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Neural Network Based Uniformity Profile Control of
Linear Chemical–Mechanical Planarization
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Abstract—In this paper, a neural network based uniformity con-
troller is developed for the linear chemical–mechanical planariza-
tion (CMP) process. The control law utilizes the metrology mea-
surements of the wafer uniformity profile and tunes the pressures
of different air-bearing zones on Lam linear CMP polishers. A
feedforward neural network is used to self-learn the CMP process
model and a direct inverse control with neural network is utilized
to regulate the process to the target. Simulation and experimental
results are presented to illustrate the control system performance.
Compared with the results by using statistical surface response
methods (SRM), the proposed control system can give more accu-
rate uniformity profiles and more flexibility.

Index Terms—Chemical–mechanical planarization (CMP),
neural networks, uniformity, run-to-run control.

I. INTRODUCTION

CHEMICAL–MECHANICAL PLANARIZATION (CMP)
is an important enabling technology in microelectronics

manufacturing. Control of the CMP process is an active research
area in both academia and industry. Due to the fact that the CMP
process is not completely understood and there is a lack ofin situ
sensors, real-time control of the CMP process is difficult. As a
result, run-to-run (R2R) control strategies are used to monitor
CMP processes.

The controlled CMP process parameters could be belt speed,
head speed, slurry rate, conditioner pressure, etc., and the
process responses are material removal rate, wafer nonuni-
formity, and planarization, etc. In [1], a generic cell CMP
controller scheme was discussed, and a regression model was
proposed for a R2R controller. The linear process model in [1]
is given as

where is a model coefficient matrix and
is an offset vector. A recursive adaptation scheme was devel-
oped to estimate the vectorwith an assumption that model
matrix is fixed during the process. In [2], an exponentially
weighted moving average (EWMA) model was used for mod-
eling semiconductor manufacturing processes such as etching.
Chen and Guo [3] then presented an aged-based double EWMA
scheme for the CMP process to accommodate process drifts
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and noises. The controller developed by [3] extended the pre-
dictor-corrector control (PCC) scheme in [2] and was applied
to CMP processes. In [4], a concept of “sheet film equivalent”
(SFE) was used to design a R2R CMP control scheme for dielec-
tric applications, and the experimental results from Texas Instru-
ments fab were compared with the EWMA control scheme.

Statistical surface response methods (SRM) are widely used
to model the relationship between process parameters and
responses in semiconductor manufacturing. Recently, SRM
models have been developed to model the relationship between
CMP removal rate and uniformity and process parameters
[5]–[9]. Although the SRM models can give a fairly accurate
CMP process model, they cannot predict precisely complex
CMP processes in real-time under different environmental
conditions. In [10], a neural network model was introduced to
study the plasma etching processes, and superior performance
has been demonstrated compared with the SRM approach.
Even though the neural network method has been applied to
other semiconductor manufacturing processes such as CVD
[11], [12], plasma and ion etchings [10], [13], [14], a small
amount research has been performed for CMP processes. Lin
and Liu [15] used an adaptive neuro-fuzzy interface system
to analyze CMP process parameters on rotary CMP tools;
however, very limited experiments and polishing parameters
have been studied.

All of the CMP research mentioned above discussed the ro-
tary CMP process. For a typical rotary CMP equipment, the pol-
ishing platen is rotating as well as the wafer carrier. The linear
CMP process provided by Lam Research Corporation on the
other hand has been proven to have better uniformity and edge
exclusion performance [16]. The objective of this study is to in-
vestigate the use of neural networks to model and control the
polishing uniformity of the linear CMP process.

The remainder of this paper is organized as follows. Section
II introduces the Lam linear planarization technology (LPT). In
Section III we discuss the modeling of CMP process unifor-
mity using a neural network technique. Section IV describes the
uniformity profile optimal control using a direct inverse neural
network strategy. Simulation and experimental results of the
neural network based modeling and control of linear CMP pro-
cesses are discussed in Section V. Comparisons with the SRM
are also presented in this section. Concluding remarks are given
in Section VI.

