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Neural Network Based Uniformity Profile Control of
Linear Chemical-Mechanical Planarization

Jingang Yj Member, IEEE Ye Sheng Student Member, IEEENd C. Shan Xu

Abstract—in this paper, a neural network based uniformity con- and noises. The controller developed by [3] extended the pre-
troller is developed for the linear chemical-mechanical planariza- dictor-corrector control (PCC) scheme in [2] and was applied

tion (CMP) process. The control law utilizes the metrology mea- {4 cpmp processes. In [4], a concept of “sheet film equivalent”
surements of the wafer uniformity profile and tunes the pressures SFE dto desi ' R2R CMP trol sch for diel
of different air-bearing zones on Lam linear CMP polishers. A ( ) was usedto designa controlscheme for dielec-

feedforward neural network is used to self-learn the CMP process tric applications, and the experimental results from Texas Instru-
model and a direct inverse control with neural network is utilized ments fab were compared with the EWMA control scheme.
to regulate the process to the target. Simulation and experimental  Statistical surface response methods (SRM) are widely used

results are presented to illustrate the control system performance. to model the relationship between process parameters and
Compared with the results by using statistical surface response

methods (SRM), the proposed control system can give more accu-"€SPONSes in semiconductor manufacturing. Recently, SRM

rate uniformity profiles and more flexibility. models have been developed to model the relationship between
Index Terms—Chemical-mechanical planarization (CMP), CMP removal rate and uniformity and .proces.s parameters
neural networks, uniformity, run-to-run control. [5]-{9]. Although the SRM models can give a fairly accurate

CMP process model, they cannot predict precisely complex
CMP processes in real-time under different environmental
conditions. In [10], a neural network model was introduced to
HEMICAL-MECHANICAL PLANARIZATION (CMP)  study the plasma etching processes, and superior performance
Cis an important enabling technology in microelectronicBas been demonstrated compared with the SRM approach.
manufacturing. Control of the CMP process is an active reseafeyen though the neural network method has been applied to
area in both academia and industry. Due to the fact that the Cther semiconductor manufacturing processes such as CVD
process is not completely understood and there is a laicksitts  [11], [12], plasma and ion etchings [10], [13], [14], a smalll
sensors, real-time control of the CMP process is difficult. As@amount research has been performed for CMP processes. Lin
result, run-to-run (R2R) control strategies are used to monit@nd Liu [15] used an adaptive neuro-fuzzy interface system
CMP processes. to analyze CMP process parameters on rotary CMP tools;
The controlled CMP process parameters could be belt spelegywever, very limited experiments and polishing parameters
head speed, slurry rate, conditioner pressure, etc., and liaye been studied.
process responses are material removal rate, wafer nonuniAll of the CMP research mentioned above discussed the ro-
formity, and planarization, etc. In [1], a generic cell CMRary CMP process. For a typical rotary CMP equipment, the pol-
controller scheme was discussed, and a regression model ihing platen is rotating as well as the wafer carrier. The linear
proposed for a R2R controller. The linear process model in [CMP process provided by Lam Research Corporation on the
is given as other hand has been proven to have better uniformity and edge
exclusion performance [16]. The objective of this study is to in-
y=Ax+c vestigate the use of neural networks to model and control the
polishing uniformity of the linear CMP process.

4x2 o i 2
yvhereA € R 'S a model_ coeff|C|ent_ matrix and € R The remainder of this paper is organized as follows. Section
is an offset vector. A recursive adaptation scheme was devel- . L2
. ) . introduces the Lam linear planarization technology (LPT). In
oped to estimate the vectorwith an assumption that model : ; . 4
Section Il we discuss the modeling of CMP process unifor-

matrix A is fixed during the process. In [2], an exponentially . . . . .
weighted moving average (EWMA) model was used for moXéT—“ty using a neural network technique. Section IV describes the

elina semiconductor manufacturing orocesses such as etChH\niformity profile optimal control using a direct inverse neural
9 9p work strategy. Simulation and experimental results of the

hen an hen presen n - le EWMA . .
Chen and Guo [3] then presented an aged-based double nﬁural network based modeling and control of linear CMP pro-
scheme for the CMP process to accommodate process driffs : . . . .

cesses are discussed in Section V. Comparisons with the SRM
are also presented in this section. Concluding remarks are given

Manuscript received October 25, 2002; revised June 30, 2003. in Section VI.
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Fig. 1. Schematic of Lam linear chemical-mechanical planarization systems. ()

Zone A

wafer surface. For widely used rotary CMP polishers, the pol-
ishing pad is on a rotating table with a relatively large radius.
The wafer carrier is rotating against the polishing pad table. The
polishing pad table is normally rigid, and the wafer head carrier
sometimes can be tilted or controlled by the inside air zones.
The LPT polisher provided by Lam Research Corporation
uses a different mechanism. Fig. 1 shows the schematic of the
Lam LPT setup. The polishing pad is moving linearly while the
wafer carrier is rotating against the pad. An air-bearing supports
the polishing pad from underneath the air platen [see Fig. 2(a)].
Compared with regular rotary CMP polishers, the LPT design
can provide a wide ra}nge of polish pad speeds and polish PrES 2. LpT air-bearing systems. (a) Polishing platen assembly. (b) Platen air
sures, and therefore increases the throughput as well as the plges.
narization performance.

