, ~'2) ds = [b cos(~ + 6), a sin(~ + 6)] d~ (4.4) 

and Eq. (2.28) becomes 

O. cos(q~ + 6) cos 6 + ~ sin(~ + 6) sin 6 exp( - ikLp cos ~) dq~. (4.5) I (kL)= q2 +q~ 

This integral can be further evaluated to yield 

I(kL) = -- (2~riab/p)Jl(kLp) (4.6) 

where J1 ( ) is the ordinary Bessel function of order  one, and p is defined by Eq. (4.3). Upon substitution of 
(4.6) into Eq. (2.22) we obtain the scattered longitudinal field associated with physical elastodynamics for 
an elliptical crack. 
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We now apply the inverse procedure to the above solution starting with I(kL) as given by Eq. (4.6), and 
recover the elliptical shape as a check on our method. The inverse operator Eq. (3.1) when applied to Eq. 
(4.6) yields 

I* = 2~i_ab foo exp(ikLq " A)JI(kLp) dkL = (4.7) 
p J -~  

This is a known integral which has the value 

2"trab q • it 
I * =  192 [ p 2 _ ( q . A ) 2 ] l / 2  i f 0 < J q ' A [ < o ,  

0 iflq "AI>a .  

27tab sin(kLq • ~ t )J l (kLp)  dkL. 
P 

For a variable test point A in the plane of the crack, we thus get square root singularities on the lines 

q "A = + p  

(4.8) 

Specifically, if 

(4.9) 

A = (xl, x2, 0) (4.10) 

these lines are given by 

(4.11) 

(4.12) 

qlX1 + q2x2 = + (a 2qZ + b 2q2 )l/2. 

It is easily verified that Eq. (4.11) describes a pair of tangents to the ellipse 

x2/a2+x2/b2= 1 

with the points of contact at 

2 
{-t-. q la2  4- qEb . ~ 
,~ ~,,/'2~2,~1 ~-~,± 1.2~2~1/2,,42) (a2q2 +b2q2)l/2]. (4.13) 

Thus, taking different positions for the observation points Q, we can construct the boundary of the elliptical 
crack as the envelope of the various tangents given by Eq. (4.11). 

A similar conclusion will follow if we employ the inverse operator Eq. (3.2) to Eq. (4.6). It appears, 
however, that in this case we will get 6-function singularities at the same positions as in Eq. (4.11) only if we 
employ the asymptotic expression for the Bessel function at large kLp. 

4.2. Numerical examples 

We now consider some computational aspects of interest for both the analytical and the experimental 
examples. Our discussion will be mainly for the two-dimensional cracks or for cases when the source and 
receiver are in a plane of symmetry of the crack. These considerations will however be equally useful for the 
3-D cases. 

From high-frequency diffraction theories, the far-field can be expressed as essentially a sum of two 
flash-point contributions from which the expression I(kL) such as that given by Eqs. (3.10) and (3.11) arise. 

The expression in Eq. (3.11) is, however, only an approximation to the more general form 

2 

J = Y. Dr exp(ikL(SOi+ O i Q - S O -  OQ)) (4.14) 
i=1 
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which involves the actual values of the ray paths through each of the flash points or in 2-D, the crack tips Oi, 

and accounts for the factor G L ( x s ) G t ( x o )  by which we divide [u~(xo)]  t as in Eq. (2.22). 
While applying the inverse operator  as in Eq. (3.1) or Eq. (3.2) it is recalled that the resulting planes 

across which the singularities appear will depend on the exponents in Eq. (3.11) or equivalently, those in 
Eq. (4.14). The exponents in these two cases will be slightly different in their respective values, the effect of 
which will now be studied. The inverse operator  in Eq. (3.1) when applied to the two terms in Eq. (3.11) will 
yield 6-function singularities along the lines 

( ~ o + ~ s ) ' ( A - X i ) = O  ( / = 1 , 2 ) .  (4.15) 

Equation (4.15) defines a strip on whose boundaries the tips of the crack are located. Similarly, from an 
observation of the backscatter at S, we get another strip defined by 

~s .(a - X  i) = 0 (j = 1, 2). (4.16) 

The locations of the crack tips can then be found from the intersections of the strips in Eq. (4.15) and Eq. 
(4.16). The final choice between the two emerging alternatives will then be decided by constructing a strip 
from just one more observation point. 

In practice, however, the exponents in Eq. (4.14) which we will actually use for the inversidn, lead to 
slightly modified strips. The points of intersections may then shift by amounts not necessarily small in 
comparison with crack lengths. To rectify such errors we use an iterative scheme described below. 

4.3. The iterative scheme 

The inverse operator  Eq. (3.1) when applied to Eq. (4.14) yields the strip 

(~s + £o  )" ~ = - ( SOl + OiQ - S O  - OQ) (4.17) 

from the observation at Q, and similarly the strip 

~s • ~ = - ( S O i  - SO) (4.18) 

from the backscatter at S. 
. i . , - ( 0 )  Let the approximate crack tips determined by these strips be denoted by X~ °). Replace A by A i in Eqs. 