II. LPT CHEMICAL-MECHANICAL PLANARIZATION

CMP processes use the chemical and mechanical interactions
among the wafer, polishing pad, and the slurry to planarize the
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Fig. 1. Schematic of Lam linear chemical–mechanical planarization systems.

wafer surface. For widely used rotary CMP polishers, the pol-
ishing pad is on a rotating table with a relatively large radius.
The wafer carrier is rotating against the polishing pad table. The
polishing pad table is normally rigid, and the wafer head carrier
sometimes can be tilted or controlled by the inside air zones.

The LPT polisher provided by Lam Research Corporation
uses a different mechanism. Fig. 1 shows the schematic of the
Lam LPT setup. The polishing pad is moving linearly while the
wafer carrier is rotating against the pad. An air-bearing supports
the polishing pad from underneath the air platen [see Fig. 2(a)].
Compared with regular rotary CMP polishers, the LPT design
can provide a wide range of polish pad speeds and polish pres-
sures, and therefore increases the throughput as well as the pla-
narization performance.

The air zones on the platen are sets of co-centered small holes
located at different radii as shown in Fig. 2(b). From edge to
center on the circular platen, the air zones are named from zones

to . By tuning the air pressures of different air zones on the
platen and adjusting the platen height, we can change the polish
pad deformation and therefore control the wafer polishing uni-
formity. The use of the proprietary air-bearing platen intrinsi-
cally improves the within-wafer nonuniformity (WIWNU) and
decouples uniformity control from removal rate control.

In this paper, we concentrate on how to model the relationship
between the air-bearing settings and the polish uniformity pro-
files. Based on this model, we also investigate the control of the
air zone pressures in order to achieve a given uniformity profile
under a set of other given polish parameters such as polish pad
speed, polish pressure, conditioners, etc. Since air zonesto
and platen height are often used in CMP processes, in this study
we only consider tuning the pressures of air zonesto and
the platen height to achieve a certain given uniformity profile.

III. M ODELING OF LPT UNIFORMITY WITH

NEURAL NETWORKS

Neural networks have been widely used for high-dimen-
sional problems of regression, identification, system modeling
and control. Simply speaking, neural networks mimic the way
the human brain works: the training algorithms learn patterns
of systems through the training process and then predict
the system’s performance without having to know statistics.
The main advantage of neural networks is in their ability to
approximate statically or dynamically functional relationships,

Fig. 2. LPT air-bearing systems. (a) Polishing platen assembly. (b) Platen air
zones.

particularly nonlinear relationships. There are however a few
challenges associated with neural networks, such as training
time, network structures, and training algorithms.

In this section, neural networks are utilized to model the rela-
tionship between the uniformity profile and the air zone pressure
distributions in the LPT CMP process. Particularly, we will dis-
cuss the neural network structures and training algorithms. For-
tunately the training convergence rate of neural network models
is not a problem for the CMP process since each run takes a rel-
atively long time. We have enough time to train the neural net-
work models between each run. We will discuss training time in
Section V-D.

A. Structure of the Neural Networks Based Uniformity Model

Since there is no fully understanding of underlying physics
for the CMP polishing process, it is difficult to exactly capture
the dynamics of CMP processes. We therefore assume that the
relationship between the wafer uniformity profile and the pol-
ishing conditions are nonlinear. For LPT CMP processes, these
polishing conditions are air-bearing zone pressures and platen
height. The CMP processing time is long relative to the aerody-
namics of the air-bearing system. Therefore, it is appropriate to
consider that a static relationship exists between the input pol-
ishing conditions (air zone pressures and platen height) and the
process output (removal rate uniformity). A static neural net-
work model is thus chosen and applied to such processes.

The architecture of a neural network model with one hidden
layer is shown in Fig. 3. The reason that only one hidden layer
neural network is chosen in the model is that this multilayer
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Fig. 3. Architecture of a static neural network model with one hidden layer
(bias nodes are not shown in the figure.)

neural network has been proved to be able to approximate any
form of nonlinear functions [17], [18]. The number of the neu-
rons of the hidden layer depends on the training process.

