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Abstract�Skid-steered mobile robots are widely used because
of their simple mechanism and high reliability. Understanding
the kinematics and dynamics of such a robotic platform is, how-
ever, challenging due to the complex wheel/ground interactions
and kinematic constraints. In this paper, we develop a kinematic
modeling scheme to analyze the skid-steered mobile robot. Based
on the analysis of the kinematics of the skid-steered mobile robot,
we reveal the underlying geometric and kinematic relationships
between the wheel slips and locations of the instantaneous rotation
centers. As an application example, we also present how to utilize
the modeling and analysis for robot positioning and wheel slip esti-
mation using only low-cost strapdown inertial measurement units.
The robot positioning and wheel slip-estimation scheme is based on
an extended Kalman �lter (EKF) design that incorporates the kine-
matic constraints for accuracy enhancement. The performance of
the EKF-based positioning and wheel slip-estimation scheme are
also presented. The estimation methodology is tested and validated
experimentally on a robotic test bed.

Index Terms�Extended Kalman �lter (EKF), mobile robots,
motion estimation, slip estimation, skid steering.

I. INTRODUCTION

SKID steering is a widely used locomotion mechanism for
mobile robots. For a skid-steered robot, such as the one

shown in Fig. 1, there is no steering mechanism, and motion
direction is changed by turning the left- and right-side wheels
at different velocities. This mechanism design makes the robot
mechanically robust and simple for outdoor navigation. Due to
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Fig. 1. Skid-steered four-wheel mobile robot with a sensor suite.

complex wheel/ground interactions and kinematic constraints,
it remains a challenging task to obtain an accurate kinematic
and dynamic model for skid-steered mobile robots.

Wheel slip plays a critical role in kinematic and dynamic mod-
eling of skid-steered mobile robots. The slip information pro-
vides a connection between the wheel rotation velocity and the
linear motion of the robot platform. Understanding the slip infor-
mation is important for robot localization applications, such as
dead reckoning. The accuracy of the dead-reckoning technique
deteriorates when wheel slip is not negligible. For example,
for outdoor terrain navigation robots, such as Mars Exploration
Rovers, large wheel slips have been observed [1], [2]. The wheel
slip information also plays an important role in robot dynam-
ics and control. The wheel/ground interactions directly provide
traction and braking forces that affect the motion stability and
maneuverability. The characteristics of the wheel/ground inter-
action greatly depend on the wheel slip.

The focus of this paper is to analyze the kinematics of
skid-steered mobile robots and to apply the analytical results
to robot motion estimation. For a four-wheel skid-steered robot
(see Fig. 1), we utilize the modeling techniques for tracked
vehicles/robots and analyze the geometric and kinematic
relationships between wheel slips and instantaneous rotation
centers of the robot platform. As an application example of the
modeling and analysis, we also present an inertial measurement
units (IMUs) based positioning and wheel slip-estimation
scheme for skid-steered mobile robots. The motion-estimation
scheme is based on the measurements of a low-cost strapdown
IMU and wheel encoders. We design an extended Kalman
�lter (EKF) with three velocity constraints and estimates
that are obtained from kinematic modeling and analysis. The
proposed positioning and wheel slip-estimation methods are
experimentally tested and validated.
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The main contribution of this study is that the new kinematic
modeling and analysis of the skid-steered robot reveal the un-
derlying geometric and overconstrained kinematic relationship
between the wheel slip and the instantaneous rotation centers.
The kinematic modeling and analysis provide �virtual� velocity
estimates and constraints of the skid-steered robots. Integration
of these �virtual� velocity measurements with the onboard low-
cost IMU and wheel encoders improves the motion-estimation
accuracy signi�cantly. The robot positioning and wheel slip es-
timation scheme has shown a superior performance than those
results obtained without incorporating the newly developed ve-
locity estimates. The modeling and analysis approach can be
further used for robot stability control and motion planning [3].

The remainder of this paper is organized as follows. We start
reviewing some related work in Section II. In Section III, we
discuss the kinematic modeling of a four-wheel skid-steered
mobile robot and present the robot velocity estimates and con-
straints. Section IV presents the EKF-based robot positioning
and wheel slip-estimation design. Experimental results are pre-
sented in Section V before we conclude the paper and discuss
future work.

II. RELATED WORK

Modeling and control of differential-driven mobile robots,
such as unicycle robots, have been extensively studied over the
past two decades. The nonholonomic constraint of zero lat-
eral velocity of the wheel contact points is normally consid-
ered for differential-driven mobile robots without omniwheels.
However, for skid-steered mobile robots, nonzero wheel lateral
velocity is allowed, and the zero-velocity constraint is no longer
valid. When the wheels on each side of a skid-steered robot are
running at the same velocity, the robot actually behaves simi-
lar to tracked vehicles. Because of this similarity, methods of
modeling tracked ground vehicles have been utilized to model
skid-steered mobile robots. For example, Song et al. [4] use the
kinematics of tracked vehicles in [5] to estimate wheel slip by a
sliding-mode observer design. Because of the dif�culty to accu-
rately capture the skid-steering models, in [6] and [7], an extra
wheeled trailer is designed to experimentally study the kine-
matic relationship for simultaneous localization and mapping
(SLAM) applications. It is concluded that a kinematic model
for an ideal differential-driven wheeled robot cannot be used for
skid-steered robots. In [8] and [9], geometric analogy with an
ideal differential-driven wheeled mobile robot is studied, and
experimental validations have been conducted for both tracked
vehicles and skid-steered mobile robots.

