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Rider Trunk and Bicycle Pose Estimation With
Fusion of Force/Inertial Sensors

Yizhai Zhang, Student Member, IEEE, Kuo Chen, and Jingang Yi*, Senior Member, IEEE

Abstract—Estimation of human pose in physical human-
machine interactions such as bicycling is challenging because of
highly-dimensional human motion and lack of inexpensive, effec-
tive motion sensors. In this paper, we present a computational
scheme to estimate both the rider trunk pose and the bicycle roll
angle using only inertial and force sensors. The estimation scheme
is built on a rider-bicycle dynamic model and the fusion of the
wearable inertial sensors and the bicycle force sensors. We take
advantages of the attractive properties of the robust force mea-
surements and the motion-sensitive inertial measurements. The
rider-bicycle dynamic model provides the underlying relationship
between the force and the inertial measurements. The extended
Kalman filter-based sensor fusion design fully incorporates the dy-
namic effects of the force measurements. The performance of the
estimation scheme is demonstrated through extensive indoor and
outdoor riding experiments.

Index Terms—Accelerometer and gyroscope, cycling, force sen-
sor, motion and pose estimation, sensor fusion.

1. INTRODUCTION

OSE and gait estimation not only benefits clinical anal-
P ysis and diagnosis [1], but also provides tools to under-
stand human sensorimotor mechanisms and their interactions
with machines and environment. Human pose estimation in
physical human—machine interactions such as bicycling is chal-
lenging because of the highly dimensional human movement
and the dynamic interactions with machines. Further challenges
arise in lack of effective, nonintrusive motion sensors in natural
environment.

Existing motion capture systems, such as optical-, acoustic-,
or magnetic-based tracking systems, are limited to indoor usage
within a confined space and cannot be used for tracking human
movement in natural environment. Wearable sensors have been
extensively used for human pose and gait estimation [2]. For
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example, estimations of human upper-limb orientations were
discussed in [3]—[6]. The work in [7]-[11] discusses the lower-
limb pose estimation. Some other works discuss general human
segment pose measurement [12]-[15]. Most of the aforemen-
tioned work focuses on human walking, standing, or reaching
activities, and there is few work that discusses the human motion
and pose estimation in highly skilled human—-machine interac-
tions such as bicycling. The goal of this paper is to develop an
estimation scheme for the rider trunk pose and the bicycle roll
angle using inertial and force sensors.

Human bicycling motor skill is chosen as a pose estima-
tion application for several reasons. Unlike commonly stud-
ied walking or stance where the human—environment interac-
tion is only through the ground contact, the rider-bicycle in-
teractions are through multiple contacts at the handlebar, the
seat, and the pedals. The multicontact interactions bring com-
plexity but also provide new features for pose estimation. Sit-
ting on the unstable platform, riders have to actively react
to the sensory feedback through body movement for balanc-
ing. Bicycles provide a unique platform for studying coupled
human sensorimotor functions with machines. Recent clini-
cal studies demonstrate promising results of treating Parkin-
son’s disease patients through bicycle riding [ 16]-[18]. Bicycles
can be further developed and used as a postural rehabilitation
device.

Because of small size, low cost, and low power consump-
tion, microelectromechanical-system-based inertial sensors
such as accelerometers, gyroscopes, or inertial measurement
units (IMUs) are widely used as wearable sensors for human
motion and gait estimation. The orientation or the position of a
body segment can be obtained by the integration of gyroscope
or acceleration signals. However, the results of such strapdown
IMU integration have the severe drifting problem due to the sen-
sor measurement biases and noises. To overcome this problem,
other complementary sensors are usually fused with inertial sen-
sors to eliminate the drifting effect. For example, inclinations
are estimated by accelerometer measurements and then inte-
grated with gyroscope measurements in [6] and [13]. In [19],
ultrasonic sensors are attached on human body to provide po-
sitioning information. In [12], [14], and [15], magnetic sensors
are used as an attitude reference to constrain the drift growth and
to provide the initial estimates in the filter design. However, the
aforementioned sensor fusion schemes have various limitations.
Accelerometer-based inclination can generate large measure-
ment errors for dynamic activities, ultrasonic sensors potentially
suffer from the line-of-sight restriction, and magnetic sensors
are vulnerable to magnetic disturbances in environment. Hu-
man anatomical constraints are also used to enhance the fusion

0018-9294 © 2013 IEEE
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mounted on rider trunk.

accuracy [5]. In [11], multiple accelerometers are used to esti-
mate the gait without directly integrating IMU measurements.
For walking gait estimation, a “resetting” technique is used
in [8] and [20] to initialize the integration at the beginning of
each stride.