A static neural network model for the linear CMP process can
be represented as

(1)

where is the estimate of removal rate (RR) at position
is the process tuning variables,

are the pressures of platen air-bearing zonesto
respectively, and PH is the platen height.is the distance from

the wafer center. For each neuron, the activation function can be
either a linear or hyperbolic tangent or logistic sigmoid
function. Empirically, it is often found that “ ” activation
functions give rise to a faster convergence of training algorithms
than logistic sigmoid functions. Thus, in this paper, the hidden
neurons employ a “ ” activation function, i.e.,

We use a linear neuron for the output layer so that it has an
unlimited range. The model of (1) can be further represented
as

(2)

where and
, is a vector in

, which combines hidden-to-output
layer and input-to-hidden layer weights of the feedforward
neural network. and are the number of inputs to the
network and the number of hidden neurons of the network, re-
spectively. For the feedforward neural network process model,

, and for the neural network used for the uniformity
control in the next section, since radius is not a
process control variable. Initial weights of the neural
networks are selected randomly from a uniform distribution
between and .

B. Neural Network Training

After determining the neural network structure, we need to se-
lect a proper data set

to train the model, where we use su-
perscript to denote the th run, is the total number of pol-
ishing runs for training, and is the number of measurement
points across the wafer diameter, respectively. In order to ob-
tain good identification results, the input air-bearing pressures
and platen height signals must be chosen
properly. Since the system is nonlinear, values of training data
sets should be varying for different operational conditions. Fur-
thermore, it is important to make the excitation signal cover
the operating range. The trained neural network model will be
more accurate in the range of the training data [19]. Outside the
training range, the neural network model will be less accurate.
So it is of great importance to know the working range of the real
system. Experimental design for the response surface methods
is a good source for the training data set. In this paper, we use
the data for the design of experiments (DOE) during the period
of tool qualifying and process tuning as the initial neural net-
work training data set.

In order to avoid saturation of activation functions in the
neural network, input and output data are scaled as

where psi, psi, psi,
psi, mil, ,

and mm.
Normally, the calculation of weights of the feedforward

model at th run is obtained by iteratively (run-to-run) mini-
mizing the estimation error function as

(3)

where is the estimate error evaluated
at at th run and is a vector with elements

, and . Using the first order Taylor expansion
of around the initial values , we obtain

(4)

for a small , where is the Jacobian matrix
. Thus can be rep-

resented as

(5)
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Fig. 4. A schematic of neural network based RR uniformity control systems.

where . Letting
becomes

(6)

Equation (6) is known as the Gauss–Newton algorithm. One
disadvantage with such a method is that the step size given by (6)
could be relatively large, in which case the linear approximation
in (4) would no longer be valid. In this paper, we can use the
Levenberg–Marquardt algorithm [20], a modified error function
to solve this problem, which is of the form

(7)

where the parameter governs the step size. Through this
strategy, we can minimize the error function while at the
same time keeping the step size small so as to ensure that
the linear approximation remains valid [20], [21]. Letting

, we obtain the adaptation
of neural network weights as

(8)

The above iteration algorithm can be used in training the feed-
forward neural network model with a set of measurement data
of runs (total number of input data). Moreover, it can
also be utilized to update the neural network weights once new
measurement data set (totally number ofinput data) is ready
after the weights have been well-trained.

IV. NEURAL NETWORK BASED UNIFORMITY

PROFILE CONTROL

In Section III, we discussed the feedforward neural network
model of the removal uniformity profile. In this section, a direct
inverse neural network based control system is used to regulate
the RR uniformity to follow a desired profile .

A. Model Reference Neural Network Based Control

The neural network based model reference control strategy
is shown in Fig. 4. The process must be invertible in order to
apply this strategy. The input to the control systems is the refer-
ence removal rate profile , and the control system goal
is to regulate the output of the process uniformity profile
closest to the input from run to run. A neural network
feedforward process model is first designed by the method dis-
cussed in Section III. At the same time, a neural network based

Fig. 5. Architecture of the neural network controller with one hidden layer
(bias nodes are not shown in the figure).

controller is also designed and trained in order to tune and opti-
mize the air-bearing pressures and platen height.

