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Abstract—We report system and algorithm developments that
utilize a single mobile robot to simultaneously localize multiple un-
known transient radio sources. Because of signal source anonymity,
short transmission durations, and dynamic transmission patterns,
the robot cannot treat the radio sources as continuous radio bea-
cons. To deal with this challenging localization problem, we model
the radio source behaviors using a novel spatiotemporal probabil-
ity occupancy grid that captures transient characteristics of radio
transmissions and tracks posterior probability distributions of ra-
dio sources. As a Monte Carlo method, a ridge walking motion
planning algorithm is proposed to enable the robot to efficiently
traverse the high-probability regions to accelerate the convergence
of the posterior probability distribution. We also formally show
that the time to find a radio source is insensitive to the number
of radio sources, and hence, our algorithm has great scalability.
We have implemented the algorithms and extensively tested them
in comparison with two heuristic methods: a random walk and a
fixed-route patrol. The localization time of our algorithms is con-
sistently shorter than that of the two heuristic methods.

Index Terms—Localization, networked robots, wireless sensor
network.

I. INTRODUCTION

AWIRELESS sensor network is usually composed of a
large number of miniature wireless sensor nodes with self-

configurable ad hoc networking capabilities. Its ability to col-
lect and gather information remotely over a large region makes
it a powerful tool in many applications. It may be used as a
new espionage tool that threatens our security and privacy. For
example, an enemy may deploy a sensor network in a battle-
field to detect our troop movements. We need a countermeasure
for the potential misuse of the fast-developing sensor-network
technology.

From a listener perspective, a wireless sensor network is a
large set of multiple unknown transient radio sources. Here,
we report system and algorithm developments that enable a
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Fig. 1. Schematics of deployment of a single mobile robot to localize unknown
transient radio sources. The radio sources with dashed circles indicate that they
are sending radio signals.

single mobile robot to simultaneously localize multiple un-
known transient radio sources (see Fig. 1). Since the robot is
equipped with a directional antenna and on-board positional
sensors, the robot knows its own position and can detect re-
ceived signal strengths (RSS) as it travels in the field of radio
sources. When the radio sources and communication protocols
are unknown, the robot cannot treat the radio sources as contin-
uous radio beacons. More specifically,

1) the number of radio sources is unknown,
2) the periods of radio transmission are short,
3) the signal source cannot be identified, and
4) radio sources transmit intermittently.
To deal with this challenging localization problem, we model

the radio source behaviors using a novel spatiotemporal proba-
bility occupancy grid (SPOG) that captures transient characteris-
tics of radio transmissions and tracks their posterior probability
distributions. We then propose an SPOG update algorithm that
incrementally updates the SPOG as radio transmissions are in-
tercepted. We also propose a Monte Carlo ridge walking motion
planning algorithm that enables the robot to efficiently traverse
high-probability regions to accelerate the convergence of the
posterior probability distributions of radio source locations. We
formally show that the time to find a radio source is insensi-
tive to the number of radio sources, and hence, our algorithm
has great scalability. We have implemented the algorithms and
extensively tested them in comparison with two heuristics: a
random walk and a fixed-route patrol. In experiments, the local-
ization time of our algorithms is consistently shorter than that
of the two heuristic methods.

The rest of the paper is organized as follows. We begin with a
review of related work in Section II. We present the system archi-
tecture and the problem definition in Section III. In Section IV,
we introduce the sensing model. Building on the outcome of
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the sensing model, a robot motion planer is introduced in
Section V. The overall algorithms and localization time bounds
are presented in Section VI. We validate our model and al-
gorithm through experiments in Section VII. We conclude the
paper in Section VIII.

II. RELATED WORK

Localization of unknown transient radio sources relates to
three research fields that includes radio frequency (RF)-based
localization, simultaneous localization and mapping (SLAM),
and occupancy grid methods.

RF-based localization has witnessed fast development as
wireless communication technologies grow rapidly [1]–[5]. Sig-
nal strength, the time or the time difference of arrival [6], [7],
angle/bearing [6], and phase shift are commonly used in de-
riving the locations of signal sources using triangulation-based
approaches. Researchers in sensor and wireless network com-
munities have studied the RF-based localization problem ex-
tensively [8]–[14]. In their problem setup, sensors usually have
some prior knowledge about radio signals, such as source identi-
fication, packet length, network protocols/configurations, source
signal strength, and transmission rates. For example, recent de-
velopments of range-free localization use the prior knowledge
or part of it to estimate sensor locations by network connec-
tivity [15]–[18]. Nonparametric belief propagation [19] and the
sequence-based localization [20] methods are proposed. Recent
work also focuses on distributed solutions [21]–[24].

As a very relevant work, in [2], the authors use a network
of wireless access points to localize a mobile unit. This can be
viewed as a dual version of our problem. They use multiple static
listeners to localize a single mobile transmitter, while we try to
localize multiple static transmitters using a mobile listener. As
another closely related work, in [11], the authors try to localize
sensor-network nodes with a mobile beacon. The mobile beacon
and the sensor-network nodes are assumed to share the network
information. This type of work can be viewed as the localization
of “friendly” radio sources.

In robotics research, the SLAM is defined as the process
of mapping the environment and localizing robot position at
the same time [25]–[27]. Although both SLAM and our ap-
proach are built on the Bayesian methods, the SLAM assumes
that the environment is static or close to static. Directly ap-
plying the SLAM methods to our problem is not appropriate
because networked radio sources create a highly dynamic envi-
ronment, where the signal-transmission patterns change quickly.
Although recent advance in the SLAM allows tracking of mov-
ing objects [28], the environment largely remains static.

Since the authors introduce occupancy grid maps as a prob-
abilistic sensor model in [29] and [30], the occupancy grid has
been proved to be an elegant representation of the sensor cov-
erage for mobile robot applications, such as localization and
mapping [25]. Recent work further improves occupancy grid
maps to incorporate multisensor fusion, an inverse sensor model,
and a forward sensor model. Occupancy grid-based methods
have recently been adapted to a variety of applications includ-
ing gas/odor source localization [31]. The existing occupancy

grid-based methods focus on using the spatial probabilistic rep-
resentation to describe sensing uncertainty and are not capable
of dealing with time-variant environments. In this study, we ex-
tend the occupancy grid methods into the temporal dimension
to deal with the dynamic characteristics of the transient radio
transmissions.