The airzones onthe Platen are se.ts Of, co-centered small h ﬁﬁicularly nonlinear relationships. There are however a few
located at different radii as shown in Fig. 2(b). From edge allenges associated with neural networks, such as training
center on the circular platen, the air zones are named from Zoffss network structures. and training algorithms.

Ato £. By tuning the air pressures of different air zones on the |, g section, neural networks are utilized to model the rela-
platen and adjusting the platen height, we can change the poligysin between the uniformity profile and the air zone pressure
pad Qeformatlon and therefor_e CO”"‘?' the vyafer pollshlng_ Ulistributions in the LPT CMP process. Particularly, we will dis-
formity. The use of the proprietary air-bearing platen intrinsk, sq the neural network structures and training algorithms. For-
cally improves the within-wafer nonuniformity (WIWNU) andy nately the training convergence rate of neural network models
decouples uniformity control from removal rate control. g ot 4 problem for the CMP process since each run takes a rel-
Inthis paper, we concentrate on how to model the relationshig, oy 1ong time. We have enough time to train the neural net-

between the air-bearing settings and the polish uniformity prog, models between each run. We will discuss training time in
files. Based on this model, we also investigate the control of t%‘%ction V-D.

air zone pressures in order to achieve a given uniformity profile

under a set of other given polish parameters such as polish pads;rycture of the Neural Networks Based Uniformity Model
speed, polish pressure, conditioners, etc. Since air ZBried’

d platen height are often used in CMP ,'th'tdf > NC
anc praten neigh' are otten used in processes, in ISS?O the CMP polishing process, it is difficult to exactly capture

we only consider tuning the pressures of air zoBe® E and .
the platen height to achieve a certain given uniformity proﬁle.the ‘?'y“a”’_“cs of CMP processes. We th_ereforg assume that the
relationship between the wafer uniformity profile and the pol-
ishing conditions are nonlinear. For LPT CMP processes, these
polishing conditions are air-bearing zone pressures and platen
height. The CMP processing time is long relative to the aerody-
Neural networks have been widely used for high-dimemamics of the air-bearing system. Therefore, it is appropriate to
sional problems of regression, identification, system modelimgnsider that a static relationship exists between the input pol-
and control. Simply speaking, neural networks mimic the waghing conditions (air zone pressures and platen height) and the
the human brain works: the training algorithms learn patterpsocess output (removal rate uniformity). A static neural net-
of systems through the training process and then prediedork model is thus chosen and applied to such processes.
the system’s performance without having to know statistics. The architecture of a neural network model with one hidden
The main advantage of neural networks is in their ability tayer is shown in Fig. 3. The reason that only one hidden layer
approximate statically or dynamically functional relationshipsieural network is chosen in the model is that this multilayer

Zone B

Zone C

e Shk : Zone D

Zone F

(b)

ince there is no fully understanding of underlying physics

Ill. M ODELING OF LPT UNIFORMITY WITH
NEURAL NETWORKS
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— B. Neural Network Training

f After determining the neural network structure, we need to se-
lect a proper data sétPF, P*, P¥, Pk PH* r¥ RR*(r;), k =
1,...,N,i =1,..., M} to train the model, where we use su-
P, " perscriptk to denote thé:ith run, N is the total number of pol-
& j % RR(+) Ishingruns for training, and/ is the number of measurement
points across the wafer diameter, respectively. In order to ob-
tain good identification results, the input air-bearing pressures
PH v and platen height signals,, P., P;, P., PH must be chosen

i properly. Since the system is nonlinear, values of training data
r j sets should be varying for different operational conditions. Fur-

' thermore, it is important to make the excitation signal cover
Fig. 3. Architecture of a static neural network model with one hidden Iayépe operating range. The trained neural network model will be
(bias nodes are not shown in the figure.) more accurate in the range of the training data [19]. Outside the

training range, the neural network model will be less accurate.

Soitis of greatimportance to know the working range of the real

Poerlrjr:a:)lfnnec:\r/\\llpr:lée:a:‘s r?ft?onnsr[i\/??d[tlc;]b?rﬁglﬁ tﬁ\ggfg%garzz %_n tem. Experimental design for the response surface methods
" unctl ' ' ur Usa good source for the training data set. In this paper, we use
rons of the hidden layer depends on the training process.

A static neural network model for the linear CMP process catiae data for.th_e design of expenmgnts (DOE). d_u.rlng the period
of tool qualifying and process tuning as the initial neural net-
be represented as

work training data set.
In order to avoid saturation of activation functions in the
neural network, input and output data are scaled as

AR

RR(r) = F(Py, P., Py, P.,PH,7) = F(u,r) (1)

Whereﬁf\{(r) is the estimate of removal rate (RR) at position P; ) PH
r,u = [P, P. P; P. PH]T is the process tuning variables, b, = T b,c,d,e, PH,= PH,..
Py, P., P;, P, are the pressures of platen air-bearing zasés RR ,

FE respectively, and PH is the platen heighs the distance from RRs = RR..' "= 7

the wafer center. For each neuron, the activation function can be
either a linear or hyperbolic tangefttnh) or logistic sigmoid where P, = 30 psi, P..... = 45 psi, Py... = 70 psi,
function. Empirically, it is often found thatt4nh” activation P, = 30 psi, PHyax = 40 mil, RRyax = 7000 A/min,

€max

functions give rise to a faster convergence of training algorithragdr .. = 100 mm.

than logistic sigmoid functions. Thus, in this paper, the hidden Normally, the calculation of weight®% of the feedforward

neurons employ athnh” activation function, i.e., model atkth run is obtained by iteratively (run-to-run) mini-
mizing the estimation error functiohi} (®F) as

T — e~
h(z) = & —¢
tanh(z) e k .