In [10], a comparison study is presented for the control per-
formance of an omnidirectional mobile robot with and without
considering the wheel slip. It is found that the magnitude of
the wheel slip increases as the wheel/ground friction coef�-
cient increases. In [11], wheel skidding and slipping are mod-
eled as disturbances, and control systems designs are presented
for wheeled mobile robots under skidding and slipping effects.
In [12], a slip-based adaptive trajectory tracking control system
is designed for skid-steered robots assuming that wheel slips are
obtained in real time.

In localization applications, dead reckoning is one of the ma-
jor techniques. However, the accuracy of the dead-reckoning
technique deteriorates when wheel slip is not negligible. Global
positioning system (GPS) also has drawbacks of signal robust-
ness, availability, and accuracy issues. Using inertial devices,
such as an IMU, to localize a mobile robot has been studied
during the last decade. It is well known that directly integrat-
ing acceleration measurements to obtain position information is
problematic since any bias or noise measurements in accelera-
tion signals will �blow off� the estimation quickly.

In [13] and [14], the error reduction of the odometry of skid-
steered robots is discussed for dead-reckoning applications us-
ing encoder and motor current measurement information. Endo
et al. [15] discuss a slip compensation odometry scheme for a
skid-steered tracked vehicle. A kinematics model of a unicycle
robot is used, and an empirical slip kinematics relationship is
employed to enhance the localization accuracy. In [8] and [9],
the localization of a tracked vehicle is presented based on kine-
matic models provided in [16]�[18]. In [19], an IMU-based
wheel slip-detection scheme is designed for a unicycle-like mo-
bile robot using a dynamic-model-based EKF design with or
without GPS measurements. In [2], wheel slip is compensated
in an EKF-based localization design with vision odometry. The
EKF-based slip compensation scheme in [20] only considers the
lateral slip into the kinematics model for an articulated mobile
robot, and a laser scanner is also used to provide orientation
information with �xed known landmarks. In [21] and [22], ve-
locity constraints, such as zero lateral velocity, are integrated
with an EKF or information �lter to enhance the navigation
accuracy of an autonomous ground vehicle. The EKF design
in [21] and [22] utilizes GPS and wheel-encoder measurements,
but wheel slip is not considered.

We have incorporated the wheel slip information into the
kinematics model of skid-steered robots [23]. An EKF-based
motion-estimation design has been also presented in [23] with
some preliminary experimental results. In [3], we extend the
kinematics modeling and analysis in [23] and provide a dy-
namic model analysis for skid motion stability. This paper is an
extension of our previous results in [3] and [23]. We here provide
not only a detailed description of the kinematic modeling and
analysis of skid-steered robots but also performance analysis
and comprehensive experimental validations of the EKF-based
robot positioning and wheel slip-estimation design.

III. ROBOT KINEMATIC MODELS

A. Kinematics Relationship

Fig. 2 shows the kinematics schematic of a skid-steered robot.
Without loss of generality, we consider the following assump-
tions: 1) The mass center of the robot is located at the geometric
center of the body frame; 2) each side�s two wheels rotate at
the same speed; and 3) the robot is running on a �rm ground
surface, and four wheels are always in contact with the ground
surface.

Let �i and vi , i = 1, . . . , 4 denote the wheel angular and
center linear velocities for front-left, rear-left, front-right,
and rear-right wheels, respectively. From the aforementioned
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Fig. 2. Top-view schematic of a skid-steered mobile robot.

assumption, we have

�L := �1 = �2 , �R := �3 = �4 . (1)

We de�ne an inertial frame I (X,Y,Z) and a robot body
frame B (x, y, z), as shown in Fig. 2. We use Euler angles
to describe the transformation between frames B and I. Let
� := [� � �]T denote the attitude angles, i.e., the roll angle
� (around x-axis), pitch angle � (around y-axis), and yaw angle
� (around z-axis), respectively. The transformation from I to
B is considered as the Z�Y �X ordered Euler angle rotation. It
is straightforward to calculate the transformation relationship
from frames B to I given by the following matrix:

CI
B := CI

B (�, �, �)

=

�

��

c� c� �s� c� + c� s�s� s�s� + c� s�c�

c�s� c�c� + s�s�s� �s�c� + s�c�s�

�s� c�s� c�c�

�

�� (2)

where c� := cos �, s� := sin �, and the same notation
convention is used for the angles � and �.