In [32], the authors also work on a similar problem that en-
ables a robot to search for multiple radio transmitters. In their
setup, the robot needs to find all transmitters in an indoor envi-
ronment. Again, all transmitters are treated as continuous bea-
cons. The main focus of their approach is to provide a robust
gradient-based method to guide the robot to search for the trans-
mitters at the presence of complex and noise indoor signal fields.
The transient behaviors and signal correspondence are not con-
cerns of the approach.

We work on localization of unknown and transient radio
sources [33], [34]. In our previous works [35] and [36], we use
a single mobile robot that is equipped with a log-periodic dipole
array antenna to localize unknown networked sensor nodes. By
the usage of a particle-filter approach, we assume that the carrier
sensing multiple access (CSMA)-based protocol is used among
the networked radio sources. However, this method suffers from
the restrictive assumption on the CSMA protocol and scalabil-
ity issue of the particle-filter method. In this paper, we relax
the assumption and develop a protocol-independent localiza-
tion scheme that extends our previous conference paper [37] by
adding new convergence analysis and experimental results.

III. SYSTEM DESIGN AND PROBLEM DEFINTION

A. System Architecture

Fig. 2(a) illustrates the hybrid system architecture. The robot
knows its own position from the Global Positioning System or
other localization sensors and wants to search/localize the un-
known signal sources. From the robot perspective, the input is
the RSS readings from the directional antenna with the cor-
responding antenna orientations. The output of the system is
the planned trajectory for the robot to execute in the follow-
ing period. The entire system is built around the SPOG, which
tracks each cell’s probability of containing a radio source and
its transmission rate.

The system updates the SPOG whenever a radio transmission
is detected by the antenna. The antenna model outputs the pos-
terior probability distribution of the signal source as the inputs
to the SPOG. This update process is described by a continuous
time system. As a convention in this paper, we use t to denote
the continuous time.

On the other hand, the robot plans its motion periodically.
We denote the period length by τ0 , which is carefully chosen
to ensure that the robot has enough time to execute the planned
trajectory. At the beginning of each period, the robot plans its
trajectory based on the current SPOG. This decision-making
process is a discrete time system. We denote the discrete time
index variable by k ∈ N.

Fig. 2(b) illustrates the relationship between the continuous
time system and the discrete time system. Let tk ∈ R be the
exact time at the moment of the discrete time k. We define the
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Fig. 2. (a) System diagram and (b) system timing.

kth period as the time interval between tk−1 and tk . Hence,
tk − tk−1 = τ0 for k > 1. We also define tkj ∈ R as the exact
time when the jth radio transmission occurs in the kth period:
tk−1 ≤ tkj < tk . The index variable j is reset to zero at the
beginning of each period.

B. Problem Setup

To formulate the localization problem, we make the following
assumptions.

1) Both the robot and radio sources are located in an obstacle-
free 2-D Euclidean space. Radio sources are stationary and
can be treated as points. In the later section, we will discuss
how to handle obstacles.

2) The network traffic is light and each transmission is short.
This is the typical characteristic of a low-power sensor
network.

3) Each radio transmission is transmitted at the same power
level. This assumption can be relaxed if the robot is
equipped with an orthogonal antenna pair, which can pro-
vide directional information regardless of the transmission
power. For example, in recent works [38] and [39], the au-
thors show how to obtain distance to a radio source using
multiple antennas with different polarizations and/or sig-
nal ratios.

4) The radiation pattern of the radio sources is circular be-
cause most miniature wireless sensors are equipped with
omnidirectional antennas.

Because of the transient transmission and the fact that the
robot cannot associate a signal with its source, the robot cannot
simply triangulate the signal source. Since only one robot is
considered, the single robot perspective makes it more difficult
than the cases where multiple robots or receivers are used.

C. Spatiotemporal Probability Occupancy Grid

We introduce the SPOG to track the posterior spatiotemporal
distributions of radio sources. To define the SPOG, we partition
the entire field into equally sized square cells using a grid. Let
us define cell index set I := {1, . . . , n}, where n is the total
number of cells. Define i ∈ I as a cell index variable. The size

of each cell is determined by the RSS resolution of the antenna.
Inside each cell, we approximate radio source locations using
locations of the cell center. Define Ci as the event that cell i
contains at least one radio source and P (Ci) as the probability
that event Ci occurs. Hence,

∑
i∈I P (Ci) equals the number of

cells that contain radio sources if P (Ci) converges to a correct
value in the Monte Carlo localization process. P (Ci) tracks the
radio source location distribution and is the spatial component
of the SPOG. Localizing radio sources becomes finding cells
that ensure P (Ci) > 0.

At time tkj , a transmission occurs. We define C1
i as the event

that cell i is the active radio source at time tkj . Define C0
i as the

event that cell i is inactive at time tkj . Hence

P (C0
i ) + P (C1

i ) = 1 and
∑

i∈I

P (C1
i ) = 1 (1)

because there is only one active transmission when the transmis-
sion is detected. We ignore the collision case because we take an
RSS measurement as soon as the transmission is initiated. The
probability of two or more transmissions that are initiated at the
exact same moment is negligible in a light-traffic network. C1

i

is determined by the relative radio transmission rate and is the
temporal part of the SPOG. Unlike a regular occupancy grid, the
SPOG is unique because each cell is described by two types of
correlated random events: the spatial event Ci and the temporal
events C0

i and C1
i .

D. Problem Formulation

Fig. 2(a) suggests that the overall localization problem can be
divided into two subproblems: a sensing problem and a motion
planning problem. Let a random variable Zk

j ∈ N be the corre-
sponding RSS reading at time tkj . Note that the RSS readings
are from a receiver with a discrete resolution. Define Z(Zk

j )
as the set of all RSS values sensed from the beginning of the
localization process to the moment when Zk

j is sensed. We also
define a set Z−(Zk

j ) := Z(Zk
j ) \ {Zk

j }, which is the set of all
RSS readings from the beginning of the localization process to
the moment right before Zk

j is sensed. Define P (Ci |Z(Zk
j ))

as the conditional probability that cell i contains at least one
radio source given the RSS set Z(Zk

j ). Following the same con-
vention, we define the conditional probabilities P (Ci |Z−(Zk

j )),
P (C1

i |Z(Zk
j )), and P (C1

i |Z−(Zk
j )). The sensing problem up-

dates the SPOG when a new transmission is detected.
Problem 1 (Sensing Problem): Given the current RSS

Zk
j , the previous RSS set Z−(Zk

j ), P (Ci |Z−(Zk
j )),

P (C1
i |Z−(Zk

j )), and the corresponding robot configurations,
compute P (Ci |Z(Zk

j )) and P (C1
i |Z(Zk

j )) for each cell i.
At the beginning of each period k, we plan the robot tra-

jectory. Let us define the robot position and orientation as
r(t) = [x(t), y(t), θ(t)]T ∈ R

2 × S, where S = (−π, π] is the
orientation angle set. Since the antenna is fixed on the robot and
points to the robot forwarding direction, θ(t) is also the antenna
orientation. Define jmax as the index for the last transmission
sensed in period k. Therefore, we can define the motion planning
problem for time k (or tk ) as follows.



