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A Hybrid Physical-Dynamic
Tire/Road Friction Model1

We present a hybrid physical-dynamic tire/road friction model for applications of vehicle
motion simulation and control. We extend the LuGre dynamic friction model by consider-
ing the physical model-based adhesion/sliding partition of the tire/road contact patch.
Comparison and model parameters relationship are presented between the physical and
the LuGre dynamic friction models. We show that the LuGre dynamic friction model pre-
dicts the nonlinear and normal load-dependent rubber deformation and stress distribu-
tions on the contact patch. We also present the physical interpretation of the LuGre
model parameters and their relationship with the physical model parameters. The analy-
sis of the new hybrid model’s properties resolves unrealistic nonzero bristle deformation
and stress at the trailing edge of the contact patch that is predicted by the existing LuGre
tire/road friction models. We further demonstrate the use of the hybrid model to simulate
and study an aggressive pendulum-turn vehicle maneuver. The CARSIM simulation results
by using the new hybrid friction model show high agreements with experiments that are
performed by a professional racing car driver. [DOI: 10.1115/1.4006887]

Keywords: tire/road friction, friction model, vehicle dynamics and control, aggressive
maneuvers

1 Introduction

Tire/road interaction plays an important role for vehicle safe
operation. Real-time estimation of tire/road interaction limits such
as the maximum friction coefficients provides critical information
for active safety control of “accident-free” vehicles. There are
many existing research works that use vehicle dynamics and
onboard sensor measurements (e.g., global positioning system
(GPS)) to estimate the instantaneous values of the tire/road fric-
tion forces [1]. In recent years, various “smart tire” sensors are
also developed to obtain the instantaneous tire/road friction coeffi-
cient through tire deformation measurements [2–4]. However,
these approaches cannot be used to directly obtain the maximum
tire/road friction information without carrying severe maneuvers,
such as emergency braking. Tire/road friction models instead pro-
vide a valuable means to predict the limits of the tire/road interac-
tions (e.g., maximum friction coefficients) without conducting
severe vehicle maneuvers.

Several friction modeling approaches have been developed to
capture the tire/road interactions. The empirical friction models
are obtained by curve-fitting experimental data. The pseudostatic
relationships between the friction coefficients and the tire slips
and the slip angles are commonly obtained in experiments. The
expressions in Refs. [5] and [6], also commonly referred to as the
Pacejka “magic” formula, are derived empirically to capture these
pseudostatic relationships from experimental data. There is no
particular physical basis for the chosen equation structures in the
Pacejka’s model and, therefore the word “magic” was used to
name the model. The physical models (also called brush model)
are discussed in Refs. [7–11]. One basic approach of the physical
model is to partition the tire/road contact patch into an adhesion
region and a sliding region. In the adhesion region, the interacting

forces are determined by the elastic properties of the tire rubber
bristles; whereas in the sliding region, the interacting forces
depend on the frictional properties of the tire/road interface. The
friction forces and moments are then calculated based on such a
partition. Recently, the LuGre dynamic friction models are devel-
oped and extended to capture tire/road interactions [12–19]. The
LuGre dynamic friction model uses the internal friction state dy-
namics to describe friction characteristics between two contact rigid
objects. The model is able to not only reproduce the pseudostatic
relationship between the tire and the ground but also to capture the
dynamic friction behaviors such as rapidly changing friction forces.

For real-time tire/road friction estimation and control, it is diffi-
cult to directly use the empirical models because these models are
highly nonlinear with the model parameters. The empirical model
parameters also have no physical meanings and therefore, it is
difficult to be used to capture variations of physical conditions,
such as wet road, etc. One attractive property of the physical mod-
els is the physical interpretation of the friction generation mecha-
nisms and the model parameters can also be estimated or
calibrated through experiments. An advantage of the LuGre
dynamic friction model lies in its compact mathematical structure
to produce friction characteristics. However, its model parameters
represent the mechanical properties of the bristle deformation at
microscale level and it is difficult to measure through experi-
ments. Adaptive parameter estimation methods are typically used
to design real-time estimation and control algorithms due to the
linear model parameterization structure in the model [13,14,20].
In Ref. [19], a refined LuGre tire/road friction model is developed
to capture the normal load dependence of the bristle deformation.
However, similar to the results in Refs. [15–17], the model in
Ref. [19] predicts nonzero bristle deformations and stresses at the
trailing edges of the contact patch, which is not realistic because
of zero normal loads at these locations.

The goal of this paper is to develop an integrated physical-
dynamic friction model. We take advantages of the attractive
properties of both the physical and the dynamic friction models
[21]. Same as the physical model, we partition the contact patch
into the adhesive and sliding regions. We, however, use the LuGre
dynamic friction model to compute the bristle deformation within
the adhesive region and combine the physical model calculation
in the sliding region. We also analyze the nonlinear and normal
load-dependent strain/stress distributions on the contact patch.
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One contribution of the new model development is that the model
resolves unrealistic nonzero deformation at the trailing edge of the
contact patch. For the new model, we also present the physical
interpretation of the model parameters. Therefore, another contri-
bution of the development is that the new hybrid model bridges
the connection of the physical model parameters with those of the
LuGre dynamic models and thus enables the use of experimental
measurements to enhance real-time estimation of model parame-
ters in the LuGre model.

We demonstrate applications of the new hybrid tire/road fric-
tion model through an example of predicting vehicle motion in a
pendulum-turn aggressive maneuver. During the pendulum-turn
maneuver, the vehicle motion is unstable and the tire/road interac-
tion is often in the unstable region of its characteristics due to
large normal load shifting, rapidly changing velocities, and large
side-slip angles [22]. The comparisons of the motion prediction
by the new model with the experiments performed by a professio-
nal racing car driver provide an excellent illustrative application
of the new model for vehicle control and simulation.

The remainder of the paper is organized as follows. In Sec. 2,
we review some basics of the physical and the LuGre dynamic
friction models. In Sec. 3, we analyze the hybrid friction model
and then show some model properties in Sec. 4. One application
example is presented in Sec. 5. We conclude the paper and discuss
the ongoing work in Sec. 6.