In this paper, we fuse the force sensors with the IMUs to
overcome the drifting issue in integration of the inertial mea-
surements. Unlike magnetic and ultrasonic sensors, the force
sensors are reliable and robust to environmental disturbances
and do not have the line-of-sight restriction. The fusions of force
and inertial sensors have been used to measure the interaction
kinetics between human and environment [21]—[24]. However,
the work in [21]-[24] uses the force and inertial sensors to
obtain kinetic measurements and none of them uses the force
measurements to enhance the pose estimation. Unlike in walk-
ing or stance, pose estimation in bicycling has different features.
The rider sits on a moving platform and the measurements from
wearable IMUs contain motion information of both the rider
and the bicycle. Multiple IMUs are needed and analyses have
to be conducted to decouple the IMU measurements. A trunk-
bicycle dynamic model is used to reveal the underlying dynamic
relationship between the inertial and force measurements. We
present extensive experiments to demonstrate the drift-free and
robust performance of the pose estimation design. This paper is
a significant extension of the previously presented conference
publication [25].

The main contributions of this paper are twofold. First, the
pose estimation scheme relies only on the wearable sensors and
the onboard sensors, and therefore, it aims for human pose and
gait studies in daily surroundings rather than in restrictive indoor
environment. The use of the inertial/force sensors fusion is novel
and provides reliable and robust estimates of human pose under
dynamic motions. Second, the new dynamic model captures
the rider—bicycle motion characteristics and bridges the human
motion kinematics with the driving force measurements. The
modeling framework provides a new approach to potentially
study other types of human—machine interactions.
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(a) Instrumented bicycle. (b) Rectangular marker for outdoor use. (c) Bicycle IMU and seat force sensor. (d) Locations of the IMU and optical markers

II. METHODS

A. Instrumented Bicycle and Riding Experiments

Fig. 1(a) shows the instrumented bicycle. The bicycle is mod-
ified from a commercial mountain bike and equipped with vari-
ous sensors. The bicycle is designed for both indoor and outdoor
experiments. A force/torque sensor (from JR3 Inc.) is installed
along the seat supporting rod to measure the three-axis hip-seat
forces and torques (see Fig. 1(c)). Three load cells are installed
inside the customly built bicycle seat to measure the sitting
force distribution (see Fig. 3). An optical encoder is used to
measure the bicycle speed. A set of stain gauges are installed
on the bicycle handlebar to measure the handlebar forces. A
real-time embedded system (CompactRIO 9074 from National
Instruments Inc.) samples and stores all sensor measurements
at the frequency of 50 Hz, a maximum sampling frequency that
can be achieved by the given hardware capability.

Two IMU units (model 605 from Motion Sense Inc.!) are
used: one IMU is mounted to the bicycle frame (see Fig. 1(c))
and the other one is rigidly attached to a T-shape fixture at level
T6 on the back of the rider trunk. The T-shape fixture spans
levels T4 to T11 (see Fig. 1(d)). Each IMU consists of a triaxial
gyroscope and a triaxial accelerometer. Similar to [26]-[28],
we assume the rigid-body movement of the trunk and we will
discuss this assumption in Section I'V. The direction of the spinal
segment from levels T4 to T11 is used to represent the human
trunk orientation.

For indoor experiments, a vision-based motion capture sys-
tem (from Vicon Inc.) is used to provide the ground truth for the
trunk and bicycle poses. The Vicon system includes eight Botina
cameras, MX Giganet module, and a workstation computer with
Nexus 1.6 motion capture software. For outdoor experiments,
the ground truth of the bicycle attitude angles is obtained by a
high-accuracy IMU (model 800 from Motion Sense Inc.). The
trunk pose with respect to the bicycle is obtained by an onboard

Thttp://www.motionsense.com/
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Fig. 2. Schematic of the rider—bicycle system.

Fig. 3. (a) Schematic of bicycle seat forces/torques and the transformation.
(b) CoP calculations through three load cell-measured forces.

high-resolution monocular camera with a rectangular-shape fea-
ture marker (see Fig. 1(b)). The camera (Manta G-145 from
Allied Vision Technologies, 1392 x 1040 pixels, 16 frames/s)
is mounted on an extended rod that is rigidly connected to the
bicycle frame. The details of the camera-based pose calculation
are given in [29]. The motion capturing systems are synchro-
nized with the onboard sensors through the wireless network
connections.