SONG et al.: SIMULTANEOUS LOCALIZATION OF MULTIPLE UNKNOWN AND TRANSIENT RADIO SOURCES USING A MOBILE ROBOT 671

Fig. 3. HyperGain HG2415G parabolic directional antenna properties. (a)
Antenna photo and (b) calibrated radiation pattern.

Problem 2 (Radio Source Localization Motion
Planning): Given the current SPOG, which are the sets
{P (Ci |Z(Zk

jm a x
))|i ∈ I} and {P (C1

i |Z(Zk
jm a x

))|i ∈ I}, plan
the robot trajectory {r(t)|tk ≤ t < tk+1} that enables the robot
to quickly localize radio sources.

This overall approach is a Monte Carlo method with following
localization condition.

Definition 1 (Localization Condition): A radio source is be-
lieved to be located at cell i if P (Ci |Z(Zk

j )) ≥ pt for a given
probability threshold pt .

IV. SENSING MODELING

We address the sensing problem first. The sensing problem
actually has two components: an antenna model and an SPOG
update process.

A. Antenna Model

The antenna model describes the property of the directional
antenna. As illustrated in Fig. 3, we use a HyperGain HG2415G
parabolic antenna in our system. We have introduced the antenna
model in [36]. For completeness, we briefly reiterate the model
here.

Bearing and distance are the two most important variables
in an antenna model [40]. Let (xk

j , yk
j , θk

j ) be the robot con-
figuration when the jth radio transmission in the kth period is
sensed. Let (xi, yi) be the location of cell center. Define dk

ij as
the distance from the robot to the center of the cell:

dk
ij =

√
(xk

j − xi)2 + (yk
j − yi)2 . (2)

Let φk
ij be the bearing of the cell with respect to the robot:

φk
ij = atan2(yk

j − yi, x
k
j − xi) − θk

j . (3)

By the assumption that the active radio source is located in cell
i, the expected RSS si of the directional antenna is given as

si = c · (dk
ij )

−β ϕ(φk
ij ) (4)

where c is a constant depending on radio transmission power,
and (dk

ij )
−β is the signal decay function. The directivity of the

antenna is captured by the term ϕ(φk
ij ), which describes the

radiation pattern of the antenna. Note that dk
ij > da , where da

is the length of the longest physical dimension of the antenna.
We obtain c = 63.09 and the decay factor β = 2.53 for our
antenna from the calibration process. Our β value conforms to
the widely accepted notion that the decay factor is between 2
and 4 [41].

Since our receiver uses dBm as an RSS unit, we have to take
a 10 log10 with respect to (4):

μi = 10
(
log10 c − β log10 dk

ij + log10 ϕ(φk
ij )

)
(5)

where μi is the expected RSS in units of dBm. From the antenna
theory and the results from the antenna calibration, we perform
curve fitting to obtain the radiation pattern function as illustrated
in Fig. 3(b):

ϕ(φk
ij ) =

⎧
⎪⎨

⎪⎩

1, if dk
ij ≤ da ,

cos2 (4φk
ij ), if φk

ij ∈ [±20◦] and dk
ij > da

cos2 (80◦), otherwise.

(6)

Note that the peak at the zero bearing in Fig. 3(b) is about
15 dB·m higher than the average of nonpeak regions, which
confirms antenna specifications.

Equations (5) and (6) describe the expected RSS given that
the radio transmission is from cell i. However, the RSS is not a
constant but a random variable because of the uncertainties in
radio transmissions, receiver resolution, and background noises.
Therefore, the mean value of Zk

j is μi . From the antenna calibra-
tion, we know that the distribution of Zk

j can be approximated
by a normal distribution with a density function of

gi(ζ) ≈ 1√
2πσ2

e−
( ζ −μ i ) 2

2 σ 2 (7)

where the value of σ is 3.3 that is obtained from the antenna
calibration.

Let

Gi(z) :=
∫ z

−∞
gi(ζ)dζ (8)

be the cumulative density function of the normal distribution,
where z is the RSS value.

Define P (Zk
j = z|C1

i ) as the conditional probability that the
RSS is an integer z given cell i contains at least an active radio
source. P (Zk

j = z|C1
i ) actually is the overall antenna model.

Since Zk
j can only take integer values, we have

P (Zk
j = z|C1

i ) = Gi(z + 0.5) − Gi(z − 0.5)

=
∫ z+0.5

z−0.5
gi(ζ)dζ (9)

as a function of z and μi . Because of high antenna resolution
and small integration intervals, (9) can be further approximated
as

P (Zk
j = z|C1

i ) ≈ αgi(z) (10)
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where α = 1∑z m a x
z = z m in

gi (z )
is the normalization factor that en-

sures
zm a x∑

z=zm in

P (Zk
j = z|C1

i ) = 1.

Here, zmin and zmax are the minimum and the maximum RSS
that the antenna can sense, respectively. In fact, the antenna
sensitivity is tuned to satisfy the following condition:

zmax ≤ 10 log10 c := μmax (11)

so that we can fully utilize the sensitivity and resolution of the
antenna. Any RSS that is stronger than zmax is perceived as
zmax .