2 Physical and LuGre Dynamic Tire/Road Friction

Models

2.1 Tire/Road Contact Kinematics. Figure 1 illustrates the
kinematics of the tire/road contact patch P. For the sake of simplic-
ity, we assume a zero tire camber angle. We assume a rectangular
shape for P and let l and w denote its length and width, respec-
tively. Two coordinate systems are defined: A ground-fixed coordi-
nate system (xyz) and a contact patch coordinate system (nf) along
the tire plane. The coordinate system nf is fixed either on the road
surface (for braking) or on the tire carcass (for traction) [7]. The n-
and f-axis directions are along the tire’s longitudinal and lateral
motions, respectively. The origin of the nf coordinate system is
located at the center point of the leading edge of P.

We assume that all points at contact patch share the same linear
velocity. Let vcx and vcy denote the longitudinal and lateral veloc-
ity magnitudes of the tire center, respectively. We define the lon-
gitudinal slip k and the slip angle a, respectively, as

k ¼ vcx � rx
maxfvcx; rxg

¼

vcx � rx
vcx

braking

vcx � rx
rx

traction;

8><
>: a ¼ tan�1 vcy

vcx

� �

(1)

where x is the wheel angular velocity and r is the effective tire
radius.

2.2 Physical Friction Model. The physical (or brush) model-
ing approach considers the contact patch P to be divided into an
adhesion region and a sliding region. In the adhesion region, the
interacting forces are determined by the elastic properties of the
tire; whereas in the sliding region, the interacting forces depend
on the adhesive properties of the tire/road interface. We define a
critical length lc� l such that for the adhesion region, 0� n< lc
and for the sliding region, lc� n� l. We define the normalized
position variables

x ¼ n
l
; xc ¼

lc

l
(2)

and let Fn denote the total normal load on P. Similar to Ref. [7],
we consider a parabolic contact pressure distribution (per unit
length) fn(x) as

fnðxÞ ¼ 4Pmax

n
l

1� n
l

� �
¼ 4Pmaxx 1� xð Þ ¼ 6�f xð1� xÞ (3)

where Pmax is the maximum force per unit length (at the middle
point x ¼ 1=2). It is straightforward to obtain that Fn ¼

Ð l
0

fnðxÞdx
¼ 2=3Pmaxl, and the average pressure (per unit length)
�f ¼ Fn=l ¼ 2=3Pmax.

We consider the tire under traction and a pure longitudinal
motion, namely, vcy¼ 0. In the adhesion region 0� n< lc, we
calculate the deformation d(n) of a strip of P along the f-axis
direction at location n within a short time period Dt as

dðnÞ ¼ rxDt� vcxDt; n ¼ rxDt

Then, we obtain

dðnÞ ¼ rx� vcx

rx
n ¼ kn (4)

The strain on P at location x is thus �aðxÞ ¼ dðnÞ=l ¼ kx. We
denote the tire’s longitudinal stiffness per unit length is kx and
obtain the friction force for a small slip k� 1 as

Fxa ¼
ðl

0

kxdðnÞdn ¼ 1

2
kxl2k (5)

Let the tire’s longitudinal stiffness coefficient Cx be defined as the
slope of the Fx�k curve at the origin, that is, Cx ¼ dFx=dkjk¼0.
From Eq. (5) we have kx ¼ 2Cx=l2 and this relationship can be used
to calculate kx for a given Cx, which is obtained experimentally.

In the sliding region, we denote the sliding friction coefficient
between the tire and the ground as lx. The stress distribution can
be obtained as rs(x)¼ lxfn(x) and the strain distribution is then
�sðxÞ ¼ lxfnðxÞ=kxl. Therefore, we summarize the stress distribu-
tion rðxÞ on P [4]

rðxÞ ¼
kxlkx; 0 � x < xc;

4Pmaxlxx 1� xð Þ; xc � x � 1

�
(6)

and the strain distribution � xð Þ

�ðxÞ ¼
kx; 0 � x < xc

4Pmaxlx

kxl
x 1� xð Þ; xc � x � 1

8<
: (7)

Remark 1. Although we present a simplified parabolic normal dis-
tribution in this paper similar to, for example, that in Ref. [7], the
modeling scheme and the strain/stress calculation can be readily
applied to different types of normal load distributions such as the

Fig. 1 A schematic diagram of the tire motion kinematics and
contact patch geometry
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trapezoidal or other functional forms presented in Refs.
[15–17,19].

2.3 LuGre Dynamic Tire/Road Friction Model. Several
LuGre tire/road friction models have been developed [15–17,19].
We use and extend the distributed LuGre dynamic friction model
in Ref. [19] because the model captures most comprehensive char-
acteristics of tire/road interaction. For a pure longitudinal motion,
the distributed LuGre dynamic friction model for the friction force
Fx is given as

ddzðn; tÞ
dt

¼ vrxf̂nðnÞ �
r̂0jvrxj
gðvrxÞ

dzðn; tÞ (8a)

Fx ¼
ðl

0

r0dzðn; tÞ þ r1

@dzðn; tÞ
@t

þ r2vrx

� �
dn (8b)

where dz(n,t) is the average rubber bristle deformation at n,
r̂0 ¼ r0=�f , r0, r1, and r2 are the bristle elastic stiffness, viscous
damping coefficient, and sliding damping coefficient per unit
length, respectively. For relative velocity vrx ¼ vcx � rx, we have

gðvrxÞ ¼ lC þ ðlS � lCÞe
� vrx

vsð Þ1=2

(9)

where lC and lS are Coulomb and static friction coefficients,
respectively, and vs is the Stribeck velocity. We use a dimension-
less variable f̂nðnÞ ¼ fnðnÞ=�f ¼ 6x 1� xð Þ in Eq. (8) to represent
the effect of the normal load on the bristle deformation.