In experiments, the subjects are asked to ride the bicycle at
their own riding styles. For indoor experiments, due to spa-
tial constraints, the subjects are asked to ride the bicycle for
a circular trajectory (with radius around 2.5 m). For outdoor
experiments, the subjects arbitrarily ride the bicycle in an area
of a size of 50 m x 40 m. The ground is paved with bricks in
outdoor experiment.

In the following, we first describe the models for the IMU
and the rider—bicycle interactions. Then, we discuss the rider—
bicycle interaction forces. Finally, an extended Kalman filter
(EKF) is designed to fuse the sensor measurements and predict
the trunk pose and the bicycle roll angle.

B. IMU Model

Fig. 2 illustrates a schematic of the kinematic rider—bicycle
interactions. The rider’s trunk is modeled as an inverted pendu-
lum in the 3-D space. A ground-fixed inertial frame Z (X, Y, Z)
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is defined with the Z-axis pointing downward. A moving frame
R (z,y, z) is defined with the xz-axis along wheel-ground con-
tact points C and C'y, the z-axis along the Z-axis, and the origin
at C'y. The bicycle roll and yaw angles are denoted as ;, and 1,
respectively. A bicycle-fixed frame B (x;, ys, 25 ) is obtained by
rotating frame R with ¢, about the z-axis (see Fig. 2).

The IMU on the bicycle frame is tilted by angle e with respect
to the z-axis. Let Z;, and Z;, denote the rider and bicycle IMU
frames, respectively. The orientation of the trunk is defined by
three Euler angles with the X-Y-X ordered rotation from R
to Zp,: roll angle ; around the z-axis, angle 6 around the
y-axis, and finally, self-spinning angle ¢ around the z-axis.
The generalized coordinates for the trunk and the bicycle are
denoted as q;, = [y, 0 ¢]7 and q;, = [y )7, respectively. We
also define ¢ = [¢! q!]”.

1) Gyroscope Model: The bicycle IMU gyroscope measure-
ments wy = Wy, Why wy.]T are calculated as

0 )
wy =Ry ()R] (p) | 0| + R} (a) | O [, (D)
¥ 0

where R;([3) represents the 3-D rotational matrix around the
i-axis with angle 3, i = x,y, 2.2 To obtain the rider IMU
gyroscope model, we consider the transformation from R
to Z, and the rider IMU gyroscope measurements wj; =

[whe why wh:]T are then calculated as
P 0 ¢
_ pT T T j
0 0 0
0
+ Ry (6)R, (O)R; (on) | O | )
(i
Combining (1) and (2) and solving for g, and g,,, we obtain
[ Co 0 8a
qb = ’L/) = e(qb;wb) = - Sa 0 Ca Wy, (3)
- C“pb C‘fﬁb
] 0 X %o
Ph Sg Sp
=10 |=Fflgw,w)=|0 ¢ —S¢ | wy
Lo 1 -2, e,
Sp Sp
M Sa Cp Cy, 0  CaCpCy, T
Ciﬂb Sp C<,9b Sp
Sa S, Ca Sey,
+ 0 - ws, 4
Ciﬁb CK’P!; b ( )
 8a Cy, 0 Cq Cy,
L Cy, So Cy, So J

2The details of the definition and formulation of the standard rotational ma-
trices can be found in [30] (e.g., p. 31) and we omit here.
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where notations ¢, = cos ¢, S, = sin ;, are used for angle
p, and any other angles throughout this paper.

2) Accelerometer Model: The position of the bicycle IMU
in B is denoted as 7,7 = [p, 0 — p.]T, where p, and p. are
the horizontal and vertical distances from the IMU to C5, re-
spectively. Considering the nonholonomic constraint at C, the
acceleration of Cy in R is ®vo, = [0, 0 g]!, where g is the
gravitational constant and vy, is the bicycle velocity. The angular
velocity of the bicycle in R is Rw, = [, 0 )]”. The bicycle
IMU accelerometer measurements a;, = [ay; ap, ap.]’ inZ,
are then calculated as

R R R, R
wy XBRT},] + Twy Xp Rryr|,

®)
where R = R, (@) and ¥ R" = Rg () RE (i) are the rota-
tional matrices from R to B and Z;, respectively. The calculation
of a; is given in (6) at the bottom of the page. Notice that the
coefficients of w in ap, and a;, are near zero when ¢y is around
zero. We take an approximation that during typically bicycle rid-
ing, the average value of ¢y is around zero, i.e., ¢, ~ 0. From
apy in (6), we then obtain

