New Energetic Materials

Discussion group
Reactive nanomaterials: main challenges

- **How far down** “nano” will we go?
 - How far can we go?
 - When does it make sense to stop?
 - ~5 mkm currently used
 - 400 – 500 nm predicted to work for explosives
 - Reaction rates need to be predicted as a function of size
 - Ignition
 - Combustion
 - Efficiency predictions lacking (function of size)
 - Modification of interface to affect kinetics – reactive shells, SHS
 - Very fine scale is not good for reactive structured materials – too fast a reaction, too much gas for initial reaction
 - Need an intermediate step
 - Large particles igniting
 - Materials with multiple scales of mixing desirable
• **How to describe properties** of nanocomposite reactive materials?
 – Physical characterization
 • Tight size distribution
 • Size distribution, morphology, surface area
 • Application dependent – matters for propellants, not for explosives
 • Safety, sensitivity, ESD; friction, impact
 – Correlation between sensitivity and reactivity?
 » Impact sensitivity may correlate with reaction kinetics but not energy
 » For explosives: the correlation is strong (maybe not ESD)
 » Impact sensitivity
 » For composites/nanocomposites: impact sensitivity may be a valuable research tool
 » Mechanism: shear, hot spots
 » Different rate initiation processes (shock wave/hammer)
 – Processing safety (as opposed to final item safety)
 – Bulk energy assessment
 – Bomb calorimetry (with tricks, product analysis)
 – Chemical methods of getting
 – DSC type
 – TMD/porosity
 – Effect on ignitability
 – Energy content/managing energy release
 – Porosity controls sensitivity
 – Two scales on porosity/TMD – inside and outside the particle
 – Experimental reactivity assessment aerobic vs anaerobic reactions
 – Aging
 – Long term stability: nanomaterial itself and final product (interacting with environment and other components)
– Models
 • **Fundamental descriptions** (reactions, mechanics)
 – Molecular dynamics
 – Value in relative ranking reactivity based on comparison with experiment
 – Or not
 • **Performance** modeling
 – Chemical +mechanical processes combined
 – **Simplified integrated models**
 – Value in modeling – macro scale/mesoscale
 – Open area
• Do reaction mechanisms depend on the **initiation**?
 – Thermal
 – Continuous reaction does not change depending on initiation
 – Nano-materials – initiation may constitute the entire reaction
 – Thermal versus shock
 – Spark versus laser

• **Is nanoscale a deciding factor?**
 – Will the same compositions mixed on the same scale behave identically?
 • Is manufacturing approach important?

• How to **correlate lab** evaluations/tests with **performance metrics**?