One of the major differences between the model (8) and those in
Refs. [15–17] is the introduction of the dependence of normal load
distribution f̂nðnÞ on the bristle deformation. The model also includes
the normal load dependence for other model parameters [19].

Similar to the longitudinal braking/traction case, the two-
dimensional distributed LuGre friction model is given as [19]

ddziðn; tÞ
dt

¼ vri f̂nðnÞ �
r̂0i�cðvR;lÞ

g2
i ðvRÞ

dziðn; tÞ (10a)

Fi ¼
ðl

0

r0idziðn; tÞ þ r1i
@dziðn; tÞ

@t
þ r2ivri

� �
dn (10b)

where Fi, i¼ x, y, are the longitudinal and lateral forces,
respectively

giðvRÞ ¼ lki ¼ lCi þ ðlSi � lCiÞe�jvR=vsij1=2

; i ¼ x; y

vR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

rx þ v2
ry

q
is the magnitude of the relative velocity, vry¼vcy

is the tire lateral relative velocity, and �cðvR; lÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lkxvrxð Þ2þ lkyvry

� 	2
q

. The coupling effect of the longitudinal

and lateral motions is captured through the terms vR and �cðvR; lÞ
in the model.

3 Hybrid Model and Steady-State Friction Forces

In this section, we present the hybrid physical-dynamic friction
model and the friction force calculation at steady state. The basic
idea of the hybrid physical-dynamic friction model is to use the
LuGre dynamic friction model to predict the bristle deformation
and stress distributions in the adhesion region of the contact patch.
Meanwhile, we use the physical model-based stress distribution
and the friction force calculations on the sliding region. Although
for presentation clarity, we mainly focus on the development for
the case where the tire is under pure longitudinal motion, the
results can be extended to the coupled longitudinal/lateral motion.
Similar to the other dynamic friction model developments in
Refs. [15–17], we finally present a lumped hybrid tire/road fric-
tion model based on the distributed model.

3.1 Steady-State Deformation and Stress Distributions. The
steady state we consider here refers to that the tire rubber bristle
deformation dz(n,t) reaches its steady state in time, that is,
@dzðn; tÞ=@t ¼ 0. For Eq. (8a), we consider that

ddzðn; tÞ
dt

¼ @dzðn; tÞ
@n

dn
dt
þ @dzðn; tÞ

@t
¼ @dzðn; tÞ

@n
vc þ

@dzðn; tÞ
@t

(11)

In the above equation, we use _n ¼ vc to represent the translational
velocity of the particle on the road moving along P during
braking. We here consider the tire center is fixed and the road is
moving at vc in the opposite direction as the wheel’s motion. This
treatment is different with those in the previous study in Refs.
[15–17,19], in which _n ¼ rx for particles on the tire carcass.

At the steady state, @dzðn; tÞ=@t ¼ 0 and from Eqs. (11) and
(8a), we obtain the following ordinary differential equation for
dzss(n) that represents the steady-state of dz(n,t)

ddzssðnÞ
dn

¼ kf̂n � âdzssðnÞ (12)

where â ¼ r̂0k=gðvRÞ and vR ¼ vrx for longitudinal motion. Solv-
ing Eq. (12) with initial condition at the leading edge dzss(0)¼ 0,
we obtain

dzssðnÞ ¼
ðn

0

e�âðn�sÞkf̂nðsÞds

¼ 6

lâ
� n2

l
þ 2

lâ
þ 1

� �
n� 1

â
1þ 2

lâ

� �
ð1� e�ânÞ

� �
k � 0

(13)

The deformation dzss(n)� 0 is directly from the fact that each
term in the above integration is non-negative. Letting

xa ¼ lâ ¼ lr̂0k
gðvRÞ

� 0 (14)

we then rewrite (13) as

dzssðxÞ ¼
6gðvRÞ

r̂0

�x2 þ 1þ 2

xa

� �
x� 1� e�xax

xa

� �� �

¼ 6gðvRÞ
r̂0

�x2 þ xþ hðx; xaÞ

 �

(15)

where function

hðx; xaÞ ¼
2

xa
x� 1

xa
1þ 2

xa

� �
1� e�xaxð Þ (16)

From Eq. (13), we notice that the bristle deformation dzss(n)
depends on the normal load distribution f̂nðnÞ. We here choose a
quadratic form of f̂nðnÞ to calculate the closed-form dzss(n) and
then later to explicitly show and compare analytical properties
with the existing results by the other models. It is possible to
demonstrate the similar mathematical properties for any general
function form of f̂nðnÞ.

Remark 2. We can clearly see the difference between the
dynamic friction model and the physical model in the case of a
small tire slip k� 1, namely, â� 1. In this case, using Taylor
expansion e�ân ¼ 1� ânþ 1

2
â2n2, from Eq. (15) we obtain

dzssðxÞ ¼
3n2

l
k ¼ 3lx2k (17)
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The above equation implies that the bristle deformation is propor-
tional to the slip value k and x2, where the deformation given by
the physical model (4) is dzss(n)¼ lxk [7]. The main difference
between these two models is that the dynamic model captures the
normal load dependence (i.e., quadratic form) while the physical
model assumes the linear distribution of the deformation along P.

We use Eq. (17) to build the parameter relationship between
the LuGre dynamic model and the physical model. From Eqs. (17)
and (8b), we obtain Fx¼

Ð l
0
r0dzssðnÞdnþr2vclk¼ðr0l2þr2vclÞk

and, therefore the longitudinal tire stiffness coefficient Cx is
obtained as

Cx ¼ r0l2 þ r2vcl � r0l2 (18)

We use r2 � r0 in the last approximation step. The relationship
(18) implies that the longitudinal tire stiffness is determined by
the parameter r0 and the length of the contact patch. From
Eq. (5), we obtain that Cx¼ kxl

2/2 and thus kx¼ 2r0.
The bristle deformation dz(x) can be considered as the strain of

the rubber deformation on P [23]. Therefore, using Eq. (15), we
obtain the longitudinal stress distribution raðxÞ as

raðxÞ ¼ r0dzssðxÞ ¼ 6�f gðvRÞ �x2 þ xþ hðx; xaÞ

 �

(19)