R pT[R: R
a, = L,R Vo, + Twy X

. ab: Sy, P 9 S .
z/} % sz _ ﬂw(pb _
Pz Cy, Dz Co,

Sy 9
C‘Ph pT

(N

Letr, = [I, 0 — hy]” denote the seat position in B, where
and h, are the horizontal and vertical distances from the seat to
C5, respectively (see Fig. 2). To make calculation tractable,
the angular velocity of rider’s trunk in R is approximated
as Rwy, = [¢), ¢y, 09U +5,, 0]T. Letr,; =[h 0 0]7 denote
the position of the rider IMU in Z;, with respect to the seat, where
h is the distance from the rider IMU to the seat. Similar to (5), we
obtain the seat acceleration *a; = [as; a5y as.]” in’R and the
rider IMU accelerometer measurements aj, = [an, any ap|”
are then calculated using Rag. Similar to (7), we obtain the at-
titude acceleration formulation in (8) at the bottom of the page
by using acceleration ay,.

With the results in (7) and (8), the IMU accelerometer mea-
surements aj, ancj ay, are used to provide the attitude accelera-
tions ¢y, 0, and 1) in the EKF design in Section II-E.

C. Rider-Bicycle Dynamic Model

Let py = [l 0 — hy]" denote the position of bicycle mass
center B in B, where [, and h;, are the horizontal and the vertical
distances from C, to B, respectively. The trunk mass is denoted
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as my, at H (see Fig. 2). The distance between H and the seat
is denoted as hj,. Using Lagrange’s equations, we obtain the
human driving torque

T,
Th = [ :h ] :Méh +C(q7q7qb)+G7 (9)
0

where 7, and 7y are the driving torques along the x-axis (¢p,)
and the y'-axis (6) directions in R, respectively. The y/-axis is
obtained from the y-axis by rotating ¢, about the x-axis. A brief
derivation of (9) and matrices M, C(q, q, q;) and G are given
in Appendix A.

D. ForcelTorque Sensor Model

We designed and fabricated a special seat as shown in Fig. 3.
Three load cells are used to calculate the location of the center of
pressure (CoP) of the hip—seat interaction force. In this section,
we discuss how to use the force sensor measurements to obtain
driving torque 7, in (9).

A seat frame S; is defined as the same orientation of 3
with the origin S at the intersection of the seat rod and
the seat surface [see Fig. 3(a)]. Let R, = [R, R, R.]T and
M, = [M, M, M.]" denote the hip—seat forces (acting at the
CoP) and torques in S;, respectively. Let F'y = [F, F, F)r
and T = [T, T, T.]" denote the forces and torques measured
by the JR3 sensor in sensor frame S,., respectively. Considering
the transformation between frames S; and S,., we obtain

Rh ? R 0 F's
= ! s (10)
M, SEr)dR $R]|Ts

where g: R = R, () is the rotational matrix from frames S;
to S, and « is the tilting angle of the supporting rod. The
skew-symmetric matrix S (% r.) is defined by S r, = [~z¢ +
Lisy —yc Ly CW]T (the position vector of the force sensor
with respect to the CoP in S;), L is the distance between .S and
the JR3 sensor, and (z¢,yc ) is the coordinate of the CoP in
S;. Letting P;, ¢ = 1, 2, 3, denote the measurements of the three
load cells, (¢, yc ) is then calculated by

P1 PZ*PB

- L ye=——2— I
Ptptp s YT p Ry Y

where L, and L, are the - and y-axis directional distances
between the front and rear load cells, respectively, and L,, is
the x-axis distance between S and rear two load cells.

Irc

Co Uy + (Ca Cpy Pz — Sa Cy, pz)"bsbb + (Sa Sih Pz — Ca pz)¢2 + Sa Pz%"g + (Ca Sey Pz + Sq Sp, Pz)lﬁ —5Sq Cp, g

a, = Copy, Sp, psz + Cy, Dat) — PPy + Sy, PV + Sp, g (6)
Sq Uy + (Sa Coyy Pz + Ca Copy par)d}(pb - (Ca Sib Pz + Sa p:zc)q//2 — Sa pz‘p% + (Sa' Spy, Pz — Ca Sy, pz)i// + Ca Cpy 9
1 ‘9 .. Cy . Cy . cy - C S,
. — S,, C. Cp, WO — 8, —ppth — —Ppb —c, —1) — gy, — —Llag
[S@z] B s hahy + S Coy P+ ©n (0 ©n So ot 5 ©n ©on 5 5 hasy 5 ha' - ©
é ap .o .o s . o Sg Qs Co Sy, Qg Cyp, Qsz Cy
_J—CW opth +2c¢,, Cg D —Sp Cy cih ¢2 +sp Cg gpﬁ — 8y, ¥+ Tz on Doy Zon Tsz

h

h h h
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(b)

Fig. 4. Rider trunk driving forces and torques. (a) 7, calculation. (b) 7y
calculation.

