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Abstract—We develop a localization method to enable a team
of mobile robots to search for multiple unknown transient radio
sources. Because of signal source anonymity, short transmission
durations, and dynamic transmission patterns, robots cannot treat
the radio sources as continuous radio beacons. Moreover, robots do
not know the source transmission power and have limited sensing
ranges. To cope with these challenges, we pair up robots and de-
velop a cooperative sensing model using signal strength ratios from
the paired robots. We formally prove that the joint conditional pos-
terior probability of source locations for the m-robot team can be
obtained by combining the pairwise joint posterior probabilities,
which can be derived from signal strength ratios. Moreover, we pro-
pose a pairwise ridge walking algorithm (PRWA) to coordinate the
robot pairs based on the clustering of high-probability regions and
the minimization of local Shannon entropy. We have implemented
and validated the algorithm under both the hardware-driven sim-
ulation and physical experiments. Experimental results show that
the PRWA-based localization scheme consistently outperforms the
other four heuristics.

Index Terms—Radio localization, robot motion planning, un-
known sensor network.

I. INTRODUCTION

IMAGINE that a team of mobile robots is searching for a sen-
sor network deployed by enemies (see Fig. 1). The robots

have little information about the sensor network, except for the
fact that the sensor nodes emit short radio signals from time
to time. Without the knowledge of the network configuration
and packet structure, localizing each node is difficult because
of signal source anonymity, short transmission durations, and
dynamic/intermittent transmission patterns. The robots can only
rely on the received signal strength (RSS) from intercepted sig-
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Fig. 1. Example of the localization scenario.

nals. However, the transmission power of the radio sources is
unknown and may vary from time to time. A new method is
needed for this multisource localization problem that is coupled
with issues in signal correspondence, variable source transmis-
sion power, and robot sensing range limits.

Here, we present a search method to enable a team of mo-
bile robots to localize multiple unknown and transient radio
sources. The contributions of this paper are twofold. First, we
formally prove that the joint conditional posterior probability of
source locations given RSS readings from the m-robot team can
be obtained by combining the joint conditional posterior prob-
abilities of all pairs. The pairwise joint conditional posterior
probabilities are derived from RSS ratios. This result allows the
approach to handle unknown and variable source signal trans-
mission power. The new sensing model is combined with the
spatiotemporal probability occupancy grid (SPOG) to address
signal correspondence issue. SPOG tracks the source location
distributions and signal transmission frequency. Second, we pro-
pose a pairwise ridge walking algorithm (PRWA) to coordinate
robot pairs based on the clustering of high-probability regions
and the minimization of local Shannon entropy. We have im-
plemented and validated the algorithm under a hardware-driven
simulation and physical experiments. In the experiments, we
compare PRWA with four heuristic methods: pairwise patrol,
pairwise random walk, regular patrol, and regular random walk.
Results show that the PRWA-based localization consistently
outperforms the other four heuristics in all settings.

The remainder of this paper is organized as follows. We first
review the related work in Section II. We introduce the local-
ization system design and formulate two problems in Section
III, which include the sensing problem addressed in Section IV
and the robot motion planning problem addressed in Section V.

1552-3098 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Section VI summarizes the development into two algorithms.
Both algorithms are validated in experiments in Section VII
before we conclude the paper in Section VIII.

II. RELATED WORK

The recent development of radio frequency-based localization
can be viewed as the localization of “friendly” radio sources be-
cause researchers either assume that an individual radio source
continuously transmits radio signals (similar to a lighthouse)
[1]–[4] or assume that robots/receivers are a part of the network
and understand the detailed packet information [5]–[7]. How-
ever, protocol and network information is not always available
for an unknown network. Radio signals are very short and can-
not be easily associated with their transmitters. When signal cor-
respondence cannot be established between different listening
time and locations, most existing methods would have difficulty
to handle the problem.

When signal sources are not cooperative, RSS readings are
the primary information for localization because RSS attenuates
over distance. Since signal transmission power at the source
is not available, ratios between RSS readings from dislocated
listeners have been proven to be effective [8]–[10]. Li et al. [11]
show that at least four robots are needed at the same moment
in order to localize a single source with unknown transmission
power. Some other approaches use antenna arrays to obtain
bearing readings. Kim and Chong [12] show how to find a radio
source using two antennas with different polarizations. These
approaches focus on single source localization and, hence, are
not concerned with the signal correspondence issue.

Localization of multiple radio sources with multiple robots is
structurally similar to multirobot simultaneous localization and
mapping (SLAM) problem [13]–[15]. Although both SLAM
approaches and our approach may share a Bayesian frame-
work, SLAM assumes static environment while networked ra-
dio sources are highly dynamic because of ever changing signal
transmission patterns. Another major difference is that the sens-
ing of the environment can be done individually by robots in
exploration [16] in SLAM, while our robots have to cooper-
atively listen and infer signals with unknown/variable source
transmission power. Depth to signal sources cannot be obtained
by an individual robot. Our new framework is designed to handle
these new challenges.

In the sensing part of our problem, we partition the open 2-D
space into equalized grid cells. This grid-based approach ex-
tends existing framework on occupancy grid (OG) maps [17],
[18]. OG is a spatial probabilistic sensor model and has been
proved to be an elegant representation of the sensor coverage
for mobile robot applications [19]. Recent developments on OG
include multisensor fusion [20], an inverse sensor model, and a
forward sensor model. The existing OG-based methods use the
spatial probabilistic representation to describe sensing uncer-
tainty and cannot deal with time-variant environments. In this
study, we extend the OG methods into the temporal dimension
and allow multiple robots to collaboratively share/update OG
to deal with the dynamic characteristics of the transient radio
transmissions.

In the planning part of our problem, we purposefully partition
robots into pairs. This can be viewed as a special robot forma-
tion. Mobile robot formation control has been a popular research
area in recent years [21], [22]. While most of distributed mobile
robots work concerns the control aspect of the problem, our
approach is mainly focused on the sensing-constraint planning
rather that the low-level control. In the existing literature, the
Roumeliotis et al. works on range-based localization[23]–[25]
are closely related. They estimate robot pose and relative po-
sition using range readings in a robot network. In a way, our
approach is also range based because we use RSS readings to
derive range data. The Huynh et al. work on persistent patrol
[26] also concerns sensing range constraints with a prior dis-
tribution of targets in a 2-D space. Our work is also inspired
by Bhadauria et al.’s [27] recent work where robot motions are
abstracted to travel salesperson problem tours to facilitate coor-
dination and planning. Although these works share the charac-
teristics of being sensing-constraint planning, the unique issue
in our problem is that the individual robot in our settings cannot
obtain range readings without assistance of other robots and the
aforementioned signal correspondence issue.

Realizing that localizing unknown transient radio sources is
an important new problem, our group studies the problem un-
der different setups and constraints. First, we assume a carrier
sense multiple access-based protocol is used among networked
radio sources [28], [29] which allows us to develop a parti-
cle filter-based approach. Then, we relax the assumption and
develop a protocol-independent localization scheme using an
SPOG [30], [31]. Our recent works [32]–[34] find that teamed
robots are more efficient than a single robot when the target is
transient under the same sensing coverage. A new decentralized
framework is presented in [34]. That result shifts our attention
to the multirobot-based approach in this paper. This paper sig-
nificantly extends its conference version [35] by adding system
design, algorithms, and physical experiment results.