Ef(Of) = (RR*(ri) = RR (r;))*

DN | =

We use a linear neuron for the output layer so that it has an
unlimited range. The model of (1) can be further represented

g

_
=l
-

1 ) 2
as = 5 (RRk(’I‘i) — f (‘I’k(’l“i), @fkf))
- M> M,y 1 L:kl 9
RR() = 3 W, (z i + wm) W = et @
7j=1 =1
—k
= [(®,0q) @) wheree? = RR¥(r;) — RR' (r;) is the estimate error evaluated

. atr; atkth run ande® € RM is a vector with elementg’, 1 <
where® = (¢;) = [Py P. Py P. PH r]" and®g = 1 < N andl < i< M. Using the first order Taylor expansion
(Wj wji), j = 0,1,...,My,i = 0,1,..., My, is a vector in of f(®*(r;), ®%) around the initial value®%, we obtain
RP,p = (M1 + 2)M> + 1, which combines hidden-to-output
layer and input-to-hidden layer weights of the feedforward , (®"(r;), Of + AOL) ~ [ (®"(r:), O) + JAGL (4)
neural networkM; and M, are the number of inputs to the
network and the number of hidden neurons of the network, ey g small A®%, whereJ € RM*? is the Jacobian matrix
spectively. For the feedforward neural network process modgh f(&* (r,), ©k))/(0OFL). ThusE,(®F + AGE) can be rep-
M, = 6, and for the neural network used for the uniformityesented as
control in the next section)/; = 5 since radiug- is not a
process control variable. Initial weigh®(0) of the neural F, (@’;f + A@ﬁ) ~ E; (@ﬁ) + gTAgg
networks are selected randomly from a uniform distribution 1 T .
between—0.5 and+0.5. t540g JTJAOg (5)
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Fig. 4. A schematic of neural network based RR uniformity control systems

whereG = VE (OF) = JTe. Letting ((0F(®k +
A@g))/(&A@g)) =0, A@f% becomes Fig. 5. Architecture of the neural network controller with one hidden layer
& T 19T & (bias nodes are not shown in the figure).
AOgz = —(J J)_ J€e". (6)

Equation (6) is known as the Gauss—Newton algorithm. Og@ntroller is also designed and trained in order to tune and opti-
disadvantage with such a method is that the step size given byifi}e the air-bearing pressures and platen height.
could be relatively large, in which case the linear approximation The architecture of a neural network based controller with
in (4) would no longer be valid. In this paper, we can use thghe hidden layer is shown in Fig. 5. Similar to the feedforward
Levenberg-Marquardt algorithm [20], a modified error functioReural network for process modeling, the neural network used
to solve this problem, which is of the form for the controller has one hidden layer. However, the input and
k kY k T A @k output of the neural network is completely different from the
E1 (05 + AGF) ~ ]151 (©i) + 77 A0 ) feedforward neural network shown in Fig. 3. The input layer to
+—A®§T JTIA®L + —) ||A@§H2 (7) the neural network of the controller is the removal rate profile
2 2 referenceRR,.¢(r), and the output layer consists of air-bearing
where the parametek governs the step size. Through thisyressures’;, i = b, ¢, d, e, and platen height PH. The estimate
strategy, we can minimize the error function while at thgf the uniformity profileRR(r) is then feedback to train and
same time keeping the step size small so as to ensure tfgdate the neural network weights of the controller.
the linear approximation remains valid [20], [21]. Letting The training procedure for the neural network weights of the
((0E1(®f + A®))/(0ABF)) = 0, we obtain the adaptation controller can be similarly obtained as the feedforward neural
of neural network weight& @ as network model. The neural network should be able to tune the
k _ (4T —1 7T k plant inputu under which the process outpBR(r) is driven
ABp = —(JTT+A)T T e ® to the desired valu&®R,.¢(r). This can be accomplished by
The above iteration algorithm can be used in training the feeasing the error between the desired and actual responses of the
forward neural network model with a set of measurement dgteocess|RR,.¢(r) —RR(r)], to adjust the weights of the inverse
of N runs (total number al/ x N input data). Moreover, it can network in the descent direction. If the process OUufRR{(r)
also be utilized to update the neural network weights once nean be measured, an estimBt®(r) from the feedforward net-
measurement data set (totally numbenofinput data) is ready work model is first updated. Then we uﬁ/ﬁ(r) to construct an

after the weights have been well-trained. adaptation law for the weights of the inverse neural network,
O € R g = (M + 2)M; + 1, whereM; = 5 is the
IV. NEURAL NETWORK BASED UNIFORMITY number of the nodes in the output layer alfd is the number
PROFILE CONTROL of the neurons in the hidden layer. In a real product process, we