To capture the sitting position variations among different rid-
ers, we define the CoP location ry = [zy,yy]T in S; when
the trunk is upright. Vector ry is obtained for each subject in
experiments. As shown in Fig. 4(a), along the ¢y, -direction, the
torque applied on the trunk is the sum of the measured M, and
the torque generated by the reacting force .. Thus, we obtain
the estimate of 7, as

Ten =M, — R.(yc —yv). (11)
Along the #-direction, the handlebar forces also contribute to
torque 7y that drives the trunk motion (see Fig. 4(b)). Neglecting
the arms dynamics, the estimated torque 7y is approximated as
2 —My-f—thdZ + Fy.d, —Rz(l'c —xv)
0 — s

CW —Ph

12)

where F},, and F},, are the resultant handlebar reaction forces
along the xj-axis and the z;-axis directions, respectively, and
d, and d, are the horizontal and vertical distances from the
handlebar to the seat, respectively. Finally, similar to the results
in [28], bicycle roll angle (; is estimated as

¢p = tan~! <§—Z> . (13)

E. EKF Design

Fig. 5 illustrates the EKF design structure. The EKF system
equations are built on the IMU gyroscope model with a bias
model that will be discussed later in this section. The rider—
bicycle dynamic model is used as output equations to bridge
the EKF state variables with the force sensor model. The IMU
accelerometer model provides the attitude acceleration calcula-
tions to the rider—bicycle dynamic model.

A first-order random walk is considered for modeling the
measurement bias only for the rider IMU gyroscope. If we con-
sider the bias model for the both IMU gyroscopes, the EKF
system becomes unobservable and the EKF convergence cannot
be guaranteed. Let n;, and n;, denote the measurement noises
for the rider and bicycle IMU gyroscopes, respectively. Then,
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Fig. 5. Structural and information flow diagram of the EKF design.
we have the noise model [31]
n, =c, +b+vy, ny, =c, + vy, (14)

where ¢;, and ¢; are the constant offset biases and obtained in
experiments, and v; and v are assumed to be the zero-mean
white noise vectors. Vector b = [b, b, b.]" is the random walk
bias with the model

: 1 |2f,0?
bi :__b7+ fSUL Wi, i:I7yvz7
Ti Ti

where 7; are the time constants, f, is the sampling frequency,
o? = E[b?],and w; ~ N(0, 1) are zero-mean white noises with
unit variances.

We define the discrete-time EKF state variables X (k) =
[on (k) 0(k) d(k) b (k) be (k) by (k) b (k)]" and
[ flg(k);u(k)) T

e1 (X (k); wp (k)

15)

__by(k)

Ty

L T, A

where u(k) = [w! (k) wl (k)]T are the IMU gyroscope mea-
surements at the kth step, f(q(k);u(k)) = f(q(k);wn(k) —
b(k) — ¢, wy(k) — ¢p) is given in (4), and e (X (k); wy (k)) is
the first element of e(g,;wy) in (3). We obtain the EKF state
dynamics

X (k)= X(k—1)+ ATf, (X(k—1),u(k — 1)), (16)

where AT = 20 ms is the sampling period. The values of the
rider—bicycle systems and the bias model parameters are listed
in Table I.
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TABLE I
RIDER-BICYCLE MODEL AND NOISE MODEL PARAMETERS
a (deg) | 7y (deg) | g (m/s?) | Is (m) | ks (m) | Iy (m) | hp (M) | pz (m) | pz (M) | L1 (m) | Ly (m) | Ly (m) | L (m) | 72, 7y, 7= (5)
10 20 9.8 0.26 | 0.38 | 0.45 | 0.66 0.37 | 0.71 0.13 0.2 0.12 0.043 1800
50 60 T
—— Vision Vision
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S K Y
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Fig. 6. Indoor comparison results of the estimated poses by the Vicon motion capturing systems, the EKF estimates, and the integrations of IMU measurements

for Subject #1. (a) ¢y, . (b) 0. (¢) ¢. (d) vy .