III. SYSTEM ARCHITECTURE AND PROBLEM DEFINITION

A. System Architecture

Fig. 2 illustrates the system diagram for coordinating a three-
robot team to search for unknown radio sources. Both robots
and radio sources reside in a 2-D Euclidean space. The whole
system can be divided by the horizontal dashed line into two
parts: the sensing part and the planning part.

The sensing part is triggered by radio signal receptions. All
robots are synchronized listeners. Once a radio signal is de-
tected, some robots may have receptions, while others do not
because of reception range limit. Each robot provides an initial
estimation of the radio source distribution as a function of an un-
known source power level using its antenna model. The system
uses a pairwise sensing technique to remove the dependence on
the unknown source power level by deriving the signal source
distribution as a function of the RSS ratio from each robot pair.
The pairwise sensing technique examines all pair combinations
except pairs without readings by either robot. Then, the sensor
fusion aggregates the outputs of pairwise sensing modules and
updates SPOG.
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Fig. 2. System diagram for a three-robot case. In the sensing part, the pairwise
sensing modules exams readings from any two robots if at least one of the two
robots has an RSS reading. Pairs without readings are ignored as explained later.
For an m-robot case, there can be as many as m(m − 1)/2 pairwise sensing
modules.

SPOG is a Bayesian framework tracking the transmitter loca-
tions and transmission rates. SPOG can be viewed as a collective
belief function for all radio sources. Based on the SPOG, the
motion planner actively pairs up robots and allocates the paired
robot teams to disjointed subregions with high probability to in-
crease the searching efficiency. Each paired robot team patrols a
subregion with its intrapair distance determined by minimizing
local Shannon entropy over the subregion. Note that the paired
robot team is not to be confused with the pairs in the sensing
part. The pairs in the sensing part refers to any two robots in the
field, while the paired robot team in the motion planning refers
to two robots that are close to each other, as assigned by the
motion planner.

The system design implies the following assumptions.
1) Each robot is equipped with an omnidirectional antenna

with a limited sensing range.
2) All robots are coordinated using a centralized control.
3) The unknown network traffic is light, and each target radio

transmission is short, which are the typical characteristics
of a low-power sensor network.

4) Transmission powers of radio sources are unknown to
the robots and may change from time to time. However,
locations of radio sources do not change.

B. Spatiotemporal Probability Occupancy Grid

As shown in Fig. 2, SPOG bridges the sensing part with the
planning part. It is originally proposed in our previous work [31]
to handle a single-robot case. To avoid overlap, here, we only
show how to extend SPOG to the high-dimensional case for the
multiple robot team by skipping the details of SPOG.

SPOG partitions the searching region into small and equal-
sized grid cells. Define i ∈ N as the cell index variable, where
N := {1, . . . , n} is the grid cell index set, and n is the total
number of cells. SPOG tracks two types of probabilistic events:
Ci represents the event that cell i contains a radio source, and C1

i

represents the event that cell i is the active source when a trans-
mission is detected. Define P (C) as the probability for event

C. P (Ci) and P (C1
i ) characterize spatiotemporal behaviors of

transient radio sources. Note that we ignore collision cases be-
cause robots have an RSS reading as soon as the transmission
is initiated and the probability of two or more transmissions
initiated at the exact same moment is negligible in a light traffic
network.

Let l ∈ M := {1, . . . , m} be the robot index variable, where
m is the total number of robots, and M is the robot index set.
m is always an even natural number in our problem. Discrete
time k refers to each moment when a transmission is detected
by robots. Let the discrete random variable Z̃k

l ∈ N be the
RSS reading (from a discrete receiver) of the lth robot at time

k. Define Z̃
k

= [Z̃k
1 , . . . , Z̃k

m ]T as a discrete random vector of
all the RSS readings at time k, and let z̃k := [z̃k

1 , ..., z̃k
m ]T be

corresponding values. As a convention, we use lower cases of
random variables or vectors to denote their values.

At time k, event Z̃k = z̃k is perceived by robots. The posterior
probability P (Ci |Z̃k = z̃k ) over the grid needs to be updated.
According to [31], this is actually a nested multivariate Bayesian
process

P (Ci |Z̃k = z̃k )

=

(
P (Z̃k = z̃k |C1

i )P (C1
i )+

P (Ci)
∑

s �=i,s∈ I P (Z̃k = z̃k |C1
s )P (C1

s )

)
∑

i∈ I P (Z̃k = z̃k |C1
i )P (C1

i )
(1)

P (C1
i |Z̃k = z̃k )

=
P (Z̃k = z̃k |C1

i )P (C1
i )∑

i∈ I P (Z̃k = z̃k |C1
i )P (C1

i )
(2)

where P (Z̃k = z̃k |C1
i ) is the sensing model. Equations (1) and

(2) can be easily modified to an incremental conditional format
for recursive update [30]. As more RSS readings enter the sys-
tem over time, P (Ci |Z̃k = z̃k ) converges and allows robots to
localize each radio source.

C. Problem Formulation

Again, we extend the problem definition in [31]. For com-
pleteness, we reiterate it here. To utilize the Bayesian frame-
work, we need to derive a sensing model first.

Definition 1 (Sensing Problem): Derive P (Z̃k = z̃k |C1
i ) for

present time k when a new RSS reading is received.
Once P (Z̃k = z̃k |C1

i ) is obtained, we can use (1) and (2) to
compute posterior sensor location distribution P (Ci |Z̃k = z̃k ).
The SPOG gets updated for each perceived radio transmission.

Based on SPOG, the motion planner’s task can be character-
ized as the following problem.

Definition 2 (Planning Problem): Given the updated P (Ci |
Z̃k = z̃k ), plan trajectories for each robot at the beginning of
each planning period.

Despite the similarity in problem structure with [31], solving
the two problems is much harder for this multirobot multisource
case. We start with the sensing problem first in Section IV.
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IV. SENSING MODEL

The sensing model that computes P (Z̃k = z̃k |C1
i ) is

very complex. It is a joint conditional distribution of an
m-dimensional random vector. To derive the conditional prob-
ability, we model the signal transmission uncertainty for range-
limited antenna, derive a pairwise sensing model based on
signal strength ratio to remove the dependence on source trans-
mission power, and propose a sensing fusion scheme to ag-
gregate the output of all pairs to obtain the high-order model
P (Z̃k = z̃k |C1

i ). Actually, these three tasks correspond to the
three functional blocks (i.e., antenna model, pairwise sensing,
and sensor fusion) in the sensing part of Fig. 2. For simplicity,
the time superscript k is dropped in this section as all values
correspond to present time k. Thus, P (Z̃k = z̃k |C1

i ) becomes
P (Z̃ = z̃|C1

i ).