The architecture of a neural network based controller with
one hidden layer is shown in Fig. 5. Similar to the feedforward
neural network for process modeling, the neural network used
for the controller has one hidden layer. However, the input and
output of the neural network is completely different from the
feedforward neural network shown in Fig. 3. The input layer to
the neural network of the controller is the removal rate profile
reference , and the output layer consists of air-bearing
pressures , and platen height PH. The estimate
of the uniformity profile is then feedback to train and
update the neural network weights of the controller.

The training procedure for the neural network weights of the
controller can be similarly obtained as the feedforward neural
network model. The neural network should be able to tune the
plant input under which the process output is driven
to the desired value . This can be accomplished by
using the error between the desired and actual responses of the
process, , to adjust the weights of the inverse
network in the descent direction. If the process output
can be measured, an estimate from the feedforward net-
work model is first updated. Then we use to construct an
adaptation law for the weights of the inverse neural network,

, where is the
number of the nodes in the output layer and is the number
of the neurons in the hidden layer. In a real product process, we
are not going to measure the post-polishing removal rate pro-
file for each wafer due to the throughput constraints. Instead, a
few wafers from a lot have been measured by either in-line or
off-line metrology tools. These data sets can be fed into a feed-
forward neural network process model and then used to update
the neural network based controller.

B. Training Algorithm

In order to design the training algorithms for the run-to-run
uniformity controller, without loss of generality, it is assumed
that at each run the profile measurements are available1 . First

1We here consider a “run” in a general sense. It could be a wafer, a lot, or
even several wafers, depending on the process design and requirements.
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Fig. 6. Partial architecture of training the neural network based controller. A
particular radiusr is needed as an additional input to the neural network process
model to obtain an estimated removal rate profileRR(r).

a rough neural network process model is trained by the Leven-
berg–Marquardt method off-line. A recursive error backpropa-
gation (BP) method is then employed to train the neural network
controller at each training run to drive to . The
choice of BP algorithm for the neural network control results
from the existence of the feedforward neural network process
model, and the fact that Levenberg–Marquardt method is not
suitable for the model reference adaptation scheme due to the
computational complexity. It will be shown in Section V-D that
a recursive BP algorithm is fast enough for the uniformity pro-
file control.

The following error at th run is minimized

(9)

where is the estimate of by updating the
feedforward neural network process model using the measure-
ment at the th run. Here we assume that the estimated removal
rate is approximately equal to the real removal rate

, and is the reference removal rate profile at
th run2 . The effectiveness of this assumption is guaranteed by

the training accuracy of the proposed neural network model.
Following the same idea of designing feedforward neural net-

work weights, we can derive the updating laws of weights
for the neural network based controller. Notice that the weights
of the inverse network can affect the process output
only through the control signal, i.e., . The error gradient can
be computed using the chain rule as

(10)

The first partial derivative in (10) can be calculated using (9)

as , and the third is calculated using
a standard BP algorithm [20]. To calculate the second term,

, we need to recall the structure of the neural net-
work based process model as shown in Fig. 6. In Fig. 6, we

2We treat the reference removal rate profileRR (r ) in a general form as-
suming that it could be varying for different runs.

denote the input layer as , and the
output layer is the estimated uniformity profile . A partic-
ular radius is needed as an additional input in order to use
the neural network process model to obtain the estimated pro-
file . , are the output of
the hidden layer neurons of the neural network process model.

From Fig. 6, we can calculate the second derivative term

in (10) as

(11)

where we can obtain

In the last term, we use the mathematical relationship
.

The learning rate of the BP algorithm for the neural network
based controller is chosen as in this study. In order to
speed the parameter convergence, a smoothing filter with a mo-
mentum is used to update the neural network parameter

by at th run,

(12)

Similar to the recursive Levenberg–Marquardt algorithm (8),
the above adaptation laws can be applied to both the multiple
run data set training and the weights updating with one new data
set.

The overall procedure of the control scheme can be summa-
rized as follows:

• Step 1: A feedforward neural network based process
model is first trained off-line using experimental data
sets from various DOEs as described by the adaptation
law (8) in Section III.

• Step 2: A neural network based uniformity controller is
trained off-line by a BP algorithm by (12) through the
use of the feedforward neural network model obtained in
step 1.