In Section Ill, we discussed the feedforward neural netwo
model of the removal uniformity profile. In this section, a direc
inverse neural network based control system is used to regul
the RR uniformity to follow a desired profilBR,.¢(r).

e for each wafer due to the throughput constraints. Instead, a
wafers from a lot have been measured by either in-line or
off-line metrology tools. These data sets can be fed into a feed-

forward neural network process model and then used to update

A. Model Reference Neural Network Based Control the neural network based controller.

The neural network based model reference control stratelgy
is shown in Fig. 4. The process must be invertible in order to
apply this strategy. The input to the control systems is the refer-In order to design the training algorithms for the run-to-run
ence removal rate proﬁlERref(T), and the control System goa'Uniformity Controller, W|th0ut loss of generality, it is assumed
is to regulate the output of the process uniformity prafil(r) that at each run the profile measurements are availablest
closest to the iINpuBR,.¢(r) from run to run. A neural network
feedforward process model is first designed by the method diSI\Ne here consider a “run” in a general sense. It could be a wafer, a lot, or
cussed in Section Ill. At the same time, a neural network base@n several wafers, depending on the process design and requirements.

;(e not going to measure the post-polishing removal rate pro-
I

Training Algorithm
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denote the input layer as = [P, P., Py, Py, PH]T, and the

output layer is the estimated uniformity prof@. A partic-

ular radiusr; is needed as an additional input in order to use

the neural network process model to obtain the estimated pro-

file RR(r;). O; = tanh(-),j = 1,2,..., Ms, are the output of

the hidden layer neurons of the neural network process model.
From Fig. 6, we can calculate the second derivative term

(ORR /ouk) in (10) as

— Mo, —k k
JRR _ Z JORR 30j . (11)
E)uf ot ()O;‘ Ouf ’

where we can obtain
—k

' ) . . ORR

Fig. 6. Partial architecture of training the neural network based controller. A——— = W,

particular radius is needed as an additional input to the neural network process(()O;-6
model to obtain an estimated removal rate prailg(r). 90k
J

i = (1—0k§)wﬂ7 i=1,....5, j=1,..., M.
a rough neural network process model is trained by the Leven- i
berg—Marquardt method off-line. A recursive error backprop# the last term, we use the mathematical relationship
gation (BP) method is then employed to train the neural networknh’(z) = 1 — tanhz(a:).

controller at each training run to drii®R () to RR,e¢(r). The The learning rate of the BP algorithm for the neural network
choice of BP algorithm for the neural network control resultsased controller is chosen-@s= 10~ in this study. In order to
from the existence of the feedforward neural network procesgeed the parameter convergence, a smoothing filter with a mo-
model, and the fact that Levenberg—Marquardt method is maentuma = 0.1 is used to update the neural network parameter
suitable for the model reference adaptation scheme due to th@% by A®F atkthrun,

computational complexity. It will be shown in Section V-D that

k _ k k—1
a recursive BP algorithm is fast enough for the uniformity pro- ABj,,., = A0, +aAB; . (12)
file control. . L Similar to the recursive Levenberg—Marquardt algorithm (8),
The following error atith run is minimized the above adaptation laws can be applied to both the multiple
M 2 run data set training and the weights updating with one new data
krak 1 k =5k
E5(Oh) = 5> [RRE«r) —RR (m)] (@) set
i=1 The overall procedure of the control scheme can be summa-

rized as follows:

e Step 1 A feedforward neural network based process

model is first trained off-line usingv experimental data

sets from various DOEs as described by the adaptation

law (8) in Section III.

Step 2 A neural network based uniformity controller is

trained off-line by a BP algorithm by (12) through the

use of the feedforward neural network model obtained in

step 1.

Step 3 The trained neural network based uniformity con-

troller is used to tune the air-bearing pressures and platen

height at thekth run for the CMP process.

» Step 4 At (k + 1)th run, update the feedforward neural

network process model by adaptation law (8) with the new

OBk MRk ORR" out data set.

00F Z —F guk 9@k (10) « Step 5 After the feedforward process model has been up-

v i=1 ORR inv dated, use adaptation law (12) to calculate the new weights
The first partial derivative in (10) can be calculated using (9)  for the uniformity controller based on the estimate of re-

as (I/{T{k(r,;) — RRF (1)), and the third is calculated using moval rate profiIeI/{ﬁkJrl and then go to step 3.

a standard BP algorithm [20]. To calculate the second term,

(8§Ek/8u’“), we need to recall the structure of the neural net- V. EXPERIMENTAL RESULTS

work based process model as shown in Fig. 6. In Fig. 6, we|n, this section, we use some simulation and experimental ex-
2We treat the reference removal rate proBIB” ,(r,) in a general form as- @mples to illustrate the design of neural network based process

suming that it could be varying for different runs. modeling and run-to-run uniformity profile control. First, we

WhereﬁI\{k(r,;) is the estimate oRR"(r;) by updating the
feedforward neural network process model using the measure-
ment/a\t;[hekth run. Here we assume that the estimated removal
rate RR (r;) is approximately equal to the real removal rate
RR*(r;), andRRy¢(r;) is the reference removal rate profile at
kth rur?. The effectiveness of this assumption is guaranteed by
the training accuracy of the proposed neural network model.