For EKF outputs, we obtain the estimated torques 7,,, and 7y
in (11) and (12) and the estimated bicycle roll angle ¢; in (13).
Moreover, the experiments show that the rider always tries to
keep his/her shoulder level during bicycle riding. Therefore, a
level-shoulder constraint among the trunk orientation angles is
then used as a virtual measurement, namely,

S¢ = 8y, Cp +Cyp, CoSy = 0. (17
Thus, including the above physical and virtual measurements,
we have the EKF output equation

T (K)
(F)
(k)
(F)
The first two elements of h(X (k)) are calculated by (9) and

n, (k) ~ N(0,%,) is the white noise vector with variance ma-
trix 3,. Given the system equation (16) and output equation

h(X(k)) +mny(k) = +mny, (k). (18)

y(k)

To
Pb
Se

(18), the EKF design is similar to that in [32] and a brief de-
scription is given in Appendix B.

III. RESULTS

We recruited five healthy and experienced bicycle riders (four
male and one female with age: 27 & 3 years, height: 176 =4 cm,
and weight: 70 + 7 kg) to conduct both the indoor and the out-
door experiments. The duration for each riding experiment run
was around 2 min. When riding the bicycle, the subjects were
asked to arbitrarily change the bicycle speed and trajectory and
to freely move their upper bodies. In outdoor experiments, the
maximum bicycle speed was around 22 km/h. All the subjects
gave their informed consent before being tested using a pro-
tocol approved by the Institutional Review Board at Rutgers
University.

Fig. 6 shows the indoor pose estimation results for Subject #1.
The subject rode the bicycle by his own riding style. Fig. 6(a)—
(c) shows the estimates of the trunk pose angles and Fig. 6(d)
shows the estimates of the bicycle roll angle. For clarity, we
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Fig. 7.

TABLE II
MEAN AND SD OF RMS ERRORS WITH AND WITHOUT THE BIAS MODEL (BM)

Experiment type
With BM
No BM
With BM
No BM

0 (deg)
1.62 + 1.06
1.84 +£1.09
4.01 +1.61
4.18 £1.63

¢ (deg)
5.56 & 1.45
5.81 =+ 1.42
6.18 + 2.43
6.24 + 2.39

#p (deg)
0.82+0.31
0.84 +0.33
2.3140.89
2.304+0.88

»p (deg)
3.42+1.34
3.73 +£1.46
4.46 + 1.62
4.42 +1.75

Indoor

Outdoor

only show truncated estimates during the time period between
45 to 70 s. For comparison purposes, the estimates by the di-
rect strapdown IMU integration are also plotted in these figures.
For the direct IMU integration results, the offset biases (i.e.,
¢, and ¢, in the noise model (14)) are measured and their
effects are eliminated in calculation. The subject tried to move
his trunk aggressively in the experiment. Balancing the bicy-
cle for a counterclockwise circular trajectory, the subject tilted
his trunk toward the center of the trajectory. Thus, the average
value of ¢, is around —20°. The EKF-based estimation results
clearly demonstrate a superior tracking performance than those
by the direct strapdown IMU integration. The estimates by the
direct IMU integration diverge after 50 s as shown in Fig. 6(a)-
(c), while the EKF-based pose estimates consistently match the
ground truth. Fig. 7 shows the indoor estimation performance
for Subject #2. Comparing with Subject #1, this subject moved
his trunk arbitrarily. For example, as shown in Fig. 7, the sub-
ject moved his trunk aggressively before 48 s, then mildly and
slightly from 48 to 66 s, and finally aggressively again. In this
experiment, the EKF-based pose estimation also demonstrates
matching performance. The pose estimation performance of the
outdoor experiments demonstrates similar results as those of the
indoor experiments.

To further demonstrate the performance of the EKF-based
design, we compute the statistics of the pose estimation errors
for all subjects. Table II shows the accuracy performance in
terms of the mean and standard deviation (SD) of root mean
square (RMS) errors for all subjects for both the indoor and
the outdoor tests. Fig. 8 shows the calculated statistic errors
over time for all subjects. For all experiments, the estimation
errors are around zero and do not grow over time. The results
shown in Table II and Fig. 8 confirm the consistently robust

Indoor comparison results of the estimated poses by the Vicon vision capturing systems, the EKF estimates for Subject #2. (a) ¢}, . (b) 6. (¢) ¢.

performance of the estimated trunk and bicycle poses by the
EKF-based sensing fusion.