To calculate the stress at the trailing edge of P, x¼ 1, we obtain
the bristle deformation

zl ¼ dzssð1Þ ¼
6gðvRÞ

r̂0

hð1; xaÞ (20)

and then stress rað1Þ > 0, which is unrealistic because at the trail-
ing edge, the tire rubber tread does not hold any stress due to the
zero normal load at this location. Indeed, the deformation (19) by
the distributed LuGre dynamic model is only for the points in the
adhesion region. Once the tire/road contact starts sliding on the
ground such as at the trailing edge of P, the stress distribution
rsðxÞ can be obtained through the physical model as

rsðxÞ ¼ gðvRÞfnðnÞ ¼ 6�f gðvRÞð�x2 þ xÞ (21)

where we use Eq. (3) in the above equation. Obviously, rsð1Þ ¼ 0
at the trailing edge of P. Therefore, the bristle deformation under
the hybrid model is given as

dzssðxÞ ¼

6gðvRÞ
r̂0

�x2 þ xþ hðx; xaÞ

 �

; 0 � x � xc

6gðvRÞ
r̂0

�x2 þ x
� 	

; xc < x � 1

8>>><
>>>:

(22)

Figure 2 illustrates the stress distribution on P. The bristle deforma-
tion given in Eq. (22) follows the adhesion/sliding partition. At critical
location xc, the stress distribution is continuous, that is, raðxcÞ
¼ rsðxcÞ. In Sec. 4, we will show that in the adhesion region,
raðxÞ � rsðxÞ while in the sliding region, raðxÞ > rsðxÞ. Therefore,
the final longitudinal stress distribution rðxÞ onP is given by

rðxÞ ¼
raðxÞ; 0 � x � xc

rsðxÞ; xc < x � 1

�
(23)

3.2 Steady-State Friction Forces. To calculate the steady-
state resultant longitudinal friction force Fxs, noticing that
r0dzssðxÞ ¼ rðxÞ and @dzðn; tÞ=@t ¼ 0, we plug Eq. (23) into (8b)
and obtain

Fxs ¼ l

ðxc

0

raðxÞdxþ
ð1

xc

rsðxÞdx

� �
þ r2vRl

¼ FngðvRÞ 1þ 6xc

xa
xc � 1ð Þ

� �
þ r2vRl (24)

where xc is the solution of h(x; xa)¼ 0 and we will discuss its
properties in Sec. 4. Following the similar calculation, for the
coupled longitudinal and lateral motions, we obtain the steady-
state friction forces

Fis ¼
Fng2

i ðvRÞvri

�cðvR;lÞ
1þ 6xci

xai
xci � 1ð Þ

� �
þ r2ivril; i ¼ x; y (25)

where xai ¼ lâi, âi ¼ r̂0i�c=g2
i ðvRÞvc, and xci is the solution of h(x;

xai)¼ 0 for i¼ x,y.
Remark 3. Unlike the empirical models in which the friction

forces are written as functions of slip k and slip angle a, the steady-
state friction forces (25) are written as functions of the physical
model and the LuGre model parameters. Using relationships such
as that in Eq. (14), we can rewrite (25) into a format of functions of
k and a. However, the resultant functions are implicit with k and a
since the terms xci in Eq. (25) are implicit functions of xai.

3.3 Lumped Friction Force Models. For friction force
estimation and control purpose, we can simplify and rewrite the
distributed friction force (8) into a lumped parameter model by
taking the spatial-lumped variable

�zðtÞ ¼ 1

l

ðl

0

dzðn; tÞdn (26)

We now consider the deformation dz(n, t) as the combined dza(n, t) in
the adhesion region given by the LuGre distributed dynamic
model with dzs(n, t) in the sliding region given by the physical
model. To calculate Eq. (26), we use the steady-state deformation
distribution relationships in Eq. (22) and obtain

dzsðn; tÞ ¼ dzaðn; tÞ �
6gðvRÞ

r̂0

hðn; tÞ � dzaðn; tÞ �
6gðvRÞ

r̂0

hðx; xaÞ

(27)

where in the last step, we assume that the deformation h(n, t) in
the sliding region converges to the steady-state rapidly and thus,
h(n, t) � h(x; xa). Using (27), Eq. (26) is then reduced to

Fig. 2 A schematic of stress distribution across the contact
patch
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�zðtÞ ¼ 1

l

ðlc

0

dzaðn; tÞdnþ 1

l

ðl

lc

dzsðn; tÞdn

¼ 1

l

ðl

0

dzaðn; tÞdn� 1

l

ðl

nc

6gðvRÞ
r̂0

hðx; xaÞdn

¼ 1

l

ðl

0

dzaðn; tÞdn� za (28)

where the second term in Eq. (28) is obtained as

za ¼
1

l

ðl

nc

6gðvRÞ
r̂0

hðx; xaÞdn ¼ 6gðvRÞ
r̂0

ð1

xc

hðx; xaÞdx

¼ � 6gðvRÞ
r̂0xa

xc 1þ xc �
2

xa

� �
þ hð1; xaÞ

� �
(29)

Taking time derivative of �zðtÞ in Eq. (28) and using (8), we obtain
the lumped hybrid friction model

_�zðtÞ ¼ vr �
vc

l
zl �

r̂0

gðvRÞ
za

� �
� r̂0

gðvRÞ
�zðtÞ (30a)

Fx ¼ ðr0�zðtÞ þ r1 _�zðtÞ þ r2vRÞl (30b)

Similar to the above case of only the longitudinal motion, we can
obtain the lumped LuGre dynamic friction model for the coupled
longitudinal and lateral motion and we omit the detailed develop-
ment here.

4 Steady-State Model Properties

In this section, we show some properties of the hybrid friction
model presented in Sec. 3. These properties are helpful to reveal
and understand the underlying relationship of the new model with
the existing models.