Let L and W denote the longitudinal and lateral wheel bases,
respectively, as illustrated in Fig. 2. The velocity of the robot
mass center is denoted by vG . Given velocity vG in frame B and
yaw rate ��, the wheel center velocities along the x-axis for left-
and right-side�s wheels are given by

vLx := v1x = v2x = vGx �
W
2

�� (3)

vRx := v3x = v4x = vGx +
W
2

��. (4)

For the IMU located at (xM , yM , 0) in B, we obtain the IMU
velocity vB = [vBx vBy vBz ]T in B as

vBx = vGx � yM ��, vBy = vGy + xM ��. (5)

We de�ne the longitudinal wheel slip �i at each wheel as the
ratio of the wheel velocity and its center velocity, namely

�i :=
r�i � vix

r�i
= �

�vix

r�i
, i = 1, . . . , 4 (6)

where r is the effective wheel radius, and �vix := vix � r�i .
For left- and right-side�s wheels, the wheel slips satisfy

�L := �1 = �2 , �R := �3 = �4

due to the robot operating assumption. It is also observed
that wheel slip � � [0, 1] if the wheel is under traction and
� � (��, 0] if the wheel is under braking. In order to con-
strain the slip calculation within the magnitude of one, using the
same treatment as in [16], we take � = �1 if � < �1 under the
braking case. Therefore, we consider the wheel slip � � [�1, 1].

Let ICRl , ICRr , and ICRG denote the instantaneous center
of rotation (ICR) of the left-side wheel contact points, right-
side wheel contact points, and the robot body, respectively. It is
known that ICRl , ICRr , and ICRG lie on a line parallel to the
y-axis [8], [18], [24]. We denote the coordinates for ICRl , ICRr ,
and ICRG in B as (xlc , ylc , 0), (xrc , yrc , 0), and (xGc, yGc , 0),
respectively.

Definition 1: We de�ne the longitudinal ICR location, which
is denoted as S, as the x-coordinate of the collinear ICRl , ICRr ,
and ICRG in frame B.

From the aforementioned discussion, the longitudinal ICR
location S (see Fig. 2) satis�es the following constraints [8],
[24]:

S = xlc = xrc = xGc = �
vGy

��
. (7)

We write the longitudinal slip velocities of the wheel/ground
contact points as

�v1x = �v2x =
�

ylc �
W
2

�
��

�v3x = �v4x =
�

yrc +
W
2

�
��. (8)

If the robot turns counterclockwise, as shown in Fig. 2, we have
�v1x = �v2x � 0 and �v3x = �v4x � 0, and this implies that
the left-side�s two wheels are under braking and the right-side�s
two wheels are under traction. Combining (4) and (8), for �� �= 0,
we obtain

ylc =
v1x � r�1

��
yrc =

v3x � r�3
��

(9a)

yGc =
vGx

��
. (9b)

Remark 1: The coordinate yGc can reach in�nite values if the
yaw rate �� = 0, namely, when the robot runs along a perfect
straight line under �L = �R . However, the other coordinates
ylc , yrc , and the S value are bounded. This observation can be
explained by the fact that both the numerators and the denomi-
nators in (7) and (9a) are simultaneously in�nitesimal when the
yaw rate �� is close to zero [8]. Therefore, the ylc , yrc , and S val-
ues are well de�ned at a �nite distance when the yaw rate is zero.

B. IMU Kinematic Motion Equations

Let PI (t) = [XI (t) YI (t) ZI (t)]T � R3 and VI (t) =
[Vx(t) Vy (t) Vz (t)]T � R3 denote the position and velocity
vectors of the IMU in I, respectively. We denote the IMU
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acceleration and angular rate measurements in B as AB =
[aBx aBy aBz ]T � R3 and �B = [�Bx �By �Bz ]T � R3 ,
respectively. We obtain the following kinematic motion equa-
tions for the IMU [21], [22]:

�PI = VI (10a)
�VI = CI

B AB + G (10b)
�� = �Bx + s� tan ��By + c� tan ��Bz (10c)

�� = c��By � s��Bz (10d)

�� =
s�

c�
�By +

c�

c�
�Bz (10e)

where G = [0 0 � g]T , with g being the gravitational constant.
The kinematic models given by (10a) and (10b) describe the

relationship between the position vector PI and the velocity
vector VI in the inertial frame I and the acceleration measure-
ments AB in the body frame B. The kinematic models given
by (10c)�(10e) describe the relationship between the attitude
vector � and the IMU gyro measurements �B in B.