A. Antenna Model

The purpose of the antenna model is to convert the RSS to the
signal source location distribution. For a robot equipped with an
omnidirectional antenna, the distance to the active radio source
and source transmission power largely determine the RSS. As-
sume the active radio source is located at the center of the cell i.
Let xi = [xi,yi]T and xl = [xl,yl]T be the center location of
cell i and the location of robot l, respectively, when the trans-
mission is sensed. Define dli =‖ xl − xi ‖ as the Euclidean
distance between xl and xi . Following the signal propagation
model [36], the expected RSS of robot l is denoted as ψl and
measured in units of dBm

ψl = wi − 10β log10(dli) (3)

where source power level wi is unknown, and β is the signal
decay factor.

An RSS level is not a constant but a continuous random
variable because of uncertainties in transmissions. Assuming
the robot radio listener has an infinite resolution, its RSS would
be a continuous random variable Zl for robot l. Moreover, robots
can only detect the transmission signal if an active radio source
is located in their sensing ranges, each of which is determined
by an RSS threshold denoted by ζ. To characterize sensing range
limit and background noises in sensing, we have

Zl = μl + ωl, where μl =
{

ψl, if z̃l > ζ
ζ, otherwise

(4)

where ωl follows the independent and identically distributed
(i.i.d.) Gaussian with zero mean and a variance of σ2 . Note
that β in (3) and σ2 can be obtained by calibration. There-
fore, the probability density function (PDF) of Zl | C1

i is
fZl |C 1

i
(zl) = Bel(μp, σ

2), where Bel(μp, σ
2) is the Gaussian

PDF. As a convention, the subscript of f(·) is the corresponding
random variable of the PDF function.

Remark 1: In practice, antennas often suffer from imprecise
radiation patterns and unknown environmental reflections. We
can increase σ to capture the increased level of uncertainty. For
simplicity, we assume omnidirectional radiation pattern in the
analysis, which assumes a perfectly round radiation patterns.
Actually, a far-field radiation pattern of an imprecise omnidi-
rectional antenna can always be approximated by an ellipsoid.

In such a case, our method may lose some efficiency and accu-
racy but is still able to find the sensor location. If available, time
of flight measurements can be used instead of RSS to reduce σ.

Actually, the RSS reading Z̃l is an integer because of receiver
hardware limit. As a convention, we use ã to indicate the integer
value of continuous variable a. Define Il as an RSS interval

Il = (z̃l − 0.5, z̃l + 0.5] ⊂ R. (5)

Thus, we have the relationship between Z̃l and Zl given C1
i

P (Z̃l = z̃l |C1
i ) = P (Zl ∈ Il |C1

i ) =
∫

zl ∈Il

fZl |C 1
i
(zl)dzl .

(6)
This is actually the sensing model when there is only one robot.
Since this model relies on the unknown source power level wi ,
it is not a viable sensing model but provides a foundation for
the next step.

B. Transmission Power Independent Pairwise Sensing

To remove the dependence on the source power level, we use
signal ratio from a dislocated antenna/robot pair. This process is
named as pairwise sensing. For m-robots in the field, we need

to examine all
(m

2
)

= m (m−1)
2 pair combinations.

For a robot pair (p, q), p �= q, recall the possible RSS readings
form sets Ip and Iq as defined in (5), respectively. According to
our convention, P (Zp ∈ Ip , Zq ∈ Iq |C1

i ) is a pairwise con-
ditional probability given C1

i . We are now ready to show that
P (Zp ∈ Ip , Zq ∈ Iq |C1

i ) can be obtained from its RSS ratio
regardless of source transmission power levels.

Define Zp − q := Zp − Zq , and let Ip − q = (z̃p − z̃q −
1, z̃p − z̃q + 1] ⊂ R be the interval of Zp − q values. P (Zp − q ∈
Ip − q |C1

i ) denotes the probability of pairwise difference
given C1

i . We have the following lemma with its proof in
Appendix A.

Lemma 1:

P (Zp ∈ Ip , Zq ∈ Iq |C1
i ) =

1
ηpq

P (Zp − q ∈ Ip − q |C1
i )

(7)

where ηpq is the normalizing factor.
It is worth noting that, since the RSS readings are in log scale,

the difference between the two readings Zp − q actually means an
RSS ratio which does not depend on source transmission power
levels. Computing P (Zp − q ∈ Ip − q |C1

i ) is nontrivial because
some of robots may not have readings because of limited sensing
ranges. Based on (4), the robot index set M is partitioned into
two disjoint sets M = M1 ∪M0 , which correspond to the
sets of robots with and without receptions, respectively. As a
result, we have three types of pairs: no detection for either
robot, single detection, and dual detection. Define E as the set
for all possible pairs, which consists of three disjoint subsets
E = E11 ∪ E10 ∪ E00 , where

E11 = {(p, q) | p < q, p ∈ M1 , q ∈ M1}
E10 = {(p, q) | p ∈ M1 , q ∈ M0}
E00 = {(p, q) | p < q, p ∈ M0 , q ∈ M0}. (8)
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Define Z11
p − q , Z10

p − q , and Z00
p − q as the sensor readings of the

robot pair (p, q) corresponding to components of E11 , E10 , and
E00 , respectively. Zp − q in (7) will be one of these three types.
We now focus on deriving P (Z11

p − q ∈ Ip − q |C1
i ), P (Z10

p − q ∈
Ip − q |C1

i ), and P (Z00
p − q ∈ Ip − q |C1

i ).
Let us compute P (Z11

p − q ∈ Ip − q |C1
i ) first. Recall that dqi

and dpi refer to the distance from robots q and p to the center of
cell i, respectively. From (3) and (4), the mean value (μp − μq )
of Z11

p − q becomes

μp − μq = ψp − ψq = 10β log10
dqi

dpi
(9)

and the PDF of Z11
p − q |C1

i is

fZ 1 1
p − q |C 1

i
(z11

p − q ) = Bel

(
10β log10

dqi

dpi
, 2σ2

)
. (10)

Thus, we have the following lemma.
Lemma 2:

P (Z11
p − q ∈ Ip − q |C1

i ) =
∫ z̃p − z̃q +1

z̃p − z̃q −1
fZ 1 1

p − q |C 1
i
(z)dz

=
[
FZ 1 1

p − q |C 1
i
(z̃p − z̃q + 1)

−FZ 1 1
p − q |C 1

i
(z̃p − z̃q − 1)

]
(11)

where FZ 1 1
p − q |C 1

i
(·) is the cumulative distribution function of

fZ 1 1
p − q |C 1

i
(·).

To facilitate the understanding of the dual detection case,
Fig. 3(a) shows an example to illustrate the corresponding pos-
terior probability P (C1

i |Z11
p − q ∈ Ip − q ). Note that what is in

the figure is not P (Z11
p − q ∈ Ip − q |C1

i ) that we just computed
because the posterior spatial distribution P (C1

i |Z11
p − q ∈ Ip − q )

is what we are actually interested in. We want to examine how
P (Z11

p − q ∈ Ip − q |C1
i ) affects P (C1

i |Z11
p − q ∈ Ip − q ). In fact,

P (C1
i |Z11

p − q ∈ Ip − q ) is obtained using the Bayesian equation
in (2) and P (Z11

p − q ∈ Ip − q |C1
i ) from (11) by assuming C1

i is
uniform across each cell as prior knowledge.