First, we show the following results for function h(x; xa) in Eq. (16).
Property 1. The bristle deformation function h(x; xa) satisfies

the following properties.

lim
k!0

hðx; xaÞ ¼ lim
xa!0

hðx; xaÞ ¼ x2 � x; lim
k!1

hðx; xaÞ

¼ lim
xa!1

hðx; xaÞ ¼ 0

for any 0� x� 1.
Proof. It is straightforward to see that limxa!1 hðx; xaÞ ¼ 0

because 1� e�xax and 0� x� 1 are finite. When xa ! 0, for any
x> 0 we have

lim
xa!0

hðx;xaÞ¼ lim
xa!0

2x� 1�e�xaxð Þþðxaþ2Þxe�xax½ �
2xa

¼ lim
xa!0

e�xaxð�xÞ� e�xaxxþðxaþ2Þx2e�xax

2
¼ x2� x

For x¼ 0, it is easy to check that limxa!0 hðx; xaÞ ¼ 0 ¼ x2 � x.
Therefore, the properties hold.

From the above property, we obtain that the bristle deformation
dzss(x) is zero when the tire slip k¼ 0, namely

lim
k!0

dzssðxÞ ¼ lim
xa!0

dzssðxÞ ¼ 0

This represents the pure slipping case and thus no friction force is
generated.

From Eq. (16) and continuity of stress distribution, we know
that x¼ xc is the solution of the following equation:

hðx; xaÞ ¼ 0 (31)

for a given xa. From Eq. (16), we rearrange (31) and obtain

2xaxc � xa � 2

2
e

2xaxc�xa�2
2 ¼ � xa

2
� 1

� 

e�

xa
2
�1

The solution of xc given in the above equation can be conveniently
written as a form of the Lambert W function [24]

2xaxc � xa � 2

2
¼ W0 � xa

2
� 1

� 

e�

xa
2
�1

h i
¼ W0ðXaÞ (32)

where

Xa ¼ � xa

2
� 1

� 

e�

xa
2
�1 (33)

and the Lambert W function x¼W(z) is the solution of the equa-
tion z¼ xex for a given z 2 R. The notation W0(z) in Eq. (32)
denotes the principle branch (i.e., W(z)>�1) of the Lambert W
function W(z) [24]. We denote the other branch W(z)<�1 of the
Lambert W function as W�1(z). Noticing that xa� 0, it is straight-
forward to obtain that Xa in Eq. (33) is monotonically increasing
with xa and also �e�1�Xa< 0; see Appendix A. From Eq. (33)
and the definition of the Lambert W function, we obtain
�xa=2� 1 ¼ W�1ðXaÞ because of �xa=2� 1 < �1. Thus, we
write xa in terms of Xa as

xa ¼ �2W�1ðXaÞ � 2 (34)

Using the results in Eqs. (32)–(34), we obtain xc as

xc ¼
1

2
þW0ðXaÞ þ 1

xa
¼ 1

2
� 1

2

W0ðXaÞ þ 1

W�1ðXaÞ þ 1
(35)

We are now ready to show properties of the partition location xc

of P.
Property 2. There exists a nontrivial 0< xc� 1 for nonzero slip

k> 0. For k> 0 and 0< xa<þ1, xc satisfies 1
2
< xc � 1. More-

over, xc is monotonically increasing with xa,

lim
xa!0

xc ¼ 1; and lim
xa!1

xc ¼
1

2
(36)

Proof. See Appendix A.
With the results of Property 2, we further show the following

properties.
Property 3. For the normal distribution fn(x) given in Eq. (3) on

the contact patch 0� x� 1, we have the following properties for
the hybrid model:

(1) There exists a unique 0� xc� 1 such that the stress distribu-
tion rðxÞ in Eq. (23) of the hybrid model satisfies that when
0� x� xc, raðxÞ � rsðxÞ and xc< x� 1, raðxÞ > rsðxÞ;

(2) The steady-state deformation dzss(x) in Eq. (22) achieves its
maximum value at xc, namely, xmax¼ xc.

Proof. See Appendix B.
In Fig. 3, we plot the steady-state deformation dzss(n) by com-

bining the adhesive portion with the sliding portion under various
slip values. It is noted that rðnÞ in Eq. (23) is a combination of
two portions of the stress curves. The stress rðnÞ is continuously
distributed across P. Moreover, rðnÞ reaches its maximum value
at lc. The location of the maximum stress here is consistent with
the results reported in Ref. [7]. At the leading and trailing edges
of P, the values of rðnÞ are equal to zero. These properties match
the experimental results in the literature and are different from
the results given by the other LuGre tire/road friction models in
Refs. [15–17,19], where a nonzero bristle deformation is obtained
at the trailing edge.
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We further compare the location xc of the hybrid model with
that of the physical model. We denote xp

c as the location of the
contact patch separation point by the physical model. Using the
notations given in the LuGre model and the relationship kx¼ 2r0,
we rewrite (6) as

rðxÞ ¼
2r0lkx; 0 � x < xp

c

6�f gðvRÞx 1� xð Þ; xp
c � x � 1

(
(37)

At xp
c , the stresses given by the two formulations in Eq. (37) must

be equal due to stress continuity and, thus we obtain

2r0lkxp
c ¼ 6�f gðvRÞxp

c 1� xp
c

� 	
The above equation reduces to

xp
c ¼ 1� 1

3
xa (38)

We show the following result regarding the locations of xp
c in

Eq. (38) and xc in Eq. (35).
Property 4. The location of critical point xc by the hybrid model

(35) is larger than or equal to that by the physical model xp
c in

Eq. (38), namely, xc � xp
c .

Proof. See Appendix C.
We illustrate the results in Property 4 in Fig. 2. The separation

point xp
c of the physical model is always located ahead of that of

the hybrid model xc. Moreover, when slip k increases, xp
c increases

as well and the entire contact patch becomes one sliding region as
predicted by the physical model [7]. In this case, the value of xa in
Eq. (14) is large and from Eq. (16), when xa ! 1, h(x; xa) ! 0,
and xc ! 1

2
, the stress distribution raðxÞ ! rsðxÞ, and then the

entire contact patch indeed becomes one sliding region by the
hybrid model. Therefore, these two models reach the same physi-
cal interpretation.