C. Velocity Constraints

We consider the robot velocity estimates and constraints in
the body frame B. Since the robot�s four wheels always contact
the ground and the IMU is �xed on the robot platform, it is
straightforward to obtain the following velocity constraint for
the IMU device in the z-axis direction:

vBz = 0. (11)

For the IMU longitudinal velocity vBx , there is no direct
measurement and we obtain an estimate based on the robot�s
kinematics as follows. Using the de�nition of the slip in (6),
we have vLx = v1x = v2x = (1 � �L )r�L and vRx = v3x =
v4x = (1 � �R )r�R . From (3)�(5), using the wheel encoder
reading and the slip estimation, we obtain the longitudinal ve-
locity vBx as

vBx =
r
2

[(�L + �R ) � (�L�L + �R�R )] � yM ��. (12)

Since the calculation of wheel slips �L and �R depends on the
values of the wheel translational velocity estimates, we need
to enforce a bound on slips �L and �R in (12) to ensure a
convergent EKF design.

Note that if �L � �R , the robot turns left, and the wheel
slips satisfy �L � 0 and �R � 0. Similarly, we obtain that if
�L > �R , then �L > 0 and �R < 0. Therefore, we modify (12)
as

vBx =
r
2

[(�L + �R ) � (��
L�L + ��

R�R )] � yM �� (13)

where

��
L (��

R ) =
	 max{�L (�R ), 0}, if �L � �R (�L � �R )

min{�L (�R ), 0}, if �L < �R (�L > �R ).
(14)

For the lateral velocity vBy , from (5) and (7), we obtain

vBy = (xM � S) ��. (15)

In order to obtain the lateral velocity, we have to estimate the
value of S. We take an empirical approach to estimate S values,
and we will discuss the approach in Section V-B.

IV. ROBOT LOCALIZATION AND SLIP ESTIMATION

A. Extended Kalman Filter Design

With the kinematic models and velocity constraints and es-
timates, we are now ready to design a kinematic-model-based
robot positioning and wheel slip-estimation scheme.

The IMU velocities in frame B are considered as the mea-
surements y(t) � R3 , namely

y(t) = h(vB ) :=

�

�
vBx
vBy
vBz

�

� = (CI
B )T VI . (16)

Considering the wheel encoder measurement noise and ground
topography, we modify (16) and rewrite in discrete-time form
as

y(k) = h(vB (k)) + w(k) (17)

where the noise signal w represents the estimation variations
that are de�ned later in this section.

We de�ne the state variable

X(t) := [PT
I (t) VT

I (t) �T (t) ]T � R9

and rewrite the kinematics (10) in a discrete-time form as

X(k) = X(k � 1) + �T f (X(k � 1),u(k � 1)) (18)

where u(k) := [AT
B (k) �T

B (k)]T is the IMU measurements at
the kth sampling time, and �T is the data-sampling period. The
function f (X(k),u(k)) is given in (10) as

f (X(k),u(k)) =

�

��

fP
fV
f�

�

�� :=

�

��

VI (k)
CI

B (k)AB (k) + G
f�(�(k), �B (k))

�

�� (19)

where fP = VI (k), fV = CI
B AB (k) + G, and

f�(�(k), �B (k)) :=

�

���

�Bx + tan � (s��By + c��Bz )
c��By � s��Bz
s�

c�
�By +

c�

c�
�Bz

�

��� .

An EKF design is applied to the systems (16) and (18). For
the state dynamics (18), we obtain the Jacobian matrix F(k) as

F(k) =

�

��

I3 �T I3 03

03 I3 �TFV (k)
03 03 I3 + �TF�(k)

�

�� (20)

where In and 0n , n � N, are the n × n identity and zero matri-
ces, respectively. In (20), we use

�f
�X





X(k),u(k)

=

�

��

03 I3 03

03 03 FV (k)
03 03 F�(k)

�

�� (21)
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where

F� :=
�f�
��

=

�

������

�� tan �
��

c�
0

� ��c� 0 0
��

c�
�� tan � 0

�

������

and matrix FV is given by (22), shown at the bottom of the
page. In (22), (CI

B )ij , i, j = 1, 2, 3 represents the ith row and
jth column component of matrix CI

B . A detailed calculation of
the partial derivatives is listed in the Appendix.

The Jacobian matrix H(k) for the outputs (16) is calculated as

H(k) =
�h
�X





X(k)

= [03 HV (k) H�(k) ] (23)

where

HV (k) :=
�h(vB )

�VI
= (CI

B (k))T (24)

and matrix H� is given by (25), shown at the bottom of the page.
We assume that output measurement noises w(k) are inde-

pendent and white, i.e., w(k) � N (0,R). For the covariance
matrix R = diag(�2

1 , �2
2 , �2

3 ) � R3×3 , �2
1 = r2�2

en + x2
M �2

��
is

the variance for the longitudinal velocity vBx estimate in (13),
where �2

en and �2
��

are the variances for the wheel encoder mea-
surement and the yaw rate measurement, respectively. �2

2 is the
variance for the lateral velocity estimate vBy in (15). �2

3 is the
variance for the ground surface topography.