For P (Z10
p − q ∈ Ip − q |C1

i ), we have the following result.
Lemma 3:

P (Z10
p − q ∈ Ip − q |C1

i ) =

1
η10

(
1 −

∫ z̃p − z̃q +1

z̃p − z̃q

FZ 1 1
p − q |C 1

i
(z)dz

)

(12)

where η10 is the normalizing factor.
The proof of Lemma 3 is in Appendix B. This result also

does not depend on source transmission power. Using the
similar process that computes the results shown in Fig. 3(a),
Fig. 3(b) illustrates the corresponding posterior probability
P (C1

i |Z10
p − q ∈ Ip − q ) for P (Z10

p − q ∈ Ip − q |C1
i ).

At last, we compute P (Z00
p − q ∈ Ip − q |C1

i ), and we have the
following lemma:

Lemma 4:

P (Z00
p − q ∈ Ip − q |C1

i ) =
1

η00 (13)

is a nonzero constant.

Proof: The proof is similar to that of Lemma 2. Note that
neither robots have reception. According to (4), we have

μp − μq = ζ − ζ = 0 (14)

and the PDF of Z00
p − q |C1

i is

fZ 0 0
p − q |C 1

i
(z00

p − q ) = Bel
(
0, 2σ2) . (15)

Since the PDF fZ 0 0
p − q |C 1

i
(z00

p − q ) is not a function of the distance
to cell i, we have

1
η00 =

∫ z̃p − z̃q +1

z̃p − z̃q −1
fZ 0 0

p − q |C 1
i
(z)dz.

Intuitively, P (Z00
p − q ∈ Ip − q |C1

i ) cannot provide more in-
formation regarding the whereabouts of i, except that it is located
outside the sensing range. Therefore, the probability cannot be
a function of the distance to the active cell i.

C. Sensor Fusion of Multiple Pairs

Now, we are ready to show that the m-dimensional joint con-
ditional probability P (Z̃k = z̃k |C1

i ) can be reduced to a com-
bination of pairwise conditional probabilities P (Zp ∈ Ip , Zq ∈
Iq |C1

i ). We have the following lemma:
Lemma 5:

P (Z̃ = z̃ |C1
i ) =

1
η

∏
(p,q)∈E

P (Zp ∈ Ip , Zq ∈ Iq |C1
i )

(16)

where η is the normalizing factor and remains the same for all
p and q values.

Proof:

P (Z̃ = z̃ |C1
i ) =

m∏
l=1

P (Z̃l = z̃l |C1
i ). (17)

The individual conditional probability P (Z̃l = z̃l |C1
i ) can be

paired up as

P (Z̃ = z̃ |C1
i ) =

m∏
l=1

P (Zl ∈ Il |C1
i )

=
m∏

l=1

(
P (Zl ∈ Il |C1

i )(m−1)

P (Zl ∈ Il |C1
i )(m−2)

)

=
1

m∏
l=1

P (Zl ∈ Il |C1
i )(m−2)

×
m−1∏
p=1

m∏
q=p+1

P (Zp ∈ Ip |C1
i )

×P (Zq ∈ Iq |C1
i )

=
1
η

∏
(p,q)∈E

P (Zp ∈ Ip , Zq ∈ Iq |C1
i )

(18)
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Fig. 3. Sample cases of posterior condition distributions of the signal source location given that P (C1
i ) initially uniform across cells. (a) Dual detection, (b)

single detection, and (c) fusion of all pairs. The red star is the active radio source location. These illustrations are obtained using P (Zp − q ∈ Ip − q |C 1
i ) and

the Bayesian framework in (2). The grid size is 50 × 50. Black and white dots represent robots with and without receptions, respectively. Note that the posterior
probability in (a) looks like a volcanic crater while that of (b) looks like a plateau.

where η =
∏m

l=1 P (Zl ∈ Il |C1
i )(m−2) remains the same for

all p and q values.
Now, we are ready to complete the sensing model P (Z̃ =

z̃ |C1
i ) by combining results in Lemmas 1–5, we have the fol-

lowing theorem:
Theorem 1: The high-dimensional joint conditional proba-

bility sensing model P (Z̃ = z̃ |C1
i ) can be decomposed as a

combination of pairwise conditional probabilities

P (Z̃ = z̃ |C1
i ) =

1
η′′

∏
(p,q)∈ E1 1

(
FZ 1 1

p − q |C 1
i
(z̃p − z̃q + 1)

−FZ 1 1
p − q |C 1

i
(z̃p − z̃q − 1)

)

∏
(p,q)∈ E1 0

(
1−

∫ z̃p − z̃q +1

z̃p − z̃q

FZ 1 1
p − q |C 1

i
(z)dz

)

(19)

where η
′′

is the normalizing factor and remains the same for all
p and q values.

Proof: Combining Lemma 1 with Lemma 5, the sensing
model becomes

P (Z̃ = z̃ |C1
i ) =

1
η

∏
(p,q)∈E

1
ηpq

P (Zp − q ∈ Ip − q |C1
i )

=

⎛
⎝1

η

∏
(p,q)∈ E

1
ηpq

⎞
⎠ ∏

(p,q)∈E
P (Zp − q ∈ Ip − q |C1

i )

=
1
η′

∏
(p,q)∈ E

P (Zp − q ∈ Ip − q |C1
i ) (20)

where η′ = η
∏

(p,q)∈E
ηpq is the normalizing factor and remains

the same for all p and q values.
Applying (8) to (20) and combining Lemmas 2 and 3, the

sensing model is rewritten as

P (Z̃ = z̃ |C1
i ) =

1
η′

∏
(p,q)∈E1 1

P (Z11
p − q ∈ Ip − q |C1

i )

×
∏

(p,q)∈E1 0

P (Z10
p − q ∈ Ip − q |C1

i )

×
∏

(p,q)∈E0 0

P (Z00
p − q ∈ Ip − q |C1

i )

=
1
η′′

∏
(p,q)∈E1 1

(
FZ 1 1

p − q |C 1
i
(z̃p − z̃q + 1)

−FZ 1 1
p − q |C 1

i
(z̃p − z̃q − 1)

)

×
∏

(p,q)∈E1 0

×
(

1 −
∫ z̃p − z̃q +1

z̃p − z̃q

FZ 1 1
p − q |C 1

i
(z)dz

)

(21)

where

η
′′

=
η′ ∏

(p,q)∈E1 0
η10∏

(p,q)∈E0 0
P (Z00

p − q ∈ Ip − q |C1
i )

= η′( ∏
(p,q)∈E1 0

η10)( ∏
(p,q)∈E0 0

η00)

is the normalizing factor.
Again, Fig. 3(c) illustrates the posterior probability

P (C1
i | Z̃ = z̃) for the six-robot case. The corresponding P (Z̃ =

z̃ |C1
i ) is computed from the fusion of all pairs with RSS read-

ings. Note that only two of the six has RSS readings due to
their range limit. Therefore, there is one pair in E11 and eight
pairs in E10 . As we can see, the resulting P (C1

i | Z̃ = z̃) is a
unimodal spatial distribution with the peak close to the actual
signal source, which is desirable.