• Step 3: The trained neural network based uniformity con-
troller is used to tune the air-bearing pressures and platen
height at the th run for the CMP process.

• Step 4: At th run, update the feedforward neural
network process model by adaptation law (8) with the new
data set.

• Step 5: After the feedforward process model has been up-
dated, use adaptation law (12) to calculate the new weights
for the uniformity controller based on the estimate of re-

moval rate profile and then go to step 3.

V. EXPERIMENTAL RESULTS

In this section, we use some simulation and experimental ex-
amples to illustrate the design of neural network based process
modeling and run-to-run uniformity profile control. First, we
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TABLE I
EXPERIMENTAL PARAMETERS OFCMP PROCESS#1

TABLE II
REMOVAL RATE (�A/min) PROFILES BY DESIGN OFEXPERIMENTS

demonstrate the effectiveness and correctness of the neural net-
work modeling. Neural network based uniformity profile tuning
is then illustrated by some experimental results. Due to the lim-
ited data sets, we will demonstrate the efficiency and effective-
ness of the proposed run-to-run profile controller by some nu-
merical simulation results.

A. Experimental Design

Some experiments have been carried out at the Lam Research
Corporation CMP Division using the Lam Teres CMP polisher.
Lam’s XD Platen was used to regulate the air-bearing pressures.
Thermal oxide wafers (200 mm) were polished using Cabot
SS12 slurry. Table I shows the polishing parameters except the
air-bearing pressures and platen height for the first set of design
experiments.

Design of experiments were originally carried out to model
the process uniformity profile using the response surface
method. Since the polishing parameters listed in Table I have
little impact on the process uniformity profiles, we do not
change them and focus more on the effect of variations of
air-bearing pressures and platen height on uniformity profiles.
A set of of 32 polishing runs have been designed. Table II
shows a few examples of these experiments. In Table II, we
illustrate the removal rate profile (/min) at different radii from
0 to 99 mm. The metrology measurements are 67 points across
the wafer diameter: for radii between 0–70 mm, we measure
one point at a distance of 5 mm; for radii between 70–90 mm,
we measure one point at a distance of 2 mm; for radius between
90–100 mm, we take one point at a distance of 1 mm. Since
the polishing head is rotating and the pad is moving linearly,
we can obviously establish that the cross-diameter removal
rate profile is symmetric with respect to the wafer center. We
therefore only list the measurement for radius changes from 0
to 100 mm, and, for radii from 100 to 0 mm, the removal rate
profile is symmetric.

B. Performance of the Neural Network Process Model

In order to validate the neural network process model, we
have to pick up some experimental data as the training data set.
Based on the trained neural network model, we can verify the
neural network process model by the other experimental data

(a)

(b)

Fig. 7. Removal rate profiles predicted by a feedforward neural network model
and a response surface method for a CMP process with parameters by Table I.
(a) Predicted uniformity profile. (b) Predict errors.

sets. We randomly pick up 16 runs of data among the 32 DOE
data sets as the training data set. Specifically we pick runs 1, 2,
4, 6, 8, 10, 13, 15, 16, 17, 18, 21, 23, 25, 26, and 28. By trying
different neural network structures, we finally used one hidden
layer neural network with 12 hidden neurons for the feedforward
neural network process model, i.e., . After training the
neural network model for the uniformity profile, we also vali-
dated the model by predicting the removal rate profile under dif-
ferent combinations of the air-bearing pressures given by other
DOE testing data. The Levenberg–Marquardt training algorithm
discussed in Section III has been used to train the neural network
models with initial parameter using a Matlab Toolbox
[22]. Similar real-time training algorithms can be programmed
into run-to-run control software.

In order to compare with the neural network process mod-
eling, a response surface method was also used to determine the
relationship between the air-bearing pressures and the unifor-
mity profile by using all these data sets of 32 runs. For this ex-
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TABLE III
COMPARISONRESULTSBETWEEN THENEURAL NETWORK MODEL AND

RESPONSESURFACEMETHODS FOR ACMP PROCESS BYTABLE I

ample, a simple linear regression model was determined using
the optimization method as

(13)

where is the estimated removal rate at the radius
by RSM, are the coefficient
terms for the air-bearing pressures , and platen
height PH, respectively, and is the model constant term.