IV. DISCUSSIONS

In [14], the fusion of inertial and magnetic sensors shows the
mean RMS errors of 2.4° to 3.2° for different body segments
orientations. The approach in [13] demonstrates a 2.8° mean
RMS error in the orientation estimation by using inclination
in the Kalman filter design. In [19], the fusion of inertial and
ultrasonic sensors demonstrates the mean RMS errors ranging
from 5.7° to 6.6°. All the above results are obtained in the
laboratory conditions. Compared with those results, our indoor
experiment results are on the same accuracy level. Although our
outdoor experiments show slightly large errors, the accuracy is
still comparable to those by the other fusion approaches.

From the results shown in Table II and Fig. 8, we notice
that the estimation errors are not at the same level among the
four estimated angles. In general, estimates of y; have the least
errors, while the estimates of ¢ have the largest errors. These
differences are due to several reasons. First, during typical bi-
cycle riding, the change of the bicycle roll angle ¢ is relatively
small. The performance of the IMU-based estimation within a
small range is better than those with a large range such as for the
trunk angles. Second, there is no direct measurement for angle ¢
and the constraint (17) of ¢ is coupled with the other two angles.
Therefore, the estimation of ¢ has the maximal error. Moreover,
for different riding styles, the performances of the EKF-based
estimation design are not the same. For example, for a rider with
an aggressively riding style, the EKF-based estimation scheme
produces relatively larger errors than those with a mild riding
style.

To quantify the improvement of the usage of the random-
walk bias model in the EKF design, we compare the estimation
errors with and without the inclusion of the bias model. As
shown in Table II, the results confirm that the use of the bias
model improves the overall estimation performance. For outdoor
experiments, the improvement is not significant due to the large
ground truth errors provided by the onboard camera. We shall
emphasize that, with or without using the bias model, the EKF-
based fusion always achieves the nondrifting results, unlike the
strapdown IMU integration approach.
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The estimation errors are mainly due to the imperfect models
for the IMU measurement noises, the interaction forces, and the
complicated rider—bicycle interactions. For example, the calcu-
lated torques 7,,, and 7y in (11) and (12) do not consider the
articulated arm dynamics and the interactions between the legs
and the trunk (e.g., pedaling effect). During the normal riding,
we found the influences from the articulated arm dynamics and
the pedaling effects are not significant for trunk pose estima-
tion. Therefore, we ignore them in the rider-bicycle dynamic
model for simplicity. Another error source might come from the
measurement errors by the Vicon motion capture system. We
estimated and found a maximum 0.8° accuracy for the trunk
pose angles and 0.3° accuracy for the bicycle roll angle mea-
surements by the Vicon motion capture system. For the outdoor
experiments, the vibration of the camera mounting base due to
uneven road surface also contributes to the ground truth errors.

Human trunk is flexible and its orientation is difficult to define
and measure. In [26]—-[28], the trunk is modeled as a rigid one-
link inverted pendulum in walking, stance, and bicycling balance
studies. To validate this rigid-body modeling assumption, we
placed a set of optical markers along the spine to observe the
characteristics of trunk motion (see Fig. 1(d)). Fig. 9 shows the
means and the SDs of the spine curvature calculations in the
sagittal plane and the coronal plane during one indoor riding
experiment. The results shown in the figure confirm that the
trunk maintains rigid-body motions in bicycle riding since the
variations of the spinal curvatures are small. The curvatures at
the level T4-T11 region, where the rider IMU is attached, are
small. This implies a straight line-shape spine. Especially, in the
coronal plane the curvature of the entire spine is around zero.
Therefore, the rigid pendulum seems a valid model for capturing
the trunk motion in bicycle riding.

The force measurements at the seat and handlebar contain mo-
tion information about the rider—bicycle pose angles and their
dynamics, as shown in (9). The use of the IMU measurements
facilitates the EKF design to calculate the pose information
from the force measurements by (9). Therefore, the fusion of
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Fig. 9. Mean values and one-SD bounds of the spine curvatures in the sagittal
plane (top) and in the coronal plane (bottom).

the force/inertial measurements in the EKF design provides a
more restrictive constraint than that of the velocity constraints
such as those in [31] and [32]. This is the main reason why the
drifts by the strapdown IMU integration are eliminated. Unlike
the approaches in [6] and [13] to use an empirical acceleration
model accuracy enhancement, the use of force measurements
is built on the system dynamics, and thus, the obtained esti-
mation results are reliable under dynamic motions. The robust
estimation results shown in Fig. 8 confirm such an observation.