V. ROBOT MOTION PLANNER

A. Path Planning for Each Robot Pair

Theorem 1 summarizes how to compute P (Z̃ = z̃ |C1
i ). With

the sensing model, the Bayesian framework in (2) can derive
the posterior source location distributions P (Ci | Z̃ = z̃). This
completes the sensing part in Fig. 2. The next step is to develop
a multirobot motion planner that enables robots to quickly lo-
calize radio sources using the SPOG. We build on the ridge
walking algorithm (RWA) in [30]. RWA has been designed for
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Fig. 4. Level sets with probability threshold of 0.1, ridges, and PRWA with
two pairs of robots over a 50 × 50 grid.

a single robot without sensing range limit to localize multiple
radio sources. The experimental results have shown that it is an
efficient framework. However, RWA is not designed for multiple
robots and significant revisions are needed. Let us begin with a
brief review of RWA.

RWA uses a probability threshold plane that intercepts
P (Ci | Z̃ = z̃) to generate level sets that enclose all cells with
P (Ci | Z̃ = z̃) no less than the threshold p, p ∈ (0, 1]. Level set
S(p) is introduced as follows:

S(p) = {i |P (Ci | Z̃k
j = z̃k

j ) ≥ p, i ∈ N}. (22)

S(p) contains all cells with P (Ci | Z̃k
j = z̃k

j ) above the prob-
ability threshold plane. S(p) usually consists of several dis-
connected components. Define smax as the total number of
the disconnected components and Ss as the sth component,
s = 1, . . . , smax . Therefore, S(p) = ∪sm a x

s=1 Ss and Ss ∩ Sh = ∅,
where h �= s and h = 1, 2, . . . , smax . For the sth component,
we define its ridge Rs as the line segment defined by points
x′ = [x′,y′]T and x′′ = [x′′,y′′]T on Ss

Rs =
{

[x, y]T |x = (1 − α)x′ + αx′′

y = (1 − α)y′ + αy′′, α ∈ [0, 1]
}

(23)

where points x′ and x′′ are the two points on Ss such that the
distance between x′ and x′′ is the maximum.

The irregular closed curves in Fig. 4 are examples of level
sets. Ridges are created by extracting the longest dimension
of each isolated level set. The directed solid red line segments
in Fig. 4 are ridges. In RWA, a three-opt heuristics algorithm
is employed to compute an Euclidean TSP tour for the single
robot that must include all ridges. The TSP tour is partitioned
into on-ridge and off-ridge segments. For off-ridge segments,
the robot moves at its fastest speed. For on-ridge segments, the
robot spends the time proportional to the summation of poste-
rior conditional probability P (Ci | Z̃ = z̃) over the correspond-
ing isolated level set on each ridge. This means that the robot
spends more time in high-probability regions, which increases
the localization efficiency.

Since we have more than one robot, we need many subtours
instead of a single TSP tour. We pair up robots and treat a pair of

robots as a super robot. Recall that m is an even number, there
are m/2 super robots. Therefore, we need to partition the TSP
tour into m/2 subtours and assign each super robot to a subtour.
The partition is based on the k-means clustering algorithm [37]
with m/2 as the cluster number to cluster ridge sets. For each
cluster, we again use a three-opt heuristics algorithm to find the
TSP and the rest of RWA follows. Hence, we call this approach
the pairwise ridge walking algorithm (PRWA).

It is worth noting that the reason for using the three-opt heuris-
tics algorithm is to facilitate the derivation of the worst case
computation complexity result. In fact, there are many solvers,
such as Concorde TSP Solver [38], that are faster than the three-
opt algorithm in practice. The framework can be easily extended
to accommodate those solvers.

B. Determine Intrapair Distance

The remaining issue is how to determine the distance between
each paired robots. Comparing Fig. 3(a) and (b), we notice that
the dual detection case provides more information (less uncer-
tainty) about radio source locations than the single detection
case does. Determining the optimal intrapair is done by mini-
mizing the uncertainty of radio source locations. The Shannon
entropy over a spatial distribution of radio source locations can
be used to measure the location uncertainty. High entropy value
means high uncertainty. For example, radio sources are assumed
to be evenly distributed across the entire searching region at the
initial step which corresponds to the highest entropy value. As
indicated by the decreasing entropy values, the spatial distri-
bution of radio sources gradually peaks at vicinities of radio
sources as more readings are received. Any decisions that lead
to a small entropy function value provide more accurate local-
ization results. Therefore, we choose distance d∗u between the
uth pair by minimizing the Shannon entropy.

Define Su as the set of cells in the isolated level set that
correspond to the ridge cluster Ru . Let cell v ∈ Su . Assume
that the radio source xv = [xv , yv ]T is located at the center of
cell Cv by ignoring the minor intracell difference. By defining
ẑw
lv as the mean RSS reading at robot l, we have

ẑw
lv = w − 10β log10(dlv ) (24)

where w ∈ [wmin , wmax] is the unknown source transmission
power, which varies from wmin to wmax .

Define Ẑw
v = [Ẑw

pv , Ẑw
qv ]T as the RSS readings for the robot

pair. Define ru (t) as the center position of the robot pair at time
t. We know ru (t) because PRWA provides the trajectory for the
super robot using the center position of the robot pair as the po-
sition on the trajectory. Denote P (Ci | Ẑw

v = ẑw
v , ru (t), du ) as

the posterior probability that cell i contains a radio source given
ẑw

v , ru(t), and du . Define H(t, w, v, du ) as the Shannon entropy
over the probability distribution P (Ci | Ẑw

v = ẑw
v , ru (t), du ),

given v, w, and du . H(t, w, v, du ) is given by

H(t, w, v, du ) = −
∑
i∈Su

(
P (Ci | Ẑw

v = ẑw
v , ru (t), du )

× ln P (Ci | Ẑw
v = ẑw

v , ru(t),du)

)

(25)
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Algorithm 1: SPOG Update Algorithm

input : the received RF signal strength Z̃k = z̃k

output: P (Ci |Z̃k = z̃k ), P (C 1
i |Z̃k = z̃k ), i ∈ I , and C∗

for p ∈ M do O(m)
for q ∈ M do O(m)

for i ∈ I do O(n)
Compute distances dpi and dq i O(1)
Compute μp − μq using (9) O(1)
if z̃p > ζ and z̃q > ζ then

Compute P (Z11
p−q ∈ Ip−q |C 1

i )) using (11) O(1)

if z̃p > ζ and z̃q <= ζ then
Compute P (Z10

p−q ∈ Ip−q |C 1
i )) using (12) O(1)

for i ∈ I do O(n)
Compute P (Z̃k

j = z̃k
j |C 1

i ) using Theorem 1 (19) O(1)

for i ∈ I do O(n)
Compute P (C 1

i |Z̃k = z̃k ) using (2) O(n)
Compute P (Ci |Z̃k = z̃k ) using (1) O(n)
if P (Ci |Z̃k = z̃k ) > pt and i /∈ C∗ then

C∗ = C∗ ∪ {i} O(1)

where P (Ci | Ẑw
v = ẑw

v , ru (t), du ) is obtained from (1) and (2)
after calculating the sensing model (19) with ẑw

v . We choose the
optimal d∗u that minimizes the following Shannon entropy for
the cluster region over the period τu when the robot is inside Ru :

d∗u = arg min
du

∫ t+τu

t

wm a x∑
w=wm in

∑
v∈Su

H(t, w, v, du ). (26)

Note that here, we assume that w is evenly distributed over
integer values in [wmin , wmax]. In fact, we can estimate the
more accurate distribution of w once more received signals
become available to improve the model.