B. Determining Grid Resolution

The variance of reception σ in (7) can also be used to choose
an appropriate cell size. More cells mean more computation.
Indeed, later we will show that the overall algorithm is O(n2).
On the other hand, a sparse grid would lead to low localization
resolution. We use a 2σ-separation rule as follows. Let cell i and
cell s be two adjacent cells. If a radio source that is located at
cell i emits a signal, then the expected RSS values from robots
that are located at cells i and s would be μi and μs , respectively.
In addition, μi = μmax because of the signal saturation. The
2σ-separation rule is that we choose the cell size such that

μi − μs = 2σ. (12)

Define dis the distance between adjacent centers of cells i and
s. From (5) and (12), we have

dis = 10
1
β (0.2σ+log1 0 cos2 (80◦)) . (13)

C. Updating the SPOG

When a radio transmission with an RSS level of z is sensed,
we are interested in P (Ci |Zk

j = z), which is the conditional
probability that cell i contains at least one radio source given
the RSS is z. According to (1), we have

P (Ci |Zk
j = z) = P (Ci, C

1
i |Zk

j = z) + P (Ci, C
0
i |Zk

j = z).

Since event C1
i implies event Ci , the joint event (Ci, C

1
i ) is the

same as C1
i . Hence,

P (Ci |Zk
j = z) = P (C1

i |Zk
j = z) + P (Ci, C

0
i |Zk

j = z).
(14)

According to Bayes’ theorem

P (C1
i |Zk

j = z) =
P (Zk

j = z|C1
i )P (C1

i )
∑

i∈I P (Zk
j = z|C1

i )P (C1
i )

. (15)

Equation (15) describes the posterior conditional distribution
of the active radio source given the RSS is z. If we assume that
the radio transmission is equally likely to be initiated by any
cell in the grid, which means that P (C1

i ) is the same across all
cells, then the posterior condition distribution actually captures
the radiation pattern (see Fig. 4).

The second term P (Ci, C
0
i |Zk

j = z) in (14) is the joint con-
ditional probability that there is at least one radio source in cell

Fig. 4. Distribution of P (C 1
i |Zk

j = z) over a 50 × 50 grid for the directional

antenna given that P (C 1
i ) is the same across all cells.

i and none of the radio sources in cell i transmits given the RSS
is z. Joint event (Ci, C

0
i ) implies the following information.

1) Since none of radio sources in cell i is transmitting, the
condition Zk

j = z cannot provide additional information
for event Ci , which implies P (Ci |Zk

j = z) = P (Ci).
2) There must be one active cell s, s ∈ I and s 	= i.
3) Joint conditional event (Ci, C

0
i |Zk

j = z) is equivalent
to the union of the collection of events {(Ci, C

1
s |Zk

j =
z), s 	= i, s ∈ I} because of no collision.

4) Events Ci and C1
s are independent.

Therefore, we can obtain

P (Ci, C
0
i |Zk

j = z) = P (Ci)
∑

s 	=i,s∈I

P (C1
s |Zk

j = z). (16)

Note that P (C1
s |Zk

j = z) can be computed using (15). By the
substitution of (15) and (16) into (14), we obtain

P (Ci |Zk
j = z)

=

(
P (Zk

j = z|C1
i )P (C1

i )

+P (Ci)
∑

s 	=i,s∈I P (Zk
j = z|C1

s )P (C1
s )

)

∑
s∈I P (Zk

j = z|C1
s )P (C1

s )
. (17)

Unfortunately, (15) and (17) cannot be directly used in the sys-
tem because P (Ci) and P (C1

i ) are not available. We have to
rely on the conditional versions of P (Ci) and P (C1

i ) that build
on the observation Z−(Zk

j ). We can derive the following from
(15) by adding Z−(Zk

j ) as the condition:

P (C1
i |{Zk

j = z} ∪ Z−(Zk
j ))

=
P (Zk

j = z|C1
i ,Z−(Zk

j ))P (C1
i |Z−(Zk

j ))
∑

s∈I P (Zk
j = z|C1

s ,Z−(Zk
j ))P (C1

s |Z−(Zk
j ))

. (18)

Since the conditional event Zk
j = z is independent of the

previous RSS values Z−(Zk
j ) given C1

i , we know P (Zk
j =

z|C1
i ,Z−(Zk

j )) = P (Zk
j = z|C1

i ). According to the definition,
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{Zk
j = z} ∪ Z−(Zk

j ) = Z(Zk
j ). Equation (18) can be rewritten

as

P (C1
i |Z(Zk

j )) =
P (Zk

j = z|C1
i )P (C1

i |Z−(Zk
j ))

∑
s∈I P (Zk

j = z|C1
s )P (C1

s |Z−(Zk
j ))

.

(19)
Similarly, from (17), we can derive the following:

P (Ci |Z(Zk
j ))

=

⎛

⎝
P (Zk

j = z|C1
i )P (C1

i |Z−(Zk
j ))

+P (Ci |Z−(Zk
j ))

×
∑

s 	=i,s∈I P (Zk
j = z|C1

s )P (C1
s |Z−(Zk

j ))

⎞

⎠

∑
s∈I P (Zk

j = z|C1
s )P (C1

s |Z−(Zk
j ))

. (20)

Equations (19) and (20) provide a recursive formulation for
updating the SPOG when a new radio transmission is sensed.

V. ROBOT MOTION PLANNING

We threshold P (Ci |Z(Zk
j )) to determine if cell i con-

tains at least a radio source (see Definition 1). The rate that
P (Ci |Z(Zk

j )) → 1 for cells that contain radio sources deter-
mines localization speed and accuracy. Equations (19) and (20)
show that P (Ci |Z(Zk

j )) largely depends the antenna model
P (Zk

j = z|C1
i ) = αgi(z), which actually is a function of robot

configurations. We can design robot configurations to increase
P (Ci |Z(Zk

j )), which will increase convergence speed. A good
motion planner should warrant a good convergence speed.

Recall that (20) predicts P (Ci |Z(Zk
j )) at time k. At the

moment before time k, define ws := P (C1
s |Z−(Zk

j )), s ∈ I ,
which are constants. To simplify the notation, we define ξk =
P (Ci |Z(Zk

j )) and ξk−1 = P (Ci |Z−(Zk
j )). Then, (20) can be

rewritten as

ξk = ξk−1 +
(1 − ξk−1)wi∑

s ∈I
gs (z )ws

gi (z )

. (21)

We are interested in choosing a robot configura-
tion (xk

j , yk
j , θk

j ) to maximize the posterior probability
P (Ci |Z(Zk

j )). Since ws, s ∈ I , and ξk−1 are constants at the
moment prior to time k, (21) implies that the maximization of
the posterior probability is

(xk∗
j , yk∗

j , θk∗
j ) = arg max(xk

j
,y k

j
,θk

j
)ξk

= arg min(xk
j
,y k

j
,θk

j
)

∑
s∈I gs(z)ws

gi(z)
(22)

= arg min(xk
j
,y k

j
,θk

j
)

∑

s∈I

wsrsi(z) (23)

where

rsi(z) =
gs(z)
gi(z)

= e−
1

2 σ 2 [(z−μs )2 −(z−μi )2 ] (24)

(xk∗
j , yk∗

j , θk∗
j ) is the optimal robot configuration, and

μs = 10
(
log10 C − β log10 dk

sj + log10 ϕ(φk
sj )

)
∀s ∈ I.