Following the same idea of designing feedforward neural net-
work weights, we can derive the updating laws of weigBfs, .
for the neural network based controller. Notice that the weights
of the inverse network can affect the process oulpRE(r)
only through the control signal, i.ax*. The error gradient can
be computed using the chain rule as
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TABLE | 4000 RR profile comparison for run #11
T T T T T T T T T
EXPERIMENTAL PARAMETERS OFCMP PROCESS#1 : : :
. - Measured :
. 3900} _i.......| = Predicted from NN NPT TR
Slurry rate | Head pressure | Belt speed | Head speed Pad conditioning ‘«\ —<— Predicted from RSM : : A
\ : . . 7\
250ml/min 5 psi 350 ft/min 25 rpm Linear/50%/6 psi/T sec. per sweep A : : : A
3800 N -
—~ \ I
g pe |
TABLE I §3700— % / H
REMOVAL RATE (A/min) PROFILES BY DESIGN OFEXPERIMENTS Q i )
~— ‘;’
— = = == = Q:3600_ : . ER e R e S o
Run # | Pattern | B, | P. | Py | Po | PH | r=99mm | r=98mm | ... | r =5mm | r = O0mm : X L TS 8
= : & - NS e
1 -+ | 8 [ 3540 ] 22| 30 1846 2489 3935 3841 : : “\Mr~(,l‘€,/ :
2 0 |0]25]50|15| 20 | 3273 3439 || 378 3973 8800 N DR t
31 H-+-+ [ 2211560 | 8 | 30 3956 4115 3702 3986 B400 |- B eeeeeeied - . ceeleees &
32 0 1512550 |15 20 3314 3581 3832 4015 : : :
) 3300 ; ; j j i i i i i
0 10 20 3 0 80 920 100

0 40 50 60 7
) Wafer radius (mm)
demonstrate the effectiveness and correctness of the neural net-

work modeling. Neural network based uniformity profile tuning @

is then illustrated by some experimental results. Due to the lir e, ¢/ profile comparison for run #11

ited data sets, we will demonstrate the efficiency and effectiv i f :
ness of the proposed run-to-run profile controller by some N o0\ - Prediced rom NN R

—<— Predicted from RSM : : A

merical simulation results.

3800
A. Experimental Design .

Some experiments have been carried out at the Lam Reseeé3700
Corporation CMP Division using the Lam Teres CMP polisheg
Lam’s XD Platen was used to regulate the air-bearing pressur az3s0
Thermal oxide wafers (200 mm) were polished using Cab’™
SS12 slurry. Table | shows the polishing parameters except 1 oo
air-bearing pressures and platen height for the first set of desi

experiments. 3400 S R f : ; I
Design of experiments were originally carried out to mode : : ‘ .

the process uniformity profile using the response surfac ssoo;— bbbttt

method. Since the polishing parameters listed in Table | ha Waler radius (mm)

little impact on the process uniformity profiles, we do not (b)

change_them and focus more on t_he effect .Of Va.“at'onls I%.?. Removal rate profiles predicted by a feedforward neural network model
air-bearing pressures and platen height on uniformity profilesd a response surface method for a CMP process with parameters by Table I.

A set of of 32 polishing runs have been designed. Table () Predicted uniformity profile. (b) Predict errors.
shows a few examples of these experiments. In Table Il, we

illustrate the removal rate profiléi(min) at different radii from sets. We randomly pick up 16 runs of data among the 32 DOE
0 to 99 mm. The metrology measurements are 67 points acrggg; sets as the training data set. Specifically we pick runs 1, 2,
the wafer diameter: for radii between 0-70 mm, we measujes 8 10, 13, 15, 16, 17, 18, 21, 23, 25, 26, and 28. By trying
one point at a distance of 5 mm; for radii between 70-90 Mifterent neural network structures, we finally used one hidden
we measure one point at a distance of 2 mm; for radius betwagper neural network with 12 hidden neurons for the feedforward
90-100 mm, we take one point at a distance of 1 mm. Singgyra| network process model, .87, = 12. After training the

the polishing head is rotating and the pad is moving linearlye ral network model for the uniformity profile, we also vali-
we can obviously establish that the cross-diameter remoygied the model by predicting the removal rate profile under dif-
rate profile is symmetric with respect to the wafer center. Warent combinations of the air-bearing pressures given by other
therefore only list the measurement for radius changes fronibE testing data. The Levenberg—Marquardt training algorithm
to 100 mm, and, for radii from-100 to 0 mm, the removal rate giscussed in Section Il has been used to train the neural network
profile is symmetric. models with initial parametex = 0.9 using a Matlab Toolbox
[22]. Similar real-time training algorithms can be programmed
into run-to-run control software.