Remark 2: It is worth noting that the partition of m robots
into m/2 in the motion planning part does not change it in
sensing part, where we still need to examine all

(
m
2

)
pairs to

find pairs with RSS readings to perform sensor fusion. This is
also shown later in Algorithm 1.

VI. ALGORITHMS

To summarize our analysis, we present two algorithms, in-
cluding an SPOG update algorithm and the PRWA. Correspond-
ing to the sensing problem in Section IV, the SPOG update
algorithm runs when a radio signal is detected. Define set
C∗ as the set of cells that contain radio sources with initial
value C∗ = ∅. Define pt as the probability threshold for find-
ing the radio source. The robot reports the cells that satisfy
P (Ci | Z̃k = z̃k ) > pt as the cells that contain at least one radio
source.

Recall that n is the total number of cells, and m is the total
number of robots. It is clear that the SPOG update algorithm
runs O(nm2 + n2). The initial value settings are P (Ci | Z̃0

0 =
z̃0

0) = 0 and P (C1
i | Z̃0

0 = z̃0
0) = 1/n.

The PRWA algorithm runs every τ0 time. Define D =
{1, ..., dmax} as the index set of the distance between pair-
wise robots, where dmax is the distance resolution. Let tmax =
tk + 1 −tk

Δt be the time resolution, where Δt is the time step. Define

Algorithm 2: Pairwise Ridge Walking Algorithm

input : P (Ci |Z̃k = z̃k ), P (C 1
i |Z̃k = z̃k ), i ∈ I

output: Pairwise Robots motion {ru (t)|tk ≤ t < tk+1 , u ∈ U}
Compute S(p) O(n)
if S(p) ≤ m

2 then
{ru (t)|tk ≤ t < tk+1 , u ∈ U} = random walk O(1)

else
Find all disconnected components in S(p) O(n)
Compute for each Ss O(n)
Cluster Rs into m

2 pairs using the k-means O(msm ax em ax )
for u ∈ U do O(m)

Compute the RWA O((sm ax − 1)!)
Output pairwise robots motion {r(t)u |tk ≤ t < tk+1} O(1)
for du ∈ D do O(dm ax )

for tk ≤ t ≤ tk+1 do O(tm ax )
for wm in ≤ w ≤ wm ax do O(g)

for v ∈ Su do O(n)
Compute H (t, w, v, du ) using (25) O(n)
if Hm ax < H (t, w, v, du ) then

Hm ax = H (t, w, v, du ) O(1)

Find d∗u = Hm ax O(1)

g = wmax − wmin as the total number of transmission power
level.

As illustrated in Algorithm 2, the pairwise robots perform
a random walk until set S(p) ≥ m

2 at the initialization stage.
Then, the pairwise robots switch into the normal ridge walk-
ing mode. The robots stop when no additional radio source has
been found in kmax consecutive periods, where kmax is a pre-
set iteration number. Algorithm uses the k-means clustering
algorithm to partition ridges into robot pairs and its complex-
ity is O(msmaxemax), where emax is the maximum number
of iteration. The overall complexity is O(mdmaxtmaxgn2 +
msmaxemax + m(smax − 1)!). Since smax refers to the max-
imum number of disconnected components in the S(p) and
usually is a small number, the speed of this algorithm is not a
concern.

A natural concern is how the two algorithms scale against the
number of robots, m, and the number of cells, n. From the analy-
sis, we know that the PRWA is linear to m, and the SPOG update
algorithm is quadratic in m. Both algorithms are quadratic in
n. One would concern an overall complexity of O(nm2 + n2)
could be expensive for the SPOG update algorithm. Let us show
why such a case is not a significant concern:

There are two ways to increase n: 1) finer grid with smaller
cells for the same searching region or 2) larger searching re-
gion using the same cell size. For 1), there is a lower bound of
how small each grid cells can be due to the limited resolution
of the antenna. Therefore, n cannot be arbitrarily large for this
case. For 2), this generates a sparse robot distribution for the
same number of robots. For the case, many pairs are actually
the 00 type according to (8), which are handled by constant
terms in the sensing model according to Theorem 1 and, hence,
do not require explicit computation. Therefore, the actual com-
plexity regarding m is somewhere between the linear case and
the quadratic case. The sparser the robot distribution gets, the
SPOG algorithm behaves closer to the linear case. Therefore,
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the overall complexity is far less than O(nm2 + n2). In either
case, we also cannot arbitrarily increase m for a given search-
ing region because the number of robots needed is always less
than the ratio between overall searching area and antenna cov-
erage area. If radio sources are not evenly distributed across the
searching region, then the ratio is even smaller because the over-
all searching area should be replaced by adjacent areas occupied
by radio sources. Therefore, there is a natural upper bound for
m. If such bound is reached, the robot team does not need to
move because the team already provides full coverage of the
entire field or all adjacent regions of radio sources. In fact, more
important and realistic cases are when resource is constrained
by a small number of robots.

VII. EXPERIMENTS

To validate the algorithms, we have conducted both simula-
tion and physical experiments. We have implemented the algo-
rithms and the simulation platform using Microsoft Visual C++
.NET 2005 with OpenGL on a PC Desktop. The radio sources
are XBee Pro with ZigBeeT/802.15.4 OEM radio frequency
modules [see Fig. 6(c)] produced by Digi International Inc. The
antenna is calibrated first with the radio sources. The calibration
establishes the parameters in (3).

A. Simulation

We use the data from the real hardware to drive the simulation
experiments below.

The grid is a square with 50 × 50 cells. Each grid cell has
a size of 50.0 × 50.0 cm2 . Each radio source generates ra-
dio transmission signals according to an i.i.d. Poisson process
with a rate of λ = 0.05 packets per second. We choose the
probability convergence threshold as pt = 0.9 which means if
P (Ci | Z̃ = z̃) > 0.9, the algorithm outputs the cell as a radio
source location. During each trial of the simulation, we ran-
domly generate radio source locations in the grid and randomly
set their power levels as one of five power levels offered by
XBee Pro nodes.