(25)

Fig. 5. (a) Example of P (Ci |Z(Zk
j )) distribution and (b) radio source loca-

tions, a sample level set L(0.3), and ridges over a 50 × 50 grid for the case.
The radio source locations are shown with black dots. The level set is bounded
inside the blue solid lines. The red dashed lines denote the corresponding ridges
for the level set components.

To simplify the notation, let us define ri :=
∑

s∈I wsrsi(z). Re-
call that ws = P (C1

s |Z−(Zk
j )), s ∈ I . From statistics [42], [43],

we know that ri is the likelihood ratio for two candidate dis-
tributions: the univariate Gaussian distribution that is repre-
sented by gi(z) and the Gaussian mixture that is represented
by

∑
s∈I wsgs(z). Let us use the Gaussian mixture as H0 hy-

pothesis and the univariate Gaussian as H1 hypothesis for the
likelihood ratio test of the unknown distribution of the random
noise in z. Minimizing ri actually minimizes the likelihood
that noise in z is from the Gaussian mixture as opposed to the
univariate Gaussian distribution. This is very intuitive for our
problem.

The optimization problem in (23) is not directly solvable be-
cause z is the RSS of the future reception at time k and ri is not
available. Therefore, to find the global optimal (xk∗

j , yk∗
j , θk∗

j )
for the nonlinear optimization problem is impractical. Actually,
a robust local optimal solution would be a good candidate so-
lution because the solution can also effectively accelerate the

posterior probability convergence for ξk . Defining xk
j = [

xk
j

yk
j

],

and xi = [xi

yi
], we have the following lemma with its proof in

the Appendix.
Lemma 1: If the robot is located at the center of the cell i at

time k, xk
j = xi , then the likelihood ratio ri is located at a local

minima regardless of future reception z.
Remark 1: Note that Lemma 1 and its proof do not specify

robot orientation θk
j . This is because of the fact that the RSS

receiver is saturated when xk
j → xi according to (6). Hence,

ϕ = 1 is constant in (25), which means that the θk
j value is

irrelevant.
Lemma 1 suggests that the principle of the motion planning

is to drive the robot into the cells with the high P (Ci |Z(Zk
j ))

values. This principle inspires us to develop a ridge walking
algorithm (RWA) for the robot motion planning.

Fig. 5(a) illustrates an example of the distribution of
P (Ci |Z(Zk

j )) over a 50 × 50 grid. The actual radio source po-
sitions are shown as black dots in Fig. 5(b). P (Ci |Z(Zk

j )) value
is much larger in the area adjacent to radio sources than that of
other areas. To study the spatial distribution of P (Ci |Z(Zk

j )),
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we introduce level set L(p), p ∈ (0, 1] as follows:

L(p) = {i|P (Ci |Z(Zk
j )) ≥ p, i ∈ I}. (26)

Let us envision that a plane parallel to the ground plane inter-
sects the mountain-like P (Ci |Z(Zk

j )) distribution at height p
in Fig. 5(a). The intersection generates L(p) that contains all
cells with P (Ci |Z(Zk

j )) above the plane. Fig. 5(b) illustrates
the level set L(0.3) for the example shown in Fig. 5(a).

Fig. 5(b) also shows that L(p) usually consists of several
disconnected components. Define lmax as the total number of
the disconnected components and Ll as the lth component,
l = 1, . . . , lmax . Therefore, L(p) = L1 ∪ L2 ∪ · · · ∪ Llm a x , and
Ll ∩ Lm = ∅, where m 	= l and m = 1, 2, . . . , lmax . For the lth
component, we define its ridge Rl as the line segment defined
by points (x′, y′) and (x′′, y′′) on Ll :

Rl = {(x, y)|x = (1 − α)x′ + αx′′

y = (1 − α)y′ + αy′′, α ∈ [0, 1]} (27)

where points (x′, y′) and (x′′, y′′) are the two points on Ll such
that the distance between (x′, y′) and (x′′, y′′) is the maximum.

If the robot walks on the ridge, the probability that the robot
is close to a potential radio source is high. Because of the walk-
ing direction, the antenna always points along the ridge, which
ensures the most sensitive reception region of the antenna to
overlap with the lth component. In the RWA, there are two types
of robot motion: on-ridge movements and off-ridge movements.
Since the on-ridge movement is the effective movement for the
localization purpose, it is desirable for the robot to allocate its
time to on-ridge movements as much as possible. The off-ridge
movement denotes the travel in-between ridges for the robot.
Since we have a fixed time period, we set the robot to travel at
its fastest speed along the shortest path for off-ridge movements
to save time for on-ridge movements.

We treat the end point of each on-ridge segment as a vertex.
We define edges as the line segments connecting different ver-
tices on the 2-D plane. With a vertex set V , an edge set E, and
a graph G(V,E), to find the shortest path is an instance of the
traveling salesman problem (TSP). The only difference is that
edges corresponding to on-ridge movements must be included
in the solution. We can modify the original TSP by treating each
on-ridge edge and its two end points as a super vertex. Then,
solving the TSP provides an efficient trajectory for the robot.
Define vmax as the maximum velocity that the robot can travel.
The time available for on-ridge movements tON is

tON = τ0 − dOFF/vmax (28)

where dOFF is the total length of off-ridge edges. We allocate
tON to each ridge proportional to the probability that the cor-
responding component contains a radio source. For component
l, we define the time the robot spend on the ridge Rl as τl .
Therefore

τl =

∑
i∈Ll

P (Ci |Z(Zk
j ))

∑
i∈L(p) P (Ci |Z(Zk

j ))
tON . (29)

With τl and the length of each ridge, it is trivial to find the robot
velocity for the ridge. If the low-cost robot cannot accurately

control its speed, then we cannot execute the precise time allo-
cation in (29). If so, we can simply set the robot to its maximum
speed for off-ridge movements and minimum speed for on-ridge
movements.