Unlike some inertial sensor-based schemes in which the
ground-truth pose information is needed to initialize the esti-
mation design [20], the force/inertial fusion design is robust to
the choice of the initial state values. For example, Fig. 10 shows
the EKF-based estimate of ¢y, in the first few seconds. Although
the initial value is set by more than 30° different from its actual
value, the estimates of ¢, converge to the ground truth within
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Fig. 10. Initialization and convergence of the EKF-based estimation design
(only shown for ¢y, ).

- = = Dynamic Model
''''' Static Model
Sensor Measurement

£
Z
g 20l - = = Dynamic Model
''''' Static Model
Sensor Measurement
0 ‘ ‘ ‘
0 2 4 6 8 10 12
Time (s)
Fig. 11. Comparison results among the dynamic model-based, the static

model-based, and the sensor measured 7,, and 7.

around 6 s. Of course, it is preferable to use a set of initial values
that are near their true values for a fast convergence. We used the
static force measurements to calculate the initial values for the
state variables [28]. The static model assumes zero derivatives
in (9). Fig. 11 shows the comparison of the estimated torques by
the dynamic model, the static model, and the sensor measure-
ments. Clearly, the dynamic model-based torque calculations
match well with the measurements, while the magnitudes of
the static model-based calculations are underestimated because
of the neglected dynamic effects. The results in Fig. 11 also
indirectly validate the rider—bicycle dynamic model (9).

As one design limitation, the force/inertial sensor fusion de-
sign is not capable to identify and estimate the bicycle yaw angle
1) because none of the onboard sensors provides the absolute
yaw motion information. The used inverted pendulum model is
valid only for typical bicycle riding in which the rider always
sits on the seat. The pose estimation will not perform well in
the cases of uncommonly riding styles, such as acrobatic riders
who stand on the pedals and do not sit on the seat.

V. CONCLUSION

In this paper, we have presented a rider—bicycle pose esti-
mation scheme using the inertial and force sensors. The pose
estimation scheme was built on the attractive properties of the
robust force measurements and the motion-sensitive responses
of the inertial sensors. A rider—bicycle dynamic model was de-
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veloped to provide the underlying dynamic relationship between
the pose angles and the human driving forces. By incorporating
the rider—bicycle dynamics into the design, the pose estima-
tion results did not drift over time even under highly dynamic
motions. We demonstrated and validated the pose estimation
scheme through both the indoor and the outdoor bicycle rid-
ing experiments. The results showed superior performance than
those by using the direct strapdown IMU integration method
and were also comparable with the other fusion methods in lit-
erature. Since the pose estimation approach uses only onboard
sensors, it is particularly useful for outdoor applications and
also potentially for other types of human—machine interactions.

APPENDIX A
RIDER-BICYCLE DYNAMIC MODEL

The rider-bicycle dynamic model is obtained by the La-
grangian approach. The Lagrangian of the rider—bicycle system
is obtained as

1 1
L= meR’UB Rog + imfva R

_ g[mbhb Cyp, +my, (hQ Cy, +hy, Cy), Sg)],

Vn

where m;, is the bicycle mass, and Rvp and Rvy are the linear
velocities for the bicycle and the trunk, respectively. We obtain
Rvp =[v, 0 0] +R wy x pp. Similarly, we obtain the seat
velocity Rv, and Rwvy is then calculated as Rvy =R v, +7
wWh X Py, where Py = [hh (&77] hh Sy, S0 7hh Cyp, Sg}T. Fi-
nally, using Lagrange’s equations, matrices M and G are ob-
tained as

ap o [mahist 0 0] _[—mhghh,sw, So}

0 mphi 0 mpghy ¢y, Co

and C(q, q, q;,) is given in (19) at the bottom of the next page.

APPENDIX B
EKF IMPLEMENTATION

An EKF design is applied to (16) and (18). For the state
dynamics (16), we obtain the Jacobian matrix F'(k) as

F(k) = I + ATFx (k),

where I, isn x nidentity matrix and F'y (k) = %‘X(k)_u(k).
The final result for Fx (k) is given in (20) at the bottom
of the next page. Similarly, the Jacobian matrix H (k) =

g—; X (k) (k) is obtained for outputs (18) as

Hy, Hy 0 Hy 0 0 0

H(k) = Hs1  Hio 0 Hyy 0 0 O 7
0 0 0 1 0 0 O
Hy Hypy Hys 000 0 O
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where elements of H (k) are given in (21) at the bottom of the REFERENCES

page. Note that the IMU measurements are used to calculate
Fx (k) and H (k) through (4), (3), (7), and (8).

With these Jacobian matrices, the EKF implementation is no. 12, pp. 18691880, 2004.
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