The EKF implementation for the systems (17) and (18) can
be written as a prediction step ( �X(k|k � 1)) and a correction
step ( �X(k|k)) recursively as follows:

�X(k|k � 1) = �X(k � 1|k � 1)

+ �T f( �X(k � 1|k � 1),u(k � 1)) (26a)

P(k|k � 1) = F(k)P(k|k � 1)FT (k) + Q(k) (26b)

�X(k|k) = �X(k|k � 1)

+ W(k)[y(k) � H(k) �X(k|k � 1)] (26c)

W(k) = P(k|k � 1)HT (k)S�1(k) (26d)

S(k) = H(k)P(k|k � 1)HT (k) + R (26e)

P(k|k) = (I9 � W(k)H(k))P(k|k � 1)

× (I9� W(k)H(k))T +W(k)RWT(k). (26f)

In (26b), the symmetric positive-de�nite matrix Q is used as a
tuning parameter for the EKF performance [25].

The convergence of the EKF design is directly related to the
robot motion of the robot. We use the longitudinal velocity cal-
culation in (13) by constraining the slip range in (14). Such a
constrained slip calculation helps the EKF design by constrain-
ing the initial estimation errors when the wheel slips change
signi�cantly during robot motion.

In the EKF design, we do not consider the IMU noise models
for several reasons. First, for a clarity of analysis purpose, we
neglect the noise models so that we can focus on how to utilize
the robot modeling and analysis information for robot position
and wheel slip estimation. Second, we have implemented IMU
noise models, such as those in [19], in experiments. For a short-
time robot motion, the improved estimation accuracy with the
noise models is limited.

B. Velocity-Estimation Error Analysis

Assuming that the robot attitude � is known, we obtain that
the estimates of the velocity given by EKF design are observ-
able and that the EKF could be convergent. In this section, we
analyze the velocity-estimation error given a bounded attitude
estimation.

Let �VI denote the estimated velocity under the estimated
attitude ��. From (10b), we obtain

��VI = �CI
B AB + G (27)

where �CI
B := CI

B ( ��). The estimated errors for velocity and
attitude are de�ned as

eV := VI � �VI , e� := � � �� = [�� �� ��]T

(28)
respectively. Here, �� := � � ��, �� := � � ��, and �� :=
� � �� are the estimation errors for roll, pitch, and yaw an-
gles, respectively. We assume the estimated attitude error e� is
bounded. From (10b) and (27), we obtain the error dynamics

�eV = �CI
B AB (29)

where �CI
B := CI

B � �CI
B . Using Taylor expansion around �,

we approximate �CI
B as

�CI
B = �

�
�CI

B
��

�� +
�CI

B
��

�� +
�CI

B
��

��
�

. (30)

FV :=
�fV
��

=
�
�CI

B
��

AB
�CI

B
��

AB
�CI

B
��

AB

�
=

�

��

(CI
B )13aBy � (CI

B )12aBz c� ( �Vz + g) � �Vy

(CI
B )23aBy � (CI

B )22aBz s� ( �Vz + g) �Vx

(CI
B )33aBy � (CI

B )32aBz �c�aBx � s�s�aBy � c�s�aBz 0

�

�� (22)

H� :=
�h(vB )

��
=

�
��


(CI

B )T VI
�

=

�

��

0 �s�c� Vx � s�s� Vy � c�Vz (CI
B )11Vy � (CI

B )21Vx

vz s�vx (CI
B )12Vy � (CI

B )22Vx

�vy c�vx (CI
B )13Vy � (CI

B )23Vx

�

�� (25)
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Using the aforementioned calculation and (22), (29) is rewritten
as

�eV = �FV e� . (31)

The estimation error analysis only considers the kinematic
relationship (10b) under attitude-estimation errors, namely the
prediction step (26a) in the EKF design. We need to incorporate
the aforementioned analysis with the correction step (26c). Since
the EKF design (26) is presented in a discrete-time form, we also
analyze the velocity-estimation errors in the discrete-time form
for presentation convenience. We rewrite (28) in the discrete-
time form as

eV (k|k � 1) := VI (k) � �VI (k|k � 1)

e�(k|k � 1) := �(k) � ��(k|k � 1) (32)

and de�ne the EKF velocity-estimation error

eV (k|k) := VI (k) � �VI (k|k). (33)

Error dynamics (31) are rewritten in the discrete-time form as

eV (k|k � 1) = eV (k � 1|k � 2) � �TFV (k)e�(k|k � 1).
(34)

Using the de�nitions in (32), (33) becomes

eV (k|k) = eV (k|k � 1) � �VI (k)

= eV (k|k � 1) � ( �X(k))4:6 (35)

where �VI (k) := �VI (k|k) � �VI (k|k � 1), �X(k) := �X(k|k) �
�X(k|k � 1), and operator (X)i:j , i � j forms a column vector
by taking the ith to jth elements from the column vector X. We
denote the EKF correction gain matrix in (26c) as W(k) :=
[WT

1 (k) WT
2 (k) WT

3 (k)]T � R9×3 , where Wi(k) � R3×3 ,
i = 1, 2, 3. From (23) and (26c), we have

�VI (k) =
�
W(k)

�
y(k) � H(k) �X(k|k � 1)