In order to validate the neural network process model, weln order to compare with the neural network process mod-
have to pick up some experimental data as the training data sdihg, a response surface method was also used to determine the
Based on the trained neural network model, we can verify thelationship between the air-bearing pressures and the unifor-
neural network process model by the other experimental datity profile by using all these data sets of 32 runs. For this ex-

B. Performance of the Neural Network Process Model
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TABLE I
COMPARISON RESULTS BETWEEN THE NEURAL NETWORK MODEL AND
RESPONSESURFACE METHODS FOR ACMP FROCESS BYTABLE |
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TABLE IV
EXPERIMENTAL PARAMETERS OFCMP PROCESS#2

Slurry rate | Head pressure | Belt speed | Head speed | Conditioning

i
225 ft/min 20 rpm J Linear/100%/5 psi/7 sec. per sweep

RR profile comparison

=-o- Experiment
6500 =B Predicted by RSM
=%~ Predicted by NN

Methods NN RSM | Experiment 200 ml/min
Maximum error €.y (A/ min) 183 327 o
Standard deviation (A /min) 69 89 - 7000

WIWNU 3.69% | 3.52% 4.45%

k-value 6.15 % | 5.57 % 8.90%

6000 -

5500~

ample, a simple linear regression model was determined using,E

the optimization method as o000y
=

RR(T,) = A(’I”Z)Pb + B(?”i)PC + C(Ti>Pd + D(?”i>Pe 54500»

+E(Ti)PH+F(Ti), i=1,...,34 (13) 4000

where RR(r;) is the estimated removal rate at the radiys as00l-

by RSM, A(r;), B(r;),C(r:), D(r;), E(r;) are the coefficient
terms for the air-bearing pressurés, P., P;, P., and platen

L

height PH, respectively, anfl(r;) is the model constant term. 2500
Fig. 7 shows the predicted removal rate profiles under a feed-

forward neural work model and a response surface method with

the experimental measurements for run #11. The air-bearing {

ting of run #11 is:P, = 15 psi, P. = 25 psi, P; = 50 psi, conditions.

P. = 15 psi,andPH = 20 mil. Fig. 7(a) shows the removal rate

profiles and Fig. 7(b) illustrates the model predicted errors of the

i i
10 20 30 40 50 60
Wafer radius (mm)

TABLE V

L
70

L
80 90 100

. 8. Removal rate profiles predicted by a trained neural network model
a response surface method for a CMP process with different operating

neural network process model and the linear regressional modékmPARISONRESULTS OF THENEURAL NETWORK AND RESPONSESURFACE
METHODS FOR ADIFFERENTCMP PROCESS

From Fig. 7, we can see that the neural network model predicts
the real measurements very well. Table Il gives the compar-
isons between the neural network model and the response sur-

Methods

NN

RSM

face model.
In Table IIl, we calculated the maximum errQg., and stan-
dard deviatiory with RR,¢(r;) = 3550 A/min as follows

€max = 12‘%}’;4(|RR(W) — RRiet(r3)])

0: ¢ S, (RR(ri) — RRyer(r))?
34 -1 ’

The WIWNU andk-value are calculated as
wiwny = ZERID) 000
fevalue — maxi(RR(riL— min; (RR(r;))  100%
ZRR(H)

Maximum error epay (A/min) | 377 | 1000

Standard deviation (A /min) | 153 | 294

nonuniformity across the wafer surface, some semiconductor
manufacturers use both WIWNU ardvalue to qualify CMP
processes.

In order to validate the efficiency of neural network mod-
eling, we applied the proposed neural network model that has
been trained by the DOE data set to another experiment with dif-
ferent operating conditions. Table IV lists the operating condi-
tions. The air-bearing settings of the experimenbis= 15 psi,

P. = 50 psi, P; = 5 psi, P. = 10 psi, andPH = 12 mil.
Fig. 8 shows the experimental and the predicted profiles. Table
V shows the comparison results of the neural network and re-

Whereﬁ(m) is the mean value of the predicted RR profilessPonse surface methods with different experimental operations.

Both WIWNU and k-value are used to qualify the profile

From Fig. 8 and Table V, we can see that using the neural net-

nonuniformity. From the above definitions, we can find that/orks trained by the DOE experiments under one set of oper-
for most cases WIWNU andé-value should have the samedting conditions (Table I) can predict process profile under an-

trend. Normally,k-value is much larger than WIWNU value.

other set of operating conditions (Table V) very well.

k-value uses the difference of maximum and minimum valuesFig- 9 shows the maximum errors and standard deviations
of the measurements and WIWNU instead uses the standgfdPredicted profiles by neural network and response surface
derivation of the same measurement set. Therefore, if théRgthods for another set of 28-run experiments on a different

is one measurement point out of specificatiohs/alue can

CMP polisher platform and processes. We can clearly find that

give a direct indication while WIWNU might not reflect such s, tapje v, 3-mm edge exclusion measurements are used to calculate the
a change significantly. In order to tightly control the profilenaximum errors and mean square errors.



616 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 16, NO. 4, NOVEMBER 2003

2000 : _ Maximum e — optimize or tune the uniformity profile recipe for each run. For

' mj the neural network used for the uniformity control, we similarly
use one hidden layer with 14 hidden neurons, A&, = 14. The
same DOE data set discussed in Section V-A is used here. The
training data set for the neural network controller is generated by
the feedforward neural network process model with a 16 DOE
data set. A more accurate neural network process model trained
.1 byall 32 DOE data sets is used for simulation validations.