VI. ALGORITHMS

A. Algorithm Pseudo Code and Complexity

To summarize our analysis, we present two algorithms includ-
ing an SPOG update algorithm and the RWA. Corresponding to
the sensing problem in Section III-D, the SPOG update algo-
rithm (i.e., Algorithm 1) runs when a radio signal is detected.
Define set C

∗ as the set of cells that contain radio sources with
the initial value C

∗ = ∅. Recall that pt is the probability thresh-
old for finding the radio source. The robot reports the cells that
satisfy P (Ci |Z(Zk

j )) > pt as the cells that contain at least one
radio source.

Recall that n is the total number of cells. It is clear that the
complexity of Algorithm 1 is O(n2). The initial value settings
are P (Ci |Z(Z0

0 )) = 0 and P (C1
i |Z(Z0

0 )) = 1/n.
The RWA runs every τ0 time. As illustrated in Algorithm 2,

the robot performs random walking until set L(p) 	= ∅ at the ini-
tialization stage. Then, the robot switches into the normal ridge
walking mode. The robot stops when no additional radio source
has been found in kmax consecutive periods, where kmax is a
preset iteration number. For the Euclidean TSP, we can also use
approximation approaches, such as the minimum spanning tree
(MST) approximation [44, p. 969]. If so, the overall complexity
can be reduced to O(n + l2max).

B. Localization Time

An important question that remains to be answered is how
long does it take for the RWA to find a radio source. We need
to find the upper bound of the searching/localization time. Let
Ts denote the searching time. Obviously, Ts is related to how
often the radio source transmits. To facilitate our analysis, let us
assume that the radio source i transmits according to a Poisson
process with a rate of λi . Since we are looking for the upper
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bound of Ts , we also tighten the convergence condition by in-
creasing the probability threshold pt in Definition 1. Threshold
pt is set high so that the robot must receive a saturated signal
when considering radio source i found. It means that the robot
must receive the transmission within the distance of da of the
radio source. This defines a sensing circle with its center located
at the radio source i and a radius of da .

Without loss of generality, we assume the field of localization
as a disk with a radius of 1. Define TTSP to be the amount of
time for the robot to finish a TSP tour in the RWA. Let τIN and
τOUT be portions of the tour within and outside distance of da

of radio source i, respectively. Hence

TTSP = τIN + τOUT . (30)

We have the following theorem.
Theorem 1: The expected searching time E(Ts) of radio

source i has the following upper bound:

E(Ts) ≤
τ0

1 − e−λi τ0
+

1
λi

+
4
√

3
vavg

[1
2

+ E
( e−λi τ IN

1 − e−λi τ IN

)]

(31)
where vavg is the average traveling speed of the robot and defined
in (40).

Proof: From [34, Th. 1], we know that the expected time to
search for a transient signal source is

E(Ts) = E(D) +
1
λi

+ E

(

τOUT
e−λi τ IN

1 − e−λi τ IN

)

(32)

where D is the amount of time from the beginning to the moment
that the robot is within the distance da of the radio source i
during the repetitive TSP tours. It is clear that D is a random
variable. From Algorithm 2, the robot performs random walk
in the first period to initialize the SPOG. The expect value of
D can be obtained by conditioning on the event Ai that radio
source i has at least one transmission during the initial τ0 time.
If Ai is true, then the TSP tour planned at the end of first period
would come across the sensing circle of the radio source i. If Ai

is not true, the system returns to the same initial state because
the chance that the next TSP tour will come across the sensing
circle is negligible. Hence, we have

E(D|Ai) = τ0 + E(TTSP)/2 (33)

E(D|Āi) ≈ τ0 + E(D). (34)

From the property of a Poisson process, we know

P (Āi) = e−λi τ0 and P (Ai) = 1 − e−λi τ0 . (35)

Combining (35) with (33) and (34), we have

E(D) = E(D|Ai)P (Ai) + E(D|Āi)P (Āi)

=
τ0

1 − e−λi τ0
+ E(TTSP)/2. (36)

In addition, since τIN � τOUT and τIN is independent of TTSP ,
the last term of (32) can be approximated as

E

(

τOUT
e−λi τ IN

1 − e−λi τ IN

)

≈ E(TTSP)E

(
e−λi τ IN

1 − e−λi τ IN

)

.

(37)
If the TSP tour straightly crosses the sensing circle with a speed

of v, we have shown how to compute E( e−λi τ IN

1−e−λi τ IN
) in [34]:

E

(
e−λi τ IN

1 − e−λi τ IN

)

=
∫ π/2

0

1

e
2λi d a s in θ

v − 1
sin θdθ. (38)

When the field is large, the TSP tour consists of long and straight
line segments. Equation (38) is a good approximation for general

E( e−λi τ IN

1−e−λi τ IN
). By the substitution of (36) and (37) into (32), we

have

E(Ts) =
τ0

1 − e−λi τ0
+

1
λi

+ E(TTSP)

×
[

1
2

+ E

(
e−λi τ IN

1 − e−λi τ IN

)]

. (39)

Define LTSP as the length of the TSP tour and vavg as the
average speed during the tour that satisfies

E(TTSP) = E(LTSP)/vavg . (40)

Define LMST as the summation of MST edges for the vertices
in the TSP tour. From [44], we know that LTSP ≤ 2LMST since
triangle inequalities are satisfied for the Euclidean TSP. Define
E as the edge index set for the MST and el as the lth edge in E .
From its definition, we know that LMST =

∑
l∈E |el | and that

LMST =

√
√
√
√

(
∑

l∈E
|el |

)2

≤
√

2
∑

l∈E
|el |2 . (41)

Since all vertices are located inside a unit disk and distances are
Euclidean, from [45, Th. 1], we have

∑

l∈E
|el |2 ≤ 6 (42)

regardless of the number of vertices in the graph. Combining
(40)–(42), we have

E(TTSP) ≤ 4
√

3/vavg . (43)

Equation (31) is proved by substituting (43) into (39). �



676 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 3, JUNE 2012

Remark 2: An important result that is given by Theorem 1 is
the fact that entries in (31) are not sensitive to the number of
radio sources. This means that our RWA has excellent scalability
when the number of radio sources increases.