Fig. 7 shows the predicted removal rate profiles under a feed-
forward neural work model and a response surface method with
the experimental measurements for run #11. The air-bearing set-
ting of run #11 is: psi, psi, psi,

psi, and mil. Fig. 7(a) shows the removal rate
profiles and Fig. 7(b) illustrates the model predicted errors of the
neural network process model and the linear regressional model.
From Fig. 7, we can see that the neural network model predicts
the real measurements very well. Table III gives the compar-
isons between the neural network model and the response sur-
face model.

In Table III, we calculated the maximum error and stan-
dard deviation with /min as follows

The WIWNU and -value are calculated as

%

- %

where is the mean value of the predicted RR profiles.
Both WIWNU and -value are used to qualify the profile
nonuniformity. From the above definitions, we can find that
for most cases WIWNU and-value should have the same
trend. Normally, -value is much larger than WIWNU value.

-value uses the difference of maximum and minimum values
of the measurements and WIWNU instead uses the standard
derivation of the same measurement set. Therefore, if there
is one measurement point out of specifications,-value can
give a direct indication while WIWNU might not reflect such
a change significantly. In order to tightly control the profile

TABLE IV
EXPERIMENTAL PARAMETERS OFCMP PROCESS#2

Fig. 8. Removal rate profiles predicted by a trained neural network model
and a response surface method for a CMP process with different operating
conditions.

TABLE V
COMPARISONRESULTS OF THENEURAL NETWORK AND RESPONSESURFACE

METHODS FOR ADIFFERENTCMP PROCESS

nonuniformity across the wafer surface, some semiconductor
manufacturers use both WIWNU and-value to qualify CMP
processes.

In order to validate the efficiency of neural network mod-
eling, we applied the proposed neural network model that has
been trained by the DOE data set to another experiment with dif-
ferent operating conditions. Table IV lists the operating condi-
tions. The air-bearing settings of the experiment is: psi,

psi, psi, psi, and mil.
Fig. 8 shows the experimental and the predicted profiles. Table
V shows the comparison results of the neural network and re-
sponse surface methods with different experimental operations.3

From Fig. 8 and Table V, we can see that using the neural net-
works trained by the DOE experiments under one set of oper-
ating conditions (Table I) can predict process profile under an-
other set of operating conditions (Table IV) very well.

Fig. 9 shows the maximum errors and standard deviations
of predicted profiles by neural network and response surface
methods for another set of 28-run experiments on a different
CMP polisher platform and processes. We can clearly find that

3In Table V, 3-mm edge exclusion measurements are used to calculate the
maximum errors and mean square errors.
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(a)

(b)

Fig. 9. Comparisons of profile maximum errors and mean square errors over a
range of values of air-bearing settings with other process parameters by Table IV.
(a) Maximum errors. (b) Standard deviations.

the neural network model shows a superior fitting with experi-
mental results than what the responses surface method does.

From the above examples, we can conclude that the neural
network model predicts a better uniformity profile than the
response surface method for various operating conditions. We
tested but did not demonstrate the comparisons for other DOE
runs in detail. We found that in most cases the neural network
model can always predict a better CMP removal rate uniformity
profile than the response surface method under various CMP
process conditions and polisher platforms. Another attractive
property of using the neural network model is that it can be
updated for each run in real-time and therefore is able to
compensate for process parameter variations such as removal
rate drift, etc.

C. Performance of the Neural Network Based Controller

Once the feedforward neural network process model is avail-
able, we can train the the neural network based controller off-
line. Then we can use the trained neural network controller to

optimize or tune the uniformity profile recipe for each run. For
the neural network used for the uniformity control, we similarly
use one hidden layer with 14 hidden neurons, i.e., . The
same DOE data set discussed in Section V-A is used here. The
training data set for the neural network controller is generated by
the feedforward neural network process model with a 16 DOE
data set. A more accurate neural network process model trained
by all 32 DOE data sets is used for simulation validations.