We compare the PRWA algorithm with four heuristics. Two of
the four heuristics are based on random walk: a pairwise random
walk and a regular random walk. In the pairwise random walk,
robots are paired just as PRWA does. Each pair is treated as a
super robot to perform a random walk together while all robots
perform independent movements in the regular random walk.
The remaining two heuristics are based on a fixed-route patrol:
The robots patrol the field using a predefined route that covers
the search region. Again, robots are either paired, which results
in a pairwise patrol, or nonpaired, which results in a regular
patrol. Robot pairs in the pairwise patrol or individual robots
in the regular patrol are distributed evenly along the route to
increase coverage.

The experiment compares all five methods under different
numbers of radio sources and robots. Fig. 5(a) and (b) illus-
trates experiment results. Each data point is an average of 100
independent trials. The results show that PRWA is consistently
the fastest method under all comparisons. This is reflected by its
small average localization times and small standard deviations.

Fig. 5. Simulation results: (a) Localization time versus number of radio
sources. The number of robots used is 6. (b) Localization time versus num-
ber of robots. There are four radio sources. Both average localization times
are in colored bars, and their standard deviations in vertical line segments are
illustrated here.

In addition, the pairwise random walk and the pairwise patrol
are consistently faster than the regular random walk and patrol,
respectively. This is expected because paired robots are more
efficient with their limited sensing ranges. Another interesting
observation is that the two random walk-based methods are
faster than the two fixed-route patrol methods. This is expected
because random walk can bring robots together from time to
time, which increases the number of effective pairs and hence
listening efficiency. The fixed-route patrol methods emphasize
coverage and spread robot pairs or individual robots apart along
the route and, hence, cannot create many effective pairs, which
decreases localization efficiency. The results in Fig. 5(b) also
show that the difference between the five methods decreases as
the number of robots increases. However, in reality, the number
of robots is often constrained to where PRWA is superior.
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Fig. 6. Hardware and system setup for the physical experiments. (a) Robot
team consists of six modified iRobot Create robots. (b) Sample radio source.
(c) Radiation pattern of the chip antenna of the radio source. (d) System setup
during the experiment.

B. Physical Experiments

In the physical experiment, we have modified six iRobot Cre-
ate robots [see Fig. 6(a)]. The color patches on the top of the
robots are used for robot identification in video. Each robot
measures 34.0 cm in diameter and 30.0 cm in height. The max-
imum speed of the robot is 40.0 cm/s. The maximum battery
life is about 2 h. Only four robots are used in the actual experi-
ments with the remaining two as backup robots to deal with the
hardware reliability issue in the long experiment.

The radio sources are XBee Pro with ZigBeeT/802.15.4 OEM
radio frequency modules [see Fig. 6(b)] with on-board chip an-
tennas. The radiation pattern of the chip antennas is illustrated in
Fig. 6(c). According to the antenna theory, the radiation pattern
of an antenna is also its reception pattern. Both the robot and the
radio source use the same radio module with the same built-in
chip antennas. In addition, we have strong interference from
WiFi signals from the nearby building. We have to tune down
the gain for the Xbee antenna to overcome the interference. This
is equivalent to raising the background noise threshold ζ in (4).
It turns out that the effective listening radius is less than 1 m.
To overcome the issue that the radiation pattern is not perfectly
round, we have calibrated Xbee antenna and fit a circle to ob-
tain an approximation represented by mean radius for the chip
antenna. The variations between the actual radiation level and
the mean reception calculated from the mean radius are used to
compute the variance of noise, σ, which captures both radiation
pattern deviation and other noises.

The test field is a square with a side length of 10.00 m, which
has been divided into 50 × 50 equal-sized square cells. In the
test, we have three unknown radio sources transmitting at 0.1
packets per second each. The source transmission power can

Fig. 7. Physical experiment results. The marker position is the average value.
The vertical bars correspond to [−σ, σ] with σ as the standard deviation.

vary at different levels. As shown in Fig. 6(d), an overhead
camera has been used to provide the robots with position infor-
mation at 16 Hz using motion detection methods. The camera
is mounted at the third floor of a nearby building. The camera is
an Arecont Vision 3100 networked video camera. The location
accuracy is within ±10.0 cm.

Due to the battery life limit, we cannot compare PRWA with
all four heuristics in the physical experiments. We only com-
pare PRWA with the pairwise random walk. The localization
time of pairwise random walk appears to be second only to the
PRWA in simulation and, hence, does not demand too much in
battery life. In the experiment, the probability threshold pt is
set to be 0.9. The results of physical experiments in comparison
with simulation are shown in Fig. 7. It is worth noting that the
simulation is carried out using the same parameter settings, the
same calibrated antenna models, and the same field setup to
make the simulation as faithful to the physical experiments as
possible. Due to constraints on resources and time, we can only
conduct physical experiments for five trials for each data point
in Fig. 7. Actually, each trial takes at least 3–4 h if including set
up time. Even from the limited results, we can see that physi-
cal experiment data are very close to that of simulation results.
This is anticipated because the simulation is driven by the data
from the same hardware. It is consistent that both physical ex-
periments and simulation results agree that PRWA is faster than
the pairwise random walk in localization speed. In addition, the
standard deviation of PRWA localization time is much smaller
than that of the pairwise random walk. This means that PRWA
is both faster and more predictable.

To further illustrate the results, we have attached a video clip
showing a sample trial of the physical experiment. The robot
trajectories are visualized using the real robot movement data
and probability values are shown in grayscale. As shown in
the results, the on-ridge movements appear near radio sources.
At the end of the experiments, the estimated locations of radio
sources are within the error range of the actual locations. The
localization process is successful. It is also worth noting that
the probability map has noisy peaks caused by environment
reflections.
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VIII. CONCLUSION AND FUTURE WORK

We have reported a new localization method that enables
a team of mobile robots to localize multiple unknown tran-
sient radio sources. To cope with the challenges from signal
correspondence, limited sensing ranges, and unknown trans-
mission power, we paired up robots and developed a sensing
model using RSS ratios from robot pairs. Since a conventional
continuous tracking algorithm cannot be applied due to signal
intermittency and anonymity, we employed a Bayesian-type ap-
proach by extending the existing SPOG framework to multiple
robot pairs. To handle the consequent issue that high-order be-
lief space is difficult to compute, we formally proved that the
joint conditional posterior probability of source locations for
the m-robot team can be obtained by combining pairwise joint
conditional posterior probabilities. Moreover, we proposed a
PRWA to coordinate the robot pairs based on the clustering of
high-probability regions and the minimization of local Shannon
entropy. We implemented the algorithm and tested it under the
hardware-driven simulation and physical experiments. Results
show that PRWA-based localization consistently outperforms
the other four heuristics in all settings tested.

In the future, we will address the decentralized control issue
by proving that the joint posterior probability updating process
can be handled locally in the distributed pairs. We will study how
the information exchange rate between pairs affects convergence
speed to provide theoretical bounds on the search time of the
distributed approaches. In addition, robot pairs can be viewed
as a rudimentary way of teaming. We will also explore other
teaming topology and size for the shortest search time.