C. Extensions

Increasing localization accuracy, handling of uneven trans-
mission rates, and dealing with obstacles in the searching region
are the three important extensions for application purposes.

Increasing localization accuracy: We discretize the search-
ing space, and the localization accuracy is inherently limited by
grid resolution. If the localization accuracy cannot satisfy ap-
plication requirement, we can run a postprocessing algorithm to
increase the accuracy. Once a cell that contains a radio source is
identified, we can verify all RSSs to identify transmissions that
are initiated by the source based on distances between the cell
center and the robot positions when transmissions occurred. We
can identify a group of transmissions that are within a preset dis-
tance threshold since the robot has less range ambiguity when
it moves closer to the source. Based on the transmissions, we
can estimate the source location using the maximum likelihood
estimator by minimizing the Mahalanobis distance. The process
can provide both mean and variance of the source position. Since
the method is a standard approach [46], we omit the details. In
fact, when the cell is identified, the problem can be reduced to
the regular localization problem with multiple measurements.

Handling of uneven transmission rates: The RWA tracks high-
probability regions by patrolling. This is an efficient approach
when the transmission rates of radio sources are close to each
other. If a few nodes transmit significantly more frequently than
others, their residing cells can be quickly identified. This often
happens if the sensor network employs some nodes as routers.
In such cases, repeatedly visiting the cells is inefficient, and the
RWA needs to remove ridges corresponding to the identified
nodes before solving the TSP such that the robot can focus on
searching for the remaining nodes.

Dealing with obstacles in the searching region: In the pres-
ence of obstacles, the SPOG framework can be easily adapted by
marking obstacle-occupied cells as nontraversable. For motion
planning, we can still use the idea of RWA but connecting the
ridges in the presence of obstacle is different because simple line
connections may not work. This can be addressed by using the
established techniques in motion planning, such as sampling- or
rapid-exploring random tree (RRT)-based approaches [47]. De-
pending upon the methods that are used, the path length, which
is the most important factor that determines the convergence
speed, may vary, and the final searching time analysis should
reflect the complexity of obstacles.

VII. EXPERIMENTS

We have implemented the algorithms using Microsoft Visual
C++ .NET 2005 with OpenGL on a PC desktop with an In-
tel 2.13-GHz Core 2 Duo CPU and 2-GB RAM. The machine
runs Microsoft Windows XP. The algorithms are tested in the
hardware-driven simulation and physical experiments. The an-
tenna on the robot is HyperGainT Model HG2415G that is a

2.4-GHz 15-dBi reflector grid antenna. The radio sources are
Zigbee nodes, which are XBeeT with ZigBeeT/802.15.4 OEM
RF Modules by MaxStream, Inc. The antenna is calibrated first
with the radio sources. The calibration is conducted at 328 con-
figurations and 6560 readings have been collected. The cali-
brated antenna model is represented as the coefficients in (5)
and σ in (7).

A. Simulation

We use the data from the real hardware to drive the simulation
experiments here.

The grid is a square with 50 × 50 cells. Each grid cell has a
size of 5.08× 5.08 cm2 . Each radio source generates radio trans-
mission signals according to an independently and identically
distributed Poisson process with a rate of λ = 0.012 packets
per second. The threshold pt = 0.8 and the level set parameter
p = 6

n

∑
i P (Ci |Z(Zk

j )), where the constant 6 is determined by
many experimental trials. During each trial of the simulation,
we randomly generate radio source locations in the 50× 50 grid.

The first experiment we conducted is to study how fast the
RWA can localize all radio sources under different τ0 settings.
This determines how often we should run the RWA. Fig. 6(a)
shows the test results. We change the radio source number from
2 to 10 during the simulation. Each point in Fig. 6(a) is an
average of 10 trials. It is interesting that the RWA is at its best
performance when τ0 = 800 s, regardless of the radio source
number. This means that the robot needs to listen to each radio
for an expected value of 800 λ = 9.6 times before repeating the
algorithm.

Fig. 6(b) illustrates how P (Ci |Z(Zk
j )) converges at the ra-

dio source for a trial with six radio sources. It is clear that
P (Ci |Z(Zk

j )) tends monotonically toward 1. This is what we
expect to see: P (Ci |Z(Zk

j )) → 1 for cells containing radio
sources.

We also compare our algorithms to two intuitive heuristics,
namely, a random walk and a fixed-route patrol. The random
walk is chosen because it is considered as the most conservative
approach. According to [34], a 2-D lattice-based random walk
can cover the entire field over a long run. Hence, it does not have
a blind spot. The fixed-route patrol traverses the field using a pre-
defined route that scans all cells. It warrants equal coverage but
might not visit cells with radio sources frequent enough because
of the route length. We increase the radio source number from 2
to 10 to observe the performance of each method. For each trial,
we test all three methods. We repeat for 10 trials for each radio
source number and compute the average time required for the
localization of all radio sources. Fig. 6(c) illustrates comparison
results. It is clear that the RWA significantly outperforms the
two heuristics in terms of localization time. The result can be
explained that the robot motion for the two heuristics does not
consider sensor location distribution and, hence, cannot achieve
good performance.

B. Physical Experiments

We test both SPOG update and RWA in physical experiments.
The physical experiment is conducted in a 10 × 10 m2 field,
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Fig. 6. Simulation results. (a) RWA performance versus τ0 , (b) convergence of P (Ci |Z(Zk
j )) at radio source locations for a six-radio source case, and (c)

localization time comparison among the RWA, the random walk, and the fixed-route patrol.

Fig. 7. Physical experiment hardware and results. (a) Robot. (b) RF source is XBeeT with ZigBeeT/802.15.4 OEM RF Modules by MaxStream, Inc. (c) Sample
robot trajectory. (d) Convergence of P (Ci |Z(Zk

j )) for cells containing radio sources.

which is evenly divided into 50 × 50 cells. Each cell has a side
length of 20 cm. The threshold for the SPOG convergence is
pt = 0.7.