We compare the optimized process recipes of air-bearing sys-
tems given by the neural network based controller and that given
by the response surface method. For the linear regression model
by response surface method, we can obtain an optimized recipe
by minimizing the estimated nonuniformity error with respect
to customer requirements as follows:

-

(14)

where , is the stan-
dard derivation of the estimated error of the uniformity profile
at measurement points.

For the neural network based controller, we can obtain the
optimized recipe by learning law given by (12) as

-
(15)

Some experiments using - were tested. We found
that the process performance under recipe - was not
satisfactory. Instead, process engineers have optimized and de-
veloped a process recipe , by tuning the process around

- , as

(16)

In Fig. 10(a), simulation and experimental results of the re-
moval rate profile are illustrated. The experimental results have
been obtained under from the real process. For the opti-
mized recipe obtained by RSM, - , we found that the
process (“ ” line) is far away from the /min.
The neural network model predicted profile (“” line) is closer
to the reference profile and fits well with the experimental re-
sults (“ ” line). The difference between the profile predicted by
the RSM optimized recipe - and the real recipe
again proves that the neural network model is much more ac-
curate than an RSM model in this case. Considering the opti-
mized recipe - given by the neural network based con-
troller, the predicted RR profile (“ ” line) is much closer to the
real process output. This is not surprising because the optimized
recipe - obtained by the neural network based controller
(15) is closer to the optimized process recipe (16).

Fig. 10(b) shows the error profiles under different
recipes. Table VI illustrates the error calculations. From
Table VI, we can clearly see that the neural network based
controller can predict the best the removal rate profile to the
reference RR profile by the smallest maximum error and
standard deviation. The real process tuning recipe produces a
good RR profile to the reference values, and the RSM recipe
generates the worst performance to track the reference profiles.
However, if we consider the WIWNU and-values, there are
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(a)

(b)

Fig. 10. Comparisons of removal rate profiles under various recipes. (a) RR
uniformity profile. (b) Uniformity profile errors.

TABLE VI
COMPARISONRESULTSAMONG DIFFERENTOPTIMIZED RECIPES

almost no significant differences among these three recipes.
Even though the uniformity profile given by the RSM is not
as good as those obtained by the neural network based model
and real process tuning, this method however provides an
approximate range of the “optimal” uniformity recipes.

We can use the neural network model to predict the unifor-
mity profile by tuning an individual input parameter channel
while keeping other parameters unchanged. This is very useful

in practice as a guidance to tune the process and uniformity
profiles. Fig. 11 illustrates the profile variations under varying
one tuning parameter around the optimized recipe . From
Fig. 11(a), we can find that tuning the air pressure of zone
does not have a significant effect on the uniformity profile. Air
pressure of zone affects the uniformity profile at all loca-
tions across the wafer as shown in Fig. 11(b). Air pressure of
zone does not have effect on uniformity profile within the ra-
dius of 80 mm but have an effect in the range of 80–100 mm
(Fig. 11(c)). Fig. 11(d) shows that varying pressureof zone

has minor effects on the removal rate profile across the wafer
within radius 90 mm, but has a significant effect around the
wafer edge. From Fig. 11(e), we can find that increasing platen
height will reduce the removal rate at the locations within ra-
dius 85 mm and bring a jump of removal rate around the point
92 mm.

In order to validate the performance of neural network based
run-to-run uniformity controller, we simulate a 500 oxide
wafer CMP process developed for one of our customers. We
assume that the metrology data is available for each 5-wafer
run in the process. Material removal rate drifts and random
metrology disturbances are added in the model to simulate
the realistic processes. For a worst case of our CMP polisher
performance in production fabs, 2% run-to-run RR disturbance
and a 300–400 /min per 1000 wafers RR drop are observed. In
the simulation, we add an edge slow drift during each 5-wafer
run and 2% metrology white noise at each measurement point.
Fig. 12(a) shows the RR profiles of the first (#1) and the
last (#500) wafers. The optimized recipe obtained by RSM,