We compare the optimized process recipes of air-bearing sys-
tems given by the neural network based controller and that given
-4 by the response surface method. For the linear regression model
by response surface method, we can obtain an optimized recipe
by minimizing the estimated nonuniformity error with respect
1 to customer requirementsR,.¢(r;) as follows:

rror (A/min)_
: :

Maximum error

Wafer 1Islumber ® ® * Uopt-RSM = aIg m&n{a[ﬁf\{RSM(rﬂ — RRyer (7”2)]}

@) =[0 45psi 50psi 14psi 9mil]" (14)

500 , , STD , , wheres[RRrsu () — RRuet(r)], i = 1,..., M, is the stan-
dard derivation of th_e estimated error of the uniformity profile
T at measurement points.
For the neural network based controller, we can obtain the

optimized recipe by learning law given by (12) as

Uope-NN = [0 30.5psi 47.2psi 14.1psi  19.2 mil]~.

'gsoo— =

£ (15)

°§250* B S . .

o ome experiments using,p¢-rsy Were tested. We found
200k | that the process performance under reaipg:;-rsm Was not

satisfactory. Instead, process engineers have optimized and de-
"1 veloped a process recipg..;, by tuning the process around

. Uopt-RSM, AS

Upeal = [5psi 25 psi 50 psi 15 psi 20 mil]”.  (16)

5 10 20 25 30

15
Wafer number In Fig. 10(a), simulation and experimental results of the re-
(b) moval rate profile are illustrated. The experimental results have
Fig.9. Comparisons of profile maximum errors and mean square errors ovd?@en obtained under,..; from the real process. For the opti-
range of_values of air-bearing settingsvyith other process parameters by Tablgh{zed recipe obtained by RSMlopt-RSI\L we found that the
(&) Maximum errors. (b) Standard deviations. process (4" line) is far away from theRR,e¢ = 3550 A/min.
The neural network model predicted profile(line) is closer
the neural network model shows a superior fitting with experp the reference profile and fits well with the experimental re-
mental results than what the responses surface method doesy|is (7" line). The difference between the profile predicted by
From the above examples, we can conclude that the neyfd RsMm optimized recip@,p:-rsy and the real recip@ye,;
network model prEdiCtS a better Uniformity prOf”e than thgga”'] proves that the neural network model is much more ac-
response surface method for various operating conditions. Weate than an RSM model in this case. Considering the opti-
tested but did not demonstrate the comparisons for other D@{zed recipeu,:.-xx given by the neural network based con-
runs in detail. We found that in most cases the neural netwagk|ler, the predicted RR profile (" line) is much closer to the
model can always predict a better CMP removal rate uniformiga| process output. This is not surprising because the optimized
profile than the response surface method under various CMERipeuopt-NN obtained by the neural network based controller
process conditions and polisher platforms. Another attractiyfs) is closer to the optimized process recipg.; (16).
property of using the neural network model is that it can be Fig. 10(b) shows thekR(r) error profiles under different
updated for each run in real-time and therefore is able fgcipes. Table VI illustrates the error calculations. From
compensate for process parameter variations such as remq#lle VI, we can clearly see that the neural network based
rate drift, etc. controller can predict the best the removal rate profile to the
reference RR profile by the smallest maximum error and
C. Performance of the Neural Network Based Controller  giandard deviation. The real process tuning recipe produces a
Once the feedforward neural network process model is availbod RR profile to the reference values, and the RSM recipe
able, we can train the the neural network based controller offenerates the worst performance to track the reference profiles.
line. Then we can use the trained neural network controller itowever, if we consider the WIWNU ankhvalues, there are
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RR profiles with different controllers

4200 B
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RR profile errors with different controllers
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opt-rsm

—g— Error of NN pred. with U

opt-NN
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Wafer radius (mm)
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70

in practice as a guidance to tune the process and uniformity
profiles. Fig. 11 illustrates the profile variations under varying
one tuning parameter around the optimized reaipg;. From

Fig. 11(a), we can find that tuning the air pressure of zéne
does not have a significant effect on the uniformity profile. Air
pressure of zon€' affects the uniformity profile at all loca-
tions across the wafer as shown in Fig. 11(b). Air pressure of
zoneD does not have effect on uniformity profile within the ra-
dius of 80 mm but have an effect in the range of 80-100 mm
(Fig. 11(c)). Fig. 11(d) shows that varying pressiteof zone

FE has minor effects on the removal rate profile across the wafer
within radius 90 mm, but has a significant effect around the
wafer edge. From Fig. 11(e), we can find that increasing platen
height will reduce the removal rate at the locations within ra-
dius 85 mm and bring a jump of removal rate around the point
92 mm.

In order to validate the performance of neural network based
run-to-run uniformity controller, we simulate a 500 oxide
wafer CMP process developed for one of our customers. We
assume that the metrology data is available for each 5-wafer
run in the process. Material removal rate drifts and random
metrology disturbances are added in the model to simulate
the realistic processes. For a worst case of our CMP polisher
performance in production fabs, 2% run-to-run RR disturbance
and a 300—400./min per 1000 wafers RR drop are observed. In
the simulation, we add an edge slow drift during each 5-wafer
run and 2% metrology white noise at each measurement point.
Fig. 12(a) shows the RR profiles of the first (#1) and the
last (#500) wafers. The optimized recipe obtained by RSM,
Uopt-rSM, IS USed as the process baseline recipe. The unifor-
mity process model is estimated using a feedforward neural
network trained by a 32 DOE data set as shown in Section V-A.
Following the run-to-run controller design in Section 1V, after
kth run, we adjust the feedforward neural network model using
the process uniformity profile measurements (with adding

Fig. 10. Comparisons of removal rate profiles under various recipes. (a) IQ#Sturbances and drifts) and recipe inpit:-rsy . An updated
uniformity profile. (b) Uniformity profile errors.