Remark 4. To precisely describe the above explanation for large
slip values, similar to the results in Ref. [7], it is noted that the
value of slip k must satisfy 1 � k � 3gðvRÞ=lr̂0 :¼ kS for non-
negative xp

c � 0 given in Eq. (38). For a large slip k> kS, the
entire contact patch is under sliding by the physical model. The
friction force Fxs by the physical model reaches its maximum
value when k¼ kS. For the hybrid model, the relationship between
the friction force Fxs and slip k by Eq. (24) is complex (through
variable xa and function g(vR)). As we explained in Remark 3, it is

difficult to obtain an analytical formulation for the similar slip
range kS at which Fxs reaches its maximum value.

5 Application Example

In this section, we present one application example to illustrate
the use of the hybrid tire/road friction model in vehicle motion
simulation of a pendulum-turn aggressive maneuver.

We first compare the predictions of the hybrid friction model
with these by the Pacejka “magic” formula [6]. Figure 4 shows an
example of the steady-state friction force Fx as a function of k
with zero slip angle a¼ 0 and vcx¼ 25 m/s. The hybrid friction
model parameters are obtained by comparing with experimental
data and validated in the CARSIM simulation [22]. These model pa-
rameters are listed in Table 1. The comparison results of the pre-
dictions of the hybrid friction model with the Pacejka “magic”
formula are also shown in Fig. 4 for various normal loads. Clearly,
the hybrid model accurately predicts the friction forces given by
the Pacejka “magic” formula. Although we only show the com-
parison results under a case of zero slip angle, we have conducted
comparison studies with nonzero slip angles and the model predic-
tions achieve the similar performance [25]. A more comprehen-
sive comparison study is also reported in Ref. [19] for a similar
LuGre dynamic friction model.

Fig. 3 Steady-state bristle deformation under various slip
values

Fig. 4 Comparison results of the longitudinal force Fx of the
hybrid physical-dynamic model with the Pacejka “magic” for-
mula under various normal loads

Table 1 Hybrid physical-dynamic friction model parameters

r̂0x r̂0y r0x r0y r1x r1y r2x r2y lSi lCi vsx vsy

209.3 54.1 290 340 0.4 0.4 0.002 0 2.24 0.74 0.71 1

Fig. 5 A vehicle trajectory of a pendulum-turn maneuver from
racing driving experiments
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In the following, we discuss the use of the hybrid friction model
to simulate a pendulum-turn aggressive vehicle maneuver.
Pendulum-turn maneuver is a high-speed sharply cornering strat-
egy that is used by racing car drivers [26,27]. The driving strat-
egies during the pendulum turn include not only the coordinated
actuation among braking/traction and steering, but also quickly

changing forces distribution among four tires and along the longi-
tudinal/lateral directions at each tire. During this aggressive ma-
neuver, the vehicle is often operated under unstable motion and
the tire/road interactions are in the nonlinear unstable regions of
the friction force characteristics [22]. Therefore, the pendulum-
turn maneuver provides an excellent illustrative example to

Fig. 6 Testing data at four tires. (a) Longitudinal friction forces Fx. (b) Lateral friction forces Fy. (c) Normal loads Fz. (d) Tire
slip ratios k. (e) Tire slip angles a and vehicle side-slip angle b. (f) Vehicle pitch and roll angles.
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demonstrate the prediction of the dynamically changing tire/road
friction forces under conditions such as large normal load shifting,
fast velocity change, and large side-slip angles, etc.

The pendulum-turn maneuver experiments were conducted at
the Ford research facilities by professional racing car drivers.
Figure 5 shows the vehicle trajectory for a sharp turn. The testing

Fig. 7 Racing car driver input data. (a) Steering angle d and yaw rate xw. (b) Normalized throttle/braking actuation.

Fig. 8 Comparison of simulation results and testing data. (a) Longitudinal/lateral velocity �Gx/�Gy. (b) Longitudinal/lateral
acceleration aGx/aGy. (c) Yaw rate xw. (d) Vehicle side-slip angle b.
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vehicle was a Ford Explorer SUV and the vehicle was instru-
mented with various sensors. Since we did not have access to GPS
positioning data, we used an extended Kalman filter to estimate
the vehicle’s position information by fusing the acceleration infor-
mation with the velocity measurements [28]. From the collected
sensor measurements and vehicle parameters provided by Ford,
we calculated the tire slips and slip angles and then estimated the
friction forces at each tire using the hybrid physical-dynamic fric-
tion model. The detailed description of the experiments and the
motion variables estimation is discussed in Ref. [22].

Figures 6(a)–6(c) show the three-directional tire/road friction
forces at four tires and Figs. 6(d)–6(e) show the tire slips and the
tire slip angles, respectively. The vehicle’s pitch and roll angles
are shown in Fig. 6(f). The driver’s steering, braking/traction
inputs, and the vehicle’s yaw rate are shown in Fig. 7. The vehicle
motion variables such as the longitudinal/lateral velocities and
accelerations are shown in Fig. 8.

During the pendulum-turn maneuver, the driver first used
counter-steering at the beginning of the turn around t¼ 4 s
(Fig. 7(a)) and then a “throttle blip” action was taken during the
turn, that is, an applied throttle command around t¼ 6 s in between
two braking actions around t¼ 5 s and t¼ 6.5 s, respectively; see
Fig. 7(b). At the same time when the throttling was applied, the
driver turned the steering to the cornering direction aggressively and
turned it back around t¼ 9 s after the second brake command. As a
result of load shifting and rapidly changing k (Fig. 6(d)) and a (Fig.
6(e)), large lateral tire/road frictions are generated at right-side tires,
while very small forces at left-side tires (Fig. 6(b)). Thus, it pro-
duces a large vehicle side-slip angle b (Fig. 6(e)) around t¼ 8 s.