��

4:6

=
�
W(k)

�
y(k) � H(k)X(k) + H(k) �X(k)

��

4:6

= W2(k) [HV (k)eV (k|k � 1) + H�(k)e�(k|k � 1)]

� W2(k) [y(k) � H(k)X(k)] . (36)

We use the �rst-order approximation of the output y(k) in the
second part of the calculation (36). Substituting (36) into (35),
we obtain

eV (k|k) = [I3 � W2(k)HV (k)] eV (k|k � 1)

� W2(k)H�(k)e�(k|k � 1). (37)

The velocity-estimation error dynamics (34) and (37) describe
the relationship between the EKF velocity-estimation error
eV (k|k) and the attitude-estimation error e�(k|k � 1). In most
of our examples, the mobile robot runs on �at horizontal ground
surfaces, and thus, we can approximate � = � = 0. Therefore,
using (34) and neglecting the attitude dynamics, the velocity-
estimation errors ev (k|k � 1) :=


CI

B (k)
�T eV (k|k � 1) in

frame B satisfy the following dynamic equations:

ev (k|k � 1)

= ev (k � 1|k � 2) � �T

CI

B 0(k)
�T FV (k)e�(k|k � 1)

= ev (k � 1|k � 2) + �T

�

�
aBy (k)

�aBx(k)
0

�

� ��(k) (38)

where

CI
B 0(k) := CI

B (0, 0, �(k)) =

�

�
c� (k) �s� (k) 0
s� (k) c� (k) 0

0 0 1

�

� .

Similarly, the EKF velocity-estimation errors (37) are reduced
to

ev (k|k) =
�
I3 �


CI

B 0(k)
�T W2(k)

�
ev (k|k � 1)

�

CI

B 0(k)
�T W2(k)

�

�
vBy (k)

�vBx(k)
0

�

� ��(k). (39)

Models (38) and (39) provide a velocity-estimation error for a
given yaw angle estimate error. From (38) and (39), the estima-
tion velocity ev (k|k) can grow even if the attitude-estimation
error, such as ��(k), is bounded.

V. EXPERIMENTS

A. Experimental Systems

We have built an onboard sensor suite on the skid-steered
mobile robot, as shown in Fig. 1. The robot and rubber tire
size and robot mass are listed in Table I. The robotic tire is
deformable and air-damped. The maximum wheel velocity is
around 250 r/min, and therefore, the robot can run as fast as
around 2 m/s. We use a low-cost IMU (model IMU 605) from
Motion Sense, Inc. The IMU is located at the center of the robot
platform, namely xM = yM = 0 cm, for simple calculations.
The optical wheel encoder feedback and four-wheel motion
control are implemented on a real-time operating system that
was developed at the Netbot Laboratory at Texas A&M Univer-
sity. The control system has a two-level hierarchy: The control
algorithm and the EKF design are located in the onboard lap-
top system, while the PID-based motor control is located at the
low-level real-time operating system. The onboard real-time op-
erating system receives the commanded wheel velocity values
at a frequency of 20 Hz, and the PID-based motor controller is
run at a frequency of 1 KHz. The EKF-based positioning and
wheel slip estimation scheme is updated at a frequency of 125
Hz, which is also the update frequency of the IMU device.

All experiments were conducted at the Texas A&M Uni-
versity campus. We have developed a computer-vision-based
positioning system to provide the robot�s absolute position and
yaw angle information in all experiments. A similar system de-
velopment can be found in [26]. The vision-based velocity and
slip calculations are then obtained from the numerical differen-
tiation of the position information. The high-resolution camera
system was set up at a fourth-�oor location and was calibrated
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TABLE I
ROBOT AND TIRE PARAMETERS

by four landmarks on the ground. These landmarks were formed
as a 4 m × 4 m square. The resolution of the vision positioning
system was 1.49 cm.

Between the robot onboard control system and the vision
system computer, a timing-synchronization mechanism was set
up using wireless communication to correspond the onboard
motion-estimation system with the vision-based positioning sys-
tem. The output of the computer vision-based positioning sys-
tem only served as a ground truth to compare and validate the
proposed robot positioning and wheel slip-estimation scheme.

B. Estimate of the IMU Lateral Velocity Variable S

We developed an empirical model of the lateral velocity vari-
able S as in (15). In what follows �rst, we consider the depen-
dency of S on ground surface conditions. With the hardware
setup that have been discussed in Section V-A, we calculate S
using the computer-vision-based positioning system. Fig. 3(a)
shows robot trajectories on three different ground surfaces,
namely concrete, tile, and concrete with a layer of sand, with
constant wheel velocities �L/�R = 140/60 r/min. Fig. 3(b)
shows the calculated values of S on these three ground surfaces.
It is observed that the value of S does not change signi�cantly
under various ground surface conditions. Similar conclusions
based on experimental study are also reported in [8] and [15]
for tracked vehicles on various ground surfaces.