TABLE VI
COMPARISON RESULTS AMONG DIFFERENT OPTIMIZED RECIPES
Optimized recipes NN RSM | Experiment
Maximuim error €pax (A/ min) 204 622 349
Standard deviation o (A/min) 86 91 113
WIWNU 2.44 % | 2.32% 3.16%
k-value 4.73% | 4.42 % 6.45%

neural network based control recipg,.-nx(k + 1) is used as
controlled process input. Fig. 12(b) shows the comparisons of
the WIWNU variations with and without neural network based
run-to-run control. Because of the profile drift in the process,
the WIWNU without run-to-run control increases significantly
from 2—3% at wafer #1 to 6—7% at wafer #500. The WIWNU
under a run-to-run neural network based control on the other
hand maintains at a stable level of 1%—2% throughout the
500-wafer process. Fig. 12(c) shows the material removal rate
variations with and without neural network based run-to-run
control. Material removal rate under the run-to-run control
clearly has been stabilized around the customer requested
target (3550A/min) while a 100-200A/min drift exists for

the uncontrolled process. Fig. 12(d) illustrates the controlled

almost no significant differences among these three recipescipe inputs at each run. We can see that at each run the
Even though the uniformity profile given by the RSM is notontroller actually tunes the process recipe adaptively based on
as good as those obtained by the neural network based mdtelestimated process model.
and real process tuning, this method however provides arFrom the above simulation and experimental examples, we
approximate range of the “optimal” uniformity recipes.
We can use the neural network model to predict the unifoseme searching directions for the optimized recipes. The
mity profile by tuning an individual input parameter channeheural network approach can also use the DOE data for the
while keeping other parameters unchanged. This is very usef@ining process. We therefore consider these two methods to

found that the linear regression model can provide us with
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Fig. 11. Comparisons of removal rate profiles by varying one input process parameterargun¢h) VaryingP, . (b) Varying P.. (c) Varying P,. (d) Varying
P, . (e) Varying PH.

be complementary. However, the training algorithm for thile control. Table VII shows the training time and errors for
neural network process model needs fewer data sets thanrbaral networks used for the feedforward process modeling and
RSM approach. Moreover, the neural network approach usiformity profile control with a 32 DOE data set.

more suitable for run-to-run process control since the neuralFrom the results given in Table VII, we can see that the
network weights can be tuned on-line from the current run feedforward neural network for process modeling with the
the next run. Simulation performance demonstrates that thevenberg—Marquardt algorithm converges faster (9 ms per
neural network based run-to-run control can potentially turiration) with small errors compared to the standard BP

the process uniformity profiles very well under process drifslgorithm, 113 ms per iteration with larger errors. From these
and disturbances. calculations, both neural networks can normally be updated

on-line during each run once they are well-trained off-line.

D. Training Time and Convergence of Neural Networks

As we mentioned before, a Levenberg—Marquardt algorithm
was used to tune the neural network weights for process modin this paper, we discussed a neural network based removal

eling, and a standard BP algorithm was used for uniformity preate uniformity profile model for a linear chemical-mechanical

VI. CONCLUSION AND FUTURE WORK
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Fig. 12.  Run-to-run uniformity control performance. (a) Profiles of the first and the last run wafers. (b) WIWNU with and without control. (c) RRdwith a
without control. (d) Neural network based controller inputs.

TABLE VII
TRAINING TIME AND ERRORS OFTWO TYPES OFNEURAL NETWORKS
TRAINING ALGORITHMS FORUNIFORMITY PROCESSMODELING AND CONTROL

controller was also demonstrated to be able to regulate the
process output to the target profile very well. Compared with
other model-based run-to-run CMP control schemes, the neural

Tter # | Training time (sec.) | Errors network based controller can compensate for process variations
L aleonitl - ” . such as removal rate drift, etc.
L-M algorithm | 3200 29 0910 In this paper, we only consider the uniformity profile control
BP algorithm | 4500 510 1.09 x 1077 by tuning the air-bearing pressures and platen height with neural

network approaches. Fully implementation of such a run-to-run

control strategy in production is undergoing. In the future, we
planarization process. A uniformity run-to-run control schemgan explore the use of the neural network model for removal rate
was also presented using one neural network model and anotgitrol for the linear CMP process. Since the removal rate and
neural network controller. The neural network model and coaniformity profile are found roughly decoupled for the linear
troller were trained by a Levenberg-Marquardt algorithm and@MP process, this will simplify the process design and enhance
BP algorithm, respectively. We first discussed the feedforwatle system performance.
neural network based process model and compared the model
predictions with the widely used response surface method.
Experimental results showed that the trained neural network
model can predict the uniformity profile very well even with One of the authors, J. Yi, would like to thank Dr. D. Wei and
a smaller DOE data set. The neural network based uniformBy. T. Taylor at Lam Research Corporation for various discus-
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