(4.17) and (4.18) and rewrite these equations in the form 

(~s +~o)" (Xi ~0~ - X  i ) = e S + e / ° ,  (4.19) 

a~s" (Xs - X ~  °~ ) = e s, (4.20) 

where 

S 
ej = S O i  - S O  +£s  • Xi, (4.21) 

e ~ = OiO - O O  + ~o " Xj. (4.22) 

Equations (4.19) and (4.20) can now be solved by an iterative scheme for the crack-tip positions X~. by 
taking X~ °) as the first approximation. We then evaluate e s and e~  J ,,(o) " a t ,~i  and substitute in Eqs. (4.19) and 
(4.20) to solve for the next higher order  value of Xj, and repeat this cycle till necessary. We find that four to 
five iterations are usually adequate. Some numerical results are discussed below. 
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4.4. Results for the analytic examples 

For our numerical calculations we consider the case of a crack shown in Fig. 4. The crack half-length is 
taken as the unit of length. The angles 81, 82, 03, 04 and the distances OS, OQand  OC, where C is the center 
of the crack, form the various parameters. The computed results giving the errors in the crack-edge 
calculations are shown in Figs. 5, 6 and 7 which also include the effect of iterative corrections along with 
results without any iterations. The edge-error is the absolute distance between the actual and computed 
positions of the edge concerned. 

Fig. 4. Geometry  for numerical  calculations. 

.20 

.15 

or" 
O .10 
c~ 
or" 
t.O \ 

\ 
UJ ~ 
CO 
t'7 
ta-I - 0 5 ] ~ " - - - - .  ~ ~ ~ ~ ~ -- 

0 • 00' , . . . . .  , , I 

9-5 38 51 64 77 

oQ(=os) 

Fig. 5. Edge error for edge O1 versus OQ (=  OS) ;  81 = 0 .523,  e2 = 0 .698,  03 = 0 .698,  04 = 0 .785 ( r a d i a n s ) : - - O C = 3 ,  - - - - O C =  2. 
No iteration for upper curves; one  iteration for lower curves. 

4.5. Experimental results 

As mentioned earlier, the inversion technique was applied also to the case of experimentally measured 
far-field results in a plane of symmetry of the crack reported in Ref. [18]. The model shown in Fig. 8 is that 
of a penny-shaped crack of radius 2500 p. centrally located in a titanium block of height 2.5 cm and 
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.20 

, I S .  

cv- 
c3 .10 
ft,  ce- 

"' //~/// 
C_9 c"l 

I I 0.00 .... ~/J/ ---4 
(20 2.500 5-000 7.500 10-000 

0C 

) and 02  ( . . . .  ) versus OC; 81 =0.523 ,  82 =0 .698,  03 =0 .698,  04 = 0.785 (radians). 
O O =  OS = 30. Number  o f  i terat ions = 10. 

Fig.  6. E d g e  error  for edges  O1 ( 

.56-  

.42 - 

o:c 
0 .28 
occ 
n-- 
Ill 

LtJ 
f..D 

tJ.J . lq  - 

t3.00 
0.0 • 400 .800 1 .200 1 .600 

ANGLE 

Fig.  7. E d g e  error  for  e d g e s  O1 ( ) and 0 2  ( . . . .  ) versus  ang le  04, 01 = 0 . 5 2 3 ,  02 = 0 . 6 9 8 ,  03 = 0 . 6 9 8  ( r a d i a n s ) .  OC= 5, 

OQ= OS= 30 .  N o  i terat ion for upper  curves;  o n e  i terat ion for l ower  c u r v e s .  

cross-width of 10 cm. The block was immersed in water, and it was excited by a source on the axis of 
symmetry, far out in the water. The scattered field was measured at a number of points in the water, and the 
measurements were then referred to points on the interface. The period of amplitude-modulation at these 
points are measured and given in Table 1 using the notation of Figure 8. 

For the additional information to complete the far-field we assumed that the location of the crack center 
is given. We then used the iterative scheme to predict the crack-orientation angle as well as its radius. The 
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Fig. 8. Sketch of experimental configuration in Ref. [18]. 

Table 1 

Period of amplitude modulations for several angles 0~. 

Scattering angle Period of average 
(0~.) amplitude modulation 

( A f ) ~  (in MHz) 
35 ° 2.18 
40 ° 1.87 
45 ° 1.83 
50 ° 1.68 
55 ° 1.60 
60 ° 1.47 
65 ° 1.39 

r e s u l t s  w h i c h  a r e  s u m m a r i z e d  in T a b l e  2 g e n e r a l l y  i n d i c a t e  b ~ t t e r  e s t i m a t e s  f r o m  w i d e l y  s e p a r a t e d  p o i n t s  o f  

o b s e r v a t i o n .  