We then keep the robot motion under the nonsliding condition
and estimate the value of S with various wheel velocity com-
binations. To facilitate the following discussion, we introduce a
nondimensional variable � as the ratio of difference and sum of
left- and right-side�s wheel center linear velocities, namely

� :=
vLx � vRx

vLx + vRx
=

(1 � �L ) � (1 � �R )��

(1 � �L ) + (1 � �R )��
(40)

where �� = �R/�L . The value of S is considered as a function
of variable �. If �L = �R , then � = 0, and S is a �nite value.
If �L = ��R , then � � �, and S = 0 since the robot is ro-
tating about G without any translational motion. Therefore, we
approximate the function S in (15) by �S as follows:

�S := �S(�) =
a1

a2 |�| + a3
(41)

where coef�cients ai > 0, i = 1, 2, 3 are determined by a curve
�t of the experimental data.

We ran 11 sets of experiments with various wheel velocity
combinations on both concrete and sand road surfaces.
Fig. 4 shows the experimental data and the data-�tted curve.
Numerical values of parameters a1 = 2.148 cm, a2 = 0.249,
and a3 = 0.039 were obtained using a nonlinear least-square
algorithm for the function given in (41). Subsequently, we used
the estimate of S(�) given in (41) to approximate the lateral
velocity vBy in (15).

Fig. 3. (a) Robot trajectories with �L = 140 r/min and �R = 60 r/min on
three different ground surfaces. (b) Calculated values of S .

Fig. 4. Experimental data (through the computer-vision-based positioning
system) and data-�tted curve (dashed line) by (41) for variable S .

Remark 2: Note that in the experiments shown in Fig. 4, the
robot wheels do not slide on the ground surface. If wheels are
sliding on ground surfaces, such as in sand or on icy surfaces,
the calculation of S will be different from (41). Therefore, we
can use the S-value estimation in (41) as an indicator to detect
whether the wheels slide on surfaces. In [3], some experiments
have demonstrated such an observation.
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Fig. 5. EKF-based XY trajectory estimation for three different shape trajectories. (a) Straight line. (b) Circle. (c) �8� shape. In each trajectory, the EKF-based
estimation scheme uses 1) all three (xyz) velocity constraints and estimates with the wheel slip consideration; 2) only two (xz) velocity constraints and estimates
with the wheel slip consideration; and 3) only two (xz) velocity constraints and estimates without the wheel slip consideration. In the �gure, the robot starts at the
origin (marked as a star symbol) and stops at the symbol marked as a large solid circle.

Fig. 6. EKF-based XY trajectory estimation position errors ep for three different shape trajectories. (a) Straight line. (b) Circle. (c) �8� shape.

C. Localization Results

We present the experimental results where the skid-steered
robot runs mainly on a �at concrete surface. Three different
trajectory examples are presented here: a straight line, a circle,
and an �8�-shape trajectory. We chose these three different tra-
jectories to demonstrate the effectiveness of the modeling and
motion-estimation schemes.

In Fig. 5, we show the robot positioning results for the three
trajectories. For the straight-line trajectory, the robot runs under
a constant wheel velocity combination of �L = �R = 30 r/min.
For the circle trajectory, the robot runs under a constant
wheel velocity combination of �L/�R = 80/40 r/min. For the
�8�-shape trajectory, the robot starts with a constant wheel ve-
locity combination of �L/�R = 80/40 r/min for about 8 s, and
then, each side�s two wheels simultaneously change their angu-
lar velocities by a constant rate of 10 r/(min•s) until their velocity
combination reaches �L/�R = 40/80 r/min. Then, the wheel
velocities repeat such a pattern to form the �8�-shape trajectory.

Fig. 5 also shows the comparison results of the robot posi-
tion estimation under three different schemes. These schemes
use three different sets of measurements: 1) both the verti-

cal velocity vBz constraint and the longitudinal velocity esti-
mate without considering the wheel slip; 2) both the vertical
velocity constraint and longitudinal velocity estimate with the
wheel slip feedback (13); and 3) all 3-D velocity constraints and
estimates with the wheel slip feedback. Here, we do not compare
the positioning results by directly integrating the acceleration
measurements since such integration results drift signi�cantly
away from the true trajectory (see [22] for such comparison
examples).

All three types of trajectories show consistent results. From
Fig. 5, we observe that the �rst scheme has a large error (square
line). By considering the wheel slip estimation, the localization
results improve signi�cantly (triangle line). Finally, if we con-
sider all 3-D velocity constraints and estimations with the slip
estimation (dot line), the estimated trajectory is close to the true
trajectory. The estimated position errors shown in Fig. 6 fur-
ther clarify and validate such an observation. In Fig. 6, we take
the vision-based positioning system as the true measurements
and the estimated position errors ep are de�ned as the distance
differences between the EKF-based position estimates and the
vision-based measurements.
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Fig. 7. Estimated wheel slip information using EKF-based motion-estimation and computer-vision-based positioning schemes under various motion trajectories.
(a) Straight line. (b) Circle. (c) �8� shape.