- , is used as the process baseline recipe. The unifor-
mity process model is estimated using a feedforward neural
network trained by a 32 DOE data set as shown in Section V-A.
Following the run-to-run controller design in Section IV, after

th run, we adjust the feedforward neural network model using
the process uniformity profile measurements (with adding
disturbances and drifts) and recipe input - . An updated
neural network based control recipe - is used as
controlled process input. Fig. 12(b) shows the comparisons of
the WIWNU variations with and without neural network based
run-to-run control. Because of the profile drift in the process,
the WIWNU without run-to-run control increases significantly
from 2–3% at wafer #1 to 6–7% at wafer #500. The WIWNU
under a run-to-run neural network based control on the other
hand maintains at a stable level of 1%–2% throughout the
500-wafer process. Fig. 12(c) shows the material removal rate
variations with and without neural network based run-to-run
control. Material removal rate under the run-to-run control
clearly has been stabilized around the customer requested
target (3550 /min) while a 100–200 /min drift exists for
the uncontrolled process. Fig. 12(d) illustrates the controlled
recipe inputs at each run. We can see that at each run the
controller actually tunes the process recipe adaptively based on
the estimated process model.

From the above simulation and experimental examples, we
found that the linear regression model can provide us with
some searching directions for the optimized recipes. The
neural network approach can also use the DOE data for the
training process. We therefore consider these two methods to
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(a) (b)

(c) (d)

(e)

Fig. 11. Comparisons of removal rate profiles by varying one input process parameter aroundu . (a) VaryingP . (b) VaryingP . (c) VaryingP . (d) Varying
P . (e) Varying PH.

be complementary. However, the training algorithm for the
neural network process model needs fewer data sets than the
RSM approach. Moreover, the neural network approach is
more suitable for run-to-run process control since the neural
network weights can be tuned on-line from the current run to
the next run. Simulation performance demonstrates that the
neural network based run-to-run control can potentially tune
the process uniformity profiles very well under process drifts
and disturbances.

D. Training Time and Convergence of Neural Networks

As we mentioned before, a Levenberg–Marquardt algorithm
was used to tune the neural network weights for process mod-
eling, and a standard BP algorithm was used for uniformity pro-

file control. Table VII shows the training time and errors for
neural networks used for the feedforward process modeling and
uniformity profile control with a 32 DOE data set.

From the results given in Table VII, we can see that the
feedforward neural network for process modeling with the
Levenberg–Marquardt algorithm converges faster (9 ms per
iteration) with small errors compared to the standard BP
algorithm, 113 ms per iteration with larger errors. From these
calculations, both neural networks can normally be updated
on-line during each run once they are well-trained off-line.

VI. CONCLUSION AND FUTURE WORK

In this paper, we discussed a neural network based removal
rate uniformity profile model for a linear chemical-mechanical
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(a) (b)

(c) (d)

Fig. 12. Run-to-run uniformity control performance. (a) Profiles of the first and the last run wafers. (b) WIWNU with and without control. (c) RR with and
without control. (d) Neural network based controller inputs.

TABLE VII
TRAINING TIME AND ERRORS OFTWO TYPES OFNEURAL NETWORKS

TRAINING ALGORITHMS FORUNIFORMITY PROCESSMODELING AND CONTROL

planarization process. A uniformity run-to-run control scheme
was also presented using one neural network model and another
neural network controller. The neural network model and con-
troller were trained by a Levenberg–Marquardt algorithm and a
BP algorithm, respectively. We first discussed the feedforward
neural network based process model and compared the model
predictions with the widely used response surface method.
Experimental results showed that the trained neural network
model can predict the uniformity profile very well even with
a smaller DOE data set. The neural network based uniformity

controller was also demonstrated to be able to regulate the
process output to the target profile very well. Compared with
other model-based run-to-run CMP control schemes, the neural
network based controller can compensate for process variations
such as removal rate drift, etc.

In this paper, we only consider the uniformity profile control
by tuning the air-bearing pressures and platen height with neural
network approaches. Fully implementation of such a run-to-run
control strategy in production is undergoing. In the future, we
can explore the use of the neural network model for removal rate
control for the linear CMP process. Since the removal rate and
uniformity profile are found roughly decoupled for the linear
CMP process, this will simplify the process design and enhance
the system performance.
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