4.6. C o m m e n t s  on band- l imi ted  observations 

F r o m  t h e  p r a c t i c a l  s t a n d p o i n t  t h e r e  is a l im i t  o n  t h e  b a n d w i d t h s  w h e r e  o n e  c a n  r e c o r d  t h e  o b s e r v a t i o n s .  

In  o u r  i n v e r s e  o p e r a t o r  ~ 2  in E q .  (3 .2) ,  t h i s  a m o u n t s  to  r e s t r i c t i n g  kL tO 

k_ < IkLI < k÷ ( 4 . 2 3 )  

Table 2 

Results of inversion procedure for several pairs of scattering 
angles 

Angles (degrees) Radius Crack angle 
65.0 35.0 2497.9 89.73 
65.0 40.0 2357.4 87.50 
65.0 45.0 2641.3 -88.29 
65.0 50.0 2663.1 -88.01 
65.0 55.0 2965.8 -84.62 
65.0 60.0 2775.0 -86.66 
35.0 40.0 3307.1 -85.83 
35.0 45.0 2180.3 87.03 
35.0 50.0 2313.9 88.26 
35.0 55.0 2241.6 87.62 
35.0 60.0 2436.0 89.26 



314 .I.D. Achenbach, K. Viswanathan and A. Norris/Inversion of crack-scattering data 

where k_ and k+ are fixed. For an ideal inversion the operator 5~2 must produce a pair of delta functions to 
define a strip (or layer). We need to establish some criteria on the choice of k_ and k+ to ensure recognizable 

8-type behavior. 
For this purpose consider the integral representation of the delta function 

f 2 If 2zrS(x) = .  exp(ikLx) dkc = cos(kLX) dkL. (4.24) 
oo 

Corresponding to the assumption in Eq. (4.23) let the approximation to 8(x) be 

8(x) = (1/ar)A (x) (4.25) 

where 

Ik k+ sin(kLX) k+ 
A (x) = cos(kLx) dkL (4.26) 

_ X I k  " 

The function A ( x )  has been computed as a function of x (for x >0 )  and shown in Fig. 9 for different 

combinations of k+ and k_. The four cases (A) to (D) there correspond to k+ = 2, 6, 10 and 14 with k_ = 1 

for all the cases. The peak at x = 0 is conspicuous for all the cases with k+ t> 6. The case when k+ = 2 

indicates too small a bandwidth and, therefore, the peak at x = 0 is not very strong. 

Appendix. Computation of the COD factor 0 6 (&L) 

The COD-factor  oq ( e L )  is computed by considering the reflection of a plane longitudinal wave defined by 

L u = A p  L e x p ( i k L p  L" lj) (A.1) 

from the free surface defined by so3 = 0. The propagation vector of the incident wave is defined by 

pL  = (sin ~bL COS O, sin ~bL sin O, cos ~bL). (A.2) 

Expressions for the reflected waves can be found in textbooks, see e.g. Ref. [15], p. 42. The total 
displacement field, which comprises the incident longitudinal wave and the reflected longitudinal and 

transverse waves is given by 

u = A [ p  L • L L L~ • Lr 
t * ~)+RL(qbL)p exp(lkcp • exp0kLp ~) + R~-(~bL)d Tr e x p ( i k r p  Tr.  g)] (A.3) 

where the propagation vectors of the reflected waves are given by 

p~r = (sin d'~ cos 0, sin 4~ sin 0, - c o s  ~b~) (A.4) 

where a = L and a = T, and the angles ~bL and Cr  are related by Snell's law 

sin ~T = ~ , - 1  sin 4~L; X = C L / C T .  (A.5) 

The direction of the displacement corresponding to the reflected wave of transverse motion is defined by 

d xr = (cos ~br cos 0, cos ~bT sin 0, sin ~br) 

and the reflection coefficients are 

R~ (~bt) = D- l (s in  2~bL sin 2~br --x 2 cos z 2¢ r ) ,  

R~-(~bL) = D - l ( 2 x  sin 24~L cos 2~br), 

D = sin 2~bL sin 2~br + x z cos 2 2~r. 

(A.6) 

(A.7) 

(A.8) 

(A.9) 
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Fig. 9. Function A(x) defined by Eq. (4.26) for k_ = 1 and (A): k+ = 2; (B): k+ = 6; (C): k+ = 10; and (D): k÷ = 14. 

O n  the p lane  ~:3 = 0, Eq. (A.3) reduces  to 

u '  = Ao~(~bL) exp(ikLp L" g) 

where  

R L , - -  , L" + R L , - -  "d Tr Ol((~L ) : pL  + L(fPL)p T[~T)  • 

(A.IO) 

(A.11) 
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