Fig. 8. Performance of the EKF design for the �8�-shape trajectory. (a) EKF-based robot attitude angle estimates. (b) EKF-based robot velocity estimates in
frame B. (c) EKF-based velocity-estimation errors based on the EKF scheme and analytical prediction.

We compare the EKF-based slip estimation under the three
trajectories. Fig. 7 shows the wheel slip comparisons between
the EKF-based estimation and vision-based measurements.
These trajectories represent a set of typical wheel slip values.
For example, if the robot runs at �L/�R = 30/30 r/min, i.e.,
the straight-line trajectory, then wheel slips are close to zero
[see Fig. 7(a)] since less force is needed to drive the robot. For
the circle trajectory, the robot needs traction/braking forces to
overcome the wheel resistance. For the �8�-shape trajectory,
the slip values of one side�s wheels change signs, as shown in
Fig. 7(c). The slip values shown in Fig. 7(c) clearly show that
the wheel velocity changes for the �8�-shape trajectory. All of
the EKF-based slip estimates shown in Fig. 7 closely match the
vision-based slip values.

As we demonstrated in the analysis (31), the velocity-
estimation errors are closely related to the estimation errors
of the attitude. Fig. 8(a) shows the EKF-based attitude angle
estimation for the �8�-shape trajectory. The top two sub�gures
in Fig. 8(a) show the comparison estimates of the roll and pitch
angles between the EKF-based scheme and the direct integration
method. For the roll and pitch angles, the EKF-based estimation
performs better than the direct integration results within the 30-s
robot running time. This is not surprising since the random walk
noise in the gyro measurements has a standard deviation that is
proportional to the square root of time [21]. The bottom sub-
�gure in Fig. 8(a) compares the EKF-based yaw angle estimate
with the vision-based system measurements.

We show some results for the EKF performance. Fig. 8
shows the robot velocities and the EKF velocity-estimation
errors in B for the �8�-shape trajectory. Fig. 8(b) shows
comparison results between the EKF-based estimation and
the vision-based positioning system measurements. Fig. 8(c)
shows the EKF-based velocity-estimation errors. The EKF-
based velocity estimates follow the robot�s true velocity
pro�les.

From Fig. 8(a), we know that the robot runs on a fairly
�at surface since the roll and pitch angles are close to zero.
Therefore, we can use the relationship given in (38) and (39)
to predict the velocity-estimation errors under the yaw-angle-
estimation error ��. In Fig. 8(c), we compare such predictions
(solid-circle line) with the EKF-based estimation errors (empty-
circle line), and they match well in the x-axis and y-axis direc-
tions. Fig. 9 shows the S-value comparison results for both the
circle and the �8�-shape trajectories. For the circle trajectory,
the S values remain constant during the motion, while for the
�8�-shape trajectory, the S values keep changing under � vari-
ations as in (41).

VI. CONCLUSION AND FUTURE WORK

We presented a kinematic modeling and analysis of skid-
steered mobile robots. The kinematic analysis was based on the
motion similarity between the skid-steered robot and tracked
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Fig. 9. S-value comparison. (a) Circle trajectory. (b) �8�-shape trajectory.

vehicles. The modeling analyses demonstrated that the loca-
tion of the instantaneous center of rotation plays an impor-
tant role for wheel slip and robot velocity estimations. We
also presented an EKF-based motion-estimation scheme for
the skid-steered robot using only a low-cost strapdown IMU
and wheel encoder measurements. The EKF design utilized
the �virtual� velocity measurements from the robot kinematic
modeling and analysis. The analysis and estimation method-
ology were tested experimentally on a robotic test bed. The
experimental comparison results showed a superior perfor-
mance for the proposed motion-estimation scheme than those
not using the new kinematics-model-based �virtual� velocity
measurements.

We are currently conducting several research extensions. A
slip-based trajectory controller is under development to be in-
tegrated with the slip estimation scheme for robot dynamic
and motion stability analysis [3], [12]. Another ongoing re-
search activity is to integrate the �smart tire� sensing infor-
mation, such as the one in [27], with an onboard computer
to develop a new control system that can utilize wheel skid-
ding as an actuation mechanism for a better robot motion
performance.

APPENDIX

From (2), it is straightforward to calculate the derivatives of
CI

B with respect to the attitude angles as follows:

�CI
B

��
=

�

��

0 (CI
B )13 �(CI

B )12

0 (CI
B )23 �(CI

B )22

0 (CI
B )33 �(CI

B )32

�

��

�CI
B

��
=

�

��

c� (CI
B )31 c� (CI

B )32 c� (CI
B )33

s� (CI
B )31 s� (CI

B )32 s� (CI
B )33

�c� �s�s� �s�c�

�

��

and

�CI
B

��
=

�

��

�(CI
B )21 �(CI

B )22 �(CI
B )23

(CI
B )11 (CI

B )12 (CI
B )13

0 0 0

�

�� .
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