For the highly dynamic pendulum-turn maneuver, we try to
generate the vehicle motion in CARSIM simulation using the racing
car driver’s inputs. The hybrid tire/road friction model is used in
the CARSIM simulation to capture dynamically changing tire fric-
tion forces. Figure 8 shows an example of the CARSIM simulation
comparison results of the longitudinal and the lateral velocity/
acceleration, the yaw rate, and the vehicle side-slip angle. The
simulation results shown in Fig. 8 match well with the testing
data. We also observed the similar matching results for other
motion and force variables. These simulation results confirm that
the hybrid tire/road friction model accurately predicts vehicle
motion under dynamically changing conditions.

6 Conclusion and Future Work

We presented an integrated physical-dynamic tire/road friction
model for vehicle dynamics simulation and control applications.
We took advantages of the attractive properties of both the physi-
cal and the dynamic friction models in the proposed modeling
framework. The new model integrated the contact patch partition
from the physical friction model with the normal load-dependent
bristle deformation calculation from the LuGre dynamic friction
model. Such a model integration resolved the issue of the unrealis-
tic nonzero deformation at the trailing edge of the contact patch
that was reported by other dynamic friction models. The hybrid
modeling approach also bridged the connection of the physical
model parameters with those of the LuGre dynamic models.
Finally, we demonstrated one application example of the use of
the hybrid friction model to capture rapidly changing tire dynam-
ics in a pendulum-turn aggressive vehicle maneuver.

We currently extend the presented work in several directions.
We are building and testing a single-wheel distributed “smart tire”
sensing systems to enhance and validate the modeling develop-
ments. Real-time control of autonomous aggressive vehicle
maneuvers using the hybrid tire/road friction model is also among
the ongoing work.
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Appendix A: Proof of Property 2

By definition, the contact patch separation location xc is given
by solving raðxÞ ¼ rsðxÞ. From Eqs. (19)–(21), we obtain that xc is
the root of Eq. (31) for a given xa> 0. Noting that h(0; xa)¼ 0,
hð1; xaÞ ¼ zlr̂0=6gðvRÞ > 0 and h0ð0; xaÞ ¼ dh=dxjx¼0¼ 0, we con-
clude that there exists at least one nontrivial root 0< xc< 1 for equa-
tion h(x; xa)¼ 0 due to the continuity of function h(x; xa). Moreover,
we find that the solution can be written in a form of the Lambert W

function of xa as (35). Noting Xa ¼ �xa=2� 1ð Þeð�xa=2Þ�1, we obtain

dXa

dxa
¼ xa

2
e�

xa
2
�1 � 0

for xa� 0. Thus, Xa is monotonically increasing with xa and
�e�1�Xa< 0. Using the property of the Lambert W function
�1�W0(Xa)< 0 for �e�1�Xa< 0, xc satisfies

xc ¼
1

2
þW0ðXaÞ þ 1

xa
� 1

2

From the definition of the Lambert W function x¼W(z) (i.e., solu-
tion of z¼ xex), we have

z 1þWðzÞ½ � dW

dz
¼ WðzÞ

for z=�e�1, and thus obtains

W0ðzÞ ¼ dW

dz
¼ WðzÞ

z 1þWðzÞ½ � ; for z 6¼ 0; �e�1 (A1)

We further calculate

dxc

dxa
¼

W00ðXaÞ dXa

dxa
xa � 1þW0ðXaÞ½ �

x2
a

¼ � f ðxaÞ
x2

aðxa þ 2Þ 1þW0ðXaÞ½ �
(A2)

where f ðxaÞ ¼ x2
aW0ðXaÞ þ 1þW0ðXaÞ½ �2ðxa þ 2Þ. Note that

f ð0Þ ¼ 0; and

f 0ðxaÞ ¼
�x3

aW0ðXaÞ
ðxa þ 2Þ 1þW0ðXaÞ½ � þ 1þW0ðXaÞ½ �2> 0

since W0(Xa)< 0 for a finite xa> 0. Therefore, f(xa)� 0 for xa� 0.
From (A2), we conclude that xc is a monotonically decreasing
function of xa.

It is straightforward to see that xc ! 1=2 as xa !1 from Eq.
(35) since W0(Xa)þ 1 is bounded. To calculate limxa!0 xc, we use
the second formulation in Eq. (35)

lim
xa!0

xc ¼ lim
Xa!�e�1

1

2
� 1

2

W0ðXaÞ þ 1

W�1ðXaÞ þ 1

� �

¼ 1

2
� 1

2
lim

Xa!�e�1

W0ðXaÞ þ 1

W�1ðXaÞ þ 1
(A3)
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Note that as Xa¼�e�1, W0(Xa)¼W�1(Xa)¼�1 and, therefore
we calculate the above limit by using the derivative of the
Lambert W function W(z). Taking the derivative of (A1) and using
(A1) again, we obtain the second derivative of W(z) as

d2W

dz2
¼ � 1

zð1þWðzÞÞ
dW

dz
1þ z

dW

dz

� �
¼ �WðzÞ 2WðzÞ þ 1½ �

z2 1þWðzÞ½ �3

(A4)

Due to the continuity and monotonicity of the function xc on xa,
we conclude that limXa!�e�1 xc exists. We denote Lc

¼ limXa!�e�1 W0ðXaÞ þ 1=W�1ðXaÞ þ 1 and obtain Lc< 0 since
�1�W0(Xa)< 0 and W�1(Xa)��1. Moreover, we obtain

Lc ¼ lim
Xa!�e�1

W0ðXaÞ þ 1

W�1ðXaÞ þ 1
¼ lim

Xa!�e�1

W0ðXaÞ
W�1ðXaÞ

W0�1ðXaÞ
W00ðXaÞ

¼ lim
Xa!�e�1

W00�1ðXaÞ
W000 ðXaÞ

¼ lim
Xa!�e�1

W0ðXaÞ þ 1½ �3

W�1ðXaÞ þ 1½ �3

¼ lim
Xa!�e�1

W0ðXaÞ þ 1

W�1ðXaÞ þ 1

� �3

¼ L3
c (A5)

where in the above calculation, we use the results in (A4). From
(A5), we have LcðL2

c � 1Þ ¼ 0 and thus the nontrivial solution
Lc¼�1 because of Lc< 0. From Eq. (A3), we finally obtain

lim
xa!0

xc ¼
1

2
� 1

2
Lc ¼

1

2
þ 1

2
¼ 1

This completes the proof of Property 2.