The robot is custom made in our laboratory [see Fig. 7(a)].
The robot measures 50 × 47× 50 cm3 in size. The robot has two
front drive wheels and one rear cast wheel and uses a typical dif-
ferential driving structure. The robot has a maximum traveling
speed vmax of 40 cm/s. The four color patches on the top of the
robot are used for obtaining robot location and orientation from
an overhead camera that is mounted at a height of a three-story
building. The top sliver ring above the color patches contains
white LEDs that are used to illuminate the color patches at night
for night experiments. The vision-based localization system can
provide the robot with location at an accuracy of ±5 cm in each
dimension of position and orientation at ±3.5◦ at a frame rate
of 11 frames/s.

Fig. 7(b) illustrates the aforementioned radio sources. We use
three such radio sources in the experiment. Each of them is pro-
grammed with a Poisson transmission rate of 0.05 packets/s. We
set τ0 = 160 s in the experiments. Fig. 7(c) illustrates the actual
robot trajectory, actual location of the three radio sources, and
the estimated locations of the radio sources. It is clear that the
robot has successfully found all three radio sources with rea-
sonable accuracy. The on-ridge and off-ridge parts of the robot
trajectory are represented by red solid lines and blue dashed

lines, respectively. The fact that most of on-ridge movements
are close to the radio sources indicates that the RWA is effective.

Fig. 7(d) illustrates how P (Ci |Z(Zk
j )) converges at the

three radio source cells during the physical experiment. Sim-
ilar to what we have seen in simulation results in Fig. 6(b),
P (Ci |Z(Zk

j )) of these cells tends toward 1. The cell represented
by the blue dashed line has the slowest growing rate because
the corresponding radio source transmits the fewest number of
signals.

VIII. CONCLUSION AND FUTURE WORK

System and algorithm developments that enable a mobile
robot to localize multiple unknown transient radio sources have
been reported. By the employment of a Monte Carlo approach,
the radio transmission activities using an SPOG have been mod-
eled and an SPOG update algorithm to track the radio source
location and transmission rates has been proposed. Based on
the SPOG, an RWA for robot motion planning by accelerating
the SPOG convergence rate has been developed. For the n-cell
grid, the SPOG update algorithm runs in O(n2) time and the
RWA runs in O(n + l2max) time. The fact that the time to find
a radio source is insensitive to the number of radio sources,
and hence, our algorithm has great scalability has been formally
proved. The algorithm using simulation with the data from the
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real hardware and a physical experiment has been tested. In
the simulation experiment, algorithms with a random walk and
a fixed-route patrol heuristics have been compared. Our algo-
rithms showed a consistently faster localization speed than that
of the two heuristics. In the physical experiment, the SPOG and
RWA have been tested in the setup that directs the mobile robot
to search for three radio sources. The physical experiment re-
sults showed that the system and algorithm development were
successful.

In the future, we are interested in extending SPOG and RWA
to design a decentralized multiple-robot localization scheme.
Tracking moving radio sources is another interesting extension
of the proposed framework. We will consider various kinody-
namic and energy constraints imposed by robots. More effi-
cient motion planning strategies considering obstacles in the
environment and optimal velocity profile will be explored for
these problems. We will also apply the algorithms to human
tracking in search and rescue and animal tracking in the nature
environment.

APPENDIX

PROOF OF LEMMA 1

From (23), each entry in the Jacobian of ri with respect to
μs , s ∈ I, can be computed as follows:

∂ri

∂μs
=

{ ws

σ 2 (z − μs)rsi(z), if s 	= i

−
∑

a∈I ,a 	=i
wa

σ 2 (z − μi)rai(z), if s = i
(44)

where a ∈ I is the new index variable. By the use of the chain
rule, we obtain

∂ri

∂xk
j

=
∑

s∈I

∂ri

∂μs

∂μs

∂xk
j

= −
∑

s∈I ,s 	=i

ws

σ2 rsi(z)(μi − μs)
∂(μi − μs)

∂xk
j

. (45)

From (5), we know

μi − μs = 10β log10
dk

sj

dk
ij

+ 10 log10
ϕ(φk

ij )
ϕ(φk

sj )
. (46)

By the substitution of (2) into the previous equations, we can
compute its partial derivative with respect to x as follows:

∂(μi − μs)
∂xk

j

= 10β

(
xk

j − xs

(dk
sj )2

−
xk

j − xi

(dk
ij )2

)

. (47)

Combining (45) and (47), we have

∂ri

∂xk
j

=−10β
∑

s∈I ,s 	=i

ws

σ2 rsi(z)(μi−μs)

(
xk

j −xs

(dk
sj )2

−
xk

j − xi

(dk
ij )2

)

.

(48)
Similarly, we obtain

∂ri

∂yk
j

=−10β
∑

s∈I ,s 	=i

ws

σ2 rsi(z)(μi−μs)

(
yk

j − ys

(dk
sj )2

−
yk

j − yi

(dk
ij )2

)

.

(49)

Defining ∇rT = [ ∂ri

∂xk
j

, ∂ ri

∂ yk
j

], we can verify the first-order opti-

mality condition by computing ∇rT (xk
j − xi) at the neighbor-

hood of (xk
j = xi):

∇rT (xk
j − xi)

= −10β
∑

s∈I ,s 	=i

ws

σ2 rsi(z)(μi − μs) (50)

×
{(

xk
j − xs

(dk
sj )2

−
xk

j − xi

(dk
ij )2

)

(xk
j − xi)

+

(
yk

j − ys

(dk
sj )2

−
yk

j − yi

(dk
ij )2

)

(yk
j − yi)

}

≈ −10β
∑

s∈I ,s 	=i

ws

σ2 rsi(z)(μi − μs)

×
{

−
(xk

j − xi)2 + (yk
j − yi)2

(dk
ij )2

}

. (51)

Note that the approximation from (50) to (51) is based on

the fact that
∣
∣
∣
xk

j −xs

(dk
s j

)2

∣
∣
∣ �

∣
∣
∣
xk

j −xi

(dk
i j

)2

∣
∣
∣ and

∣
∣
∣
yk

j −ys

(dk
s j

)2

∣
∣
∣ �

∣
∣
∣
yk

j −yi

(dk
i j

)2

∣
∣
∣ when

xk
j → xi . From (51), we know

lim
xk

j
→x i

∇rT (xk
j − xi) = 10β

∑

s∈I ,s 	=i

ws

σ2 rsi(z)(μi − μs) ≥ 0.

(52)
Therefore, xk

j = xi is a local minima (see [48]) regardless of the
z value. This proof relies on the limiting format of the first-order
sufficient condition instead of a regular format because of the
degeneracy in ratio computation. �
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