APPENDIX A
PROOF OF LEMMA 1

Recall that Zp − q = Zp − Zq , and define Zp + q := Zp + Zq .

Denote A =
[

1 −1
1 1

]
as the linear transformation matrix.

Therefore [
Zp − q

Zp + q

]
= A

[
Zp

Zq

]
. (27)

Let us define RA as the transformed integral region. According
to [39], matrix A transforms the joint PDF of random variables
Zp and Zq to the joint PDF of random variables Zp − q and Zp + q

fZp − q Zp + q |C 1
i
(zp − q , zp + q ) =

1
| detA | fZp Zq |C 1

i
(zp , zq )

(28)

where | detA | = 2. Hence, P (Zp ∈ Ip , Zq ∈ Iq |C1
i ) be-

comes

P (Zp ∈ Ip , Zq ∈ Iq |C1
i )

=
∫

zp ∈Ip

∫
zq ∈Iq

fZp Zq |C 1
i
(zp , zq )dzpdzq

= | detA |
∫

RA

fZp − q Zp + q |C 1
i
(zp − q , zp + q )dzp + q dzp − q .

(29)

Since Zp and Zq conform to i.i.d. normal distributions, Zp + q

and Zp − q are also normal distributions. Moreover, Zp + q and
Zp − q are independent because

Cov(Zp + q , Zp − q ) = Cov(Zp + Zq , Zp − Zq )

= Var(Zp) − Var(Zq ) = 0.

Therefore, we know

fZp − q |C 1
i
(zp − q ) = Bel

(
μp − μq , 2σ2)

fZp + q |C 1
i
(zp + q ) = Bel

(
μp + μq , 2σ2)

fZp − q Zp + q |C 1
i
(zp − q , zp + q ) = fZp + q |C 1

i
(zp + q )

fZp − q |C 1
i
(zp − q ). (30)

The integral over RA in (29) can be calculated as follows:∫ ∫
RA

fZp − q Zp + q |C 1
i
(zp − q , zp + q )dzp + q dzp − q

=
∫ z̃p − z̃q +1

z̃p − z̃q −1

(
fZp − q |C 1

i
(zp − q )

×
∫ 2z̃p +1−zp − q

2z̃q −1+zp − q

fZp + q |C 1
i
(zp + q )dzp + q

)
dzp − q .

(31)

To simplify the above integral, let us define

g(zp − q ) =
∫ 2z̃p +1−zp − q

2z̃q −1+zp − q

fZp + q |C 1
i
(zp + q )dzp + q . (32)

Using the first mean value theorem for integration, we derive
the relation between P (Zp ∈ Ip , Zq ∈ Iq |C1

i ) and P (Zp − q ∈
Ip − q |C1

i ) as

P (Zp ∈ Ip , Zq ∈ Iq |C1
i )

= | detA | ·
∫ z̃p − z̃q +1

z̃p − z̃q −1
fZp − q |C 1

i
(zp − q )g(zp − q )dzp − q

= 2 g(ξ)
∫ z̃p − z̃q +1

z̃p − z̃q −1
fZp − q |C 1

i
(zp − q )dzp − q

= 2 g(ξ) P (Zp − q ∈ Ip − q |C1
i )

=
1

ηpq
P (Zp − q ∈ Ip − q |C1

i ) (33)

where ξ ∈ Ip − q , and ηpq = 1
2 g(ξ) is the normalizing factor.

This completes the proof.

APPENDIX B
PROOF OF LEMMA 3

Assume robot q, q ∈ M0 , has an ideal receiver which does not
have the sensing range limit. Denote Zq = ψq + ωq as the RSS
readings of the ideal receiver. The ideal receiver would allow us
to use Z11

p − q as the RSS ratio instead of Z10
p − q from a regular

receiver. In addition, ψq ≤ ζ. According to (4), we know that

Z10
p − q = Z11

p − q + Zq − (ζ + ωq ). (34)
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The PDF of (Z10
p − q |C1

i ) is rewritten by

fZ 1 0
p − q |C 1

i
(z10

p − q )

= fZ 1 0
p − q |C 1

i ,Zp >Zq
(z10

p − q )P (Zp > Zq )

+fZ 1 0
p − q |C 1

i ,Zp ≤Zq
(z10

p − q )P (Zp ≤ Zq )

= fZ 1 0
p − q |C 1

i ,Zp >Zq
(z10

p − q ) (35)

where P (Zp > Zq ) = 1, and P (Zp ≤ Zq ) = 0.
Conditioning on Zq and using the first mean value theorem

for integration, the PDF of (Z10
p − q |C1

i , Zp > Zq ) becomes

fZ 1 0
p − q |C 1

i ,Zp >Zq
(z10

p − q )

=
∫ +∞

−∞
fZ 1 0

p − q ,Zq |C 1
i ,Zp >Zq

(z10
p − q , zq )dzq

=
∫ ζ+ωq

−∞

fZ 1 0
p − q ,Zq |C 1

i ,Zp >Zq
(z10

p − q , zq )

fZq |C 1
i
(zq )

· fZq |C 1
i
(zq )dzq

=
∫ ζ+ωq

−∞
fZ 1 0

p − q |Zq ,C 1
i ,Zp >Zq

(z10
p − q | zq )fZq |C 1

i
(zq )dzq

= fZq |C 1
i
(ξ′)

∫ ζ+ωq

−∞
fZ 1 0

p − q |Zq ,C 1
i ,Zp >Zq

(z10
p − q | zq )dzq

=
1

η10

∫ ζ+ωq

−∞
fZ 1 0

p − q |Zq ,C 1
i ,Zp >Zq

(z10
p − q | zq )dzq

(36)

where −∞ ≤ ξ′ ≤ ζ + ωq , and η10 = 1
f

Z q |C 1
i

(ξ ′) is the normal-

izing factor.
Plugging (34) in, we have

fZ 1 0
p − q |C 1

i ,Zp >Zq
(z10

p − q )

=
1

η10

∫ ζ+ωq

−∞
fZ 1 0

p − q |Zq ,C 1
i ,Zp >Zq

(z10
p − q | zq )dzq

=
1

η10

∫ +∞

z 1 0
p − q

fZ 1 1
p − q |C 1

i
(z11

p − q )dz11
p − q

=
1

η10

(
1 − FZ 1 1

p − q |C 1
i
(z10

p − q )
)

. (37)

Thus, we have

P (Z10
p − q ∈ Ip − q |C1

i )

=
∫ z̃p − z̃q +1

z̃p − z̃q −1
fZ 1 0

p − q |C 1
i
(z)dz

=
∫ z̃p − z̃q +1

z̃p − z̃q

fZ 1 0
p − q |C 1

i ,Zp >Zq
(z)dz

=
∫ z̃p − z̃q +1

z̃p − z̃q

1
η10

(
1 − FZ 1 1

p − q |C 1
i
(z)

)
dz

=
1

η10

(
1 −

∫ z̃p − z̃q +1

z̃p − z̃q

FZ 1 1
p − q |C 1

i
(z)dz

)
. (38)

This completes the proof. �
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