Appendix B: Proof of Property 3

From the proof of Property 2, we know that there exists an xc

such that it partitions P into the adhesion and sliding regions.
With the definition of function h(x, xa) in Eq. (16) and the exis-
tence of xc, to prove the property, it is equivalent to show that for
any 0� x� xc, h(x; xa)� 0 while for xc< x� 1, h(x; xa)� 0 for
any given 0< xa<þ1.

By the definition of xc and (16), we have

hð0; xaÞ ¼ hðxc; xaÞ ¼ 0 (B1)

for any given xa> 0. Let xd¼ x� xc denote the variation around
xc. We define the difference function

hd ¼ hdðx; xc; xaÞ ¼ hðx; xaÞ � hðxc; xaÞ

¼ 1

xa
2xd � 1þ 2

xa

� �
e�xaxc 1� e�xaxdð Þ

� �
(B2)

It is noted that hd is a continuous function of xd. Taking the deriva-
tive of hd with respective to xd and using the equality h(xc; xa)¼ 0,
we obtain

dhd

dxd
¼ 1

xa
2� 2þ xað Þe�xaxc e�xaxd½ �

¼ 1

xa
2 1� e�xaxdð Þ þ xa 2xc � 1ð Þe�xaxd½ � > 0

for xd> 0, that is, xc< x� 1. Here, we use the conclusion xc >
1
2

from Property 2. Therefore, hd is a strictly monotonically increas-
ing function of xd. We then obtain that h(x; xa)> h(xc; xa)¼ 0 for
xc< x� 1.

To prove h(x; xa)< h(xc; xa)¼ 0 for 0< x� xc, we take the de-
rivative of hd twice and obtain

d2hd

dx2
d

¼ 2þ xað Þe�xaxc e�xaxd > 0

for xd< 0 and xa> 0. Therefore, function hd is convex in xd. From
Eqs. (B1) and (B2), we have

hdð0; xc; xaÞ ¼ hdðxc; xc; xaÞ ¼ 0

For any x [ [0, xc], we can write x ¼a � 0þ (1� a)xc for some a [
[0,1] and by convexity, we obtain

hdðx; xc; xaÞ < ahdð0; xc; xaÞ þ ð1� aÞhdðxc; xc; xaÞ ¼ 0

It is noted that due to the strict monotonicity of function hd in
(xc,1] and strict convexity in [0, xc], we conclude the uniqueness
of xc.

To prove that at xmax¼ xc, steady-state deformation dzss

achieves its maximum value, we calculate xmax at which the adhe-
sion- and sliding-region deformations (22) achieve their maxi-
mum values. For the adhesion region, from Eq. (15), we obtain

ddzss

dx
¼ 6gðvRÞ

r̂0

�2xþ 1þ 2

xa

� �
1� e�xaxð Þ

� �

¼ � 6gðvRÞ
r̂0

xahðx; xaÞ

It is then straightforward to obtain that at xmax¼ xc, ddzss=dx ¼ 0.
Moreover, from the above calculations, we have ddzss=dx > 0
for 0� x� xc, and ddzss=dx < 0 for xc� x� 1. Therefore, xc is the
maximum point of function dzss(x). Since the sliding-region defor-

mation dzssðxÞ ¼ ð6gðvRÞ=r̂0Þð�x2 þ xÞ is an decreasing function
of x [ [xc,1], we conclude that at xmax¼ xc, the combined deforma-
tion dzss(x) achieves its maximum value. This completes the proof
of Property 3.

Appendix C: Proof of Property 4

From Eqs. (35) and (38), the relationship of xc � xp
c is equiva-

lent to the following inequality

W0ðXaÞ þ 1

xa
� 1

2
� 1

3
xa (C1)

We define w1ðxaÞ¼ ðW0ðXaÞþ1=xaÞ�1=2þ1=3xa¼ð6½W0ðXaÞ
þ1��3xaþ2x2

aÞ=6xa¼w2ðxaÞ=6xa, where w2ðxaÞ¼ 6½W0ðXaÞþ1�
�3xaþ2x2

a. Since xa� 0, we only need to show w2(xa)� 0 to
prove (C1). Note that limxa!0 w1ðxaÞ¼ limxa!0 w2ðxaÞ¼ 0 and,
therefore we only need to consider the case xa> 0 and to show

that w02ðxaÞ> 0

w02ðxaÞ ¼
6W0ðXaÞ

� xa

2
� 1

� 	
e�

xa
2
�1 1þW0ðXaÞ½ �

xa

2
e�

xa
2
�1 � 3þ 4xa

¼ �6W0ðXaÞxa

ðxa þ 2Þ 1þW0ðXaÞ½ � � 3þ 4xa

¼ 1þW0ðXaÞ½ �ð4x2
a � xa � 6Þ þ 6xa

ðxa þ 2Þ 1þW0ðXaÞ½ �

Note that from (35), 0 � 1þW0ðXaÞ=xa � 1=2, namely,
xa� 2[1þW0(Xa)]. Thus, from the above equation we obtain
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w02ðxaÞ �
1þW0ðXaÞ½ �ð4x2

a � xa � 6Þ þ 12 1þW0ðXaÞ½ �
ðxa þ 2Þ 1þW0ðXaÞ½ �

¼ 4x2
a � xa þ 6

xa þ 2
¼

4 xa � 1
8

� 	2þ5 15
16

xa þ 2
> 0

w2(xa)> 0 for xa> 0 because of w02ðxaÞ > 0 and w2(0)¼ 0. We
obtain w1(xa)� 0 and this completes the proof.
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