2003 Robert Henry Thurston
Lecture

Presiding
Carl T. Herakovich

University of Virginia
Vice President
Basic Engineering

2003 ASME IMECE
November 19, 2003, Washington, D. C.



ROBERT HENRY THURSTON LECTURE

¢ Established in 1925

¢+ Honors Robert Henry Thurston the first
president of ASME and a farseeing
leader in science and engineering

¢ Lecture encourages stimulating thinking
on a subject of broad technical interest to
engineers



2003 ASME Thurston Lecture
November 19, 2003, Washington, D. C.

YOGESH JALURIA

Board of Governors Professor
Department of Mechanical and Aerospace Engineering
Rutgers, the State University of New Jersey

Buoyancy-Induced Flows
in Nature and in Technology



YOGESH JALURIA

¢ Recognized for:

research in natural convection heat
transfer, thermal processing of
materials, and computational heat
transfer.



INTRODUCTION BY

Theodore L. Bergman

Professor and Head
Department of Mechanical Engineering
University of Connecticut

Storrs, Connecticut



Areas of Applied Research

® Thermal Processing of Optical Fibers

® Transport in Extrusion of Polymeric Materials
including Food Products

e Chemical Vapor Deposition

® Fires in Enclosures

® Cooling of Electronic Equipment

® Energy Storage and Solar Energy Systems

* Environmental Convection
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Underlying Physical Processes
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Interferograms of Vertical Flow Over a
Heated Surface and Over a Horlizontal
Heated Wire

From Polymeropoulos and Gebhart (1967) and Gebhart et al. (1970)



Idealized Natural Convection Flow over
Hot Horizontal Surfaces Facing Upward
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Flow Separ ation above a Heated Body
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Steady Natural Convection in the Wake
of a Horizontal Heated Cylindrical
Surface
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From Pera and Gebhart (1972)



Bénard Cells for Natural Convection in a
Horizontal Fluid Layer
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Roll-Shaped Cells in a Rectangular or
Circular Container




Buoyancy-Induced Flow in Rectangular
Enclosures
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Buoyancy Force

Region of lower

density, p(r, C, p) Quiescent ambient medium

for which
pa = p{rar Car pa}

B(x, y)

g—Gravitational
force

_9p _ _ 9P,
Y
dpa 3p .
ax|” |ax| T Pa>P




p

Buoyancy Term

- P + P

Pressure Hydrostatic Pressure Motion Pressure

P9-Vp= (p_ pa)g_ me

= Buoyancy — Pressure Gradient

Convection Velocity

%puzngpL, g = gravitational acceleration, L = Length scale

u=0(,/gApL/p

Boussinesg Approximation
pa-P=pB(T-Ty), B = coefficient of volumetric expansion

3
-T,)L
Gr = 9h(T-Ta) = Grashof Number ~ Bupyancy force
V2 Viscous Force e
v = Kinematic viscosity E//N {( ,{(ﬁ{’,{/ Nf;

Reynolds Number, Re = +/Gr



Buoyancy-Driven Flow Over a Flat
Vertical Surface

"""" 2 - VYelocity
boundary layer

BN

Entrainment

Body force
{gravity field}
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Velocity and Temperature Profiles
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Seguence of Eventsin a Vertical
Buoyancy-Driven Flow

Turbulence

End oftransition
Velocity boundary layer

Thermal boundary layer

Beginning of turbulent thermal mixing

---| Beginning of velocity transition
Mean secondary motion

Disturbance amplification

First neutral-stability location f ﬂf 4 g f f




|nterfer ograms of Oscillationsin the Boundary
Layer Flow Over a Heated Vertical Plate

(@) Thedisturbance
Isamplified

(b) The disturbance
IS damped.

From

Polymeropoulos
and Gebhart
(1967) :




Interferograms of Flow Instability in Two-
Dimensional Plumes

(a) G=68.8,x=5.1cm, Q=50 W/m;
(b) G=688,x=51cm,Q=50W/m  [rom Peraand -
() G=186.0,x=20.3cm, Q=98.1 Wm; Gebhart (1975) " X Z/ZE

(d) G=228.0,x=30.5cm,Q=98.1 W/m L ' T




‘Thermals’ Rising from a Heated Horizontal
Boundary under a Layer of Water

From Sparrow, Husar and Goldstein (1970)
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(a) Plume

Typical Freely Rising Flows
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Thermal Stratification
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Temperature
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Height

Temperature

(a) (b)

(a) Temperature distributions for stable, unstable and adiabatic thermal stratification
(b) Typical temperature distribution for atmospheric inversion




Plume Rising in a Stably Stratified
Region
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height
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Flow Adjacent to a Vertical Ice Slab
Melting in Pure Water

From Carey
and Gebhart
(1981)

The corresponding ambient temperatures, R values (which give the
direction of buoyancy), and exposure times are

(a) 3.90 °C, R =-0.033, 6 s; (b) 4.05 °C, R =0.005, 10 s;

(c)4.40 °C,R=0.084, 10 s; (d) 4.70 °C, R =0.143, 10 s.




Variation of Water Density with
Temperature
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Qualitative Sketch of the Stratification

Cycle of a Water Body
Surface
temperature
e
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Depith (m)

Temperature Distributions in a Stratified
Water Body
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Schematic of an Open-Loop
Thermosyphon (the Aquifer)
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Buoyancy-Induced Flow In
Environmental and Energy Systems

Removal of Heat and Pollutants; Cooling Towers,
Thermal Discharges, Chimneys, Cities

Furnaces, Boilers, Condensers
Cooling Systems

Energy Storage

Energy Extraction
Salt-gradient Solar Ponds
Geothermal Energy

Ocean Thermal Energy
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T3+ AT\

Power plant

A Sketch of the System for Heat
Rejection from a Power Plant to a Lake
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Effects of Heat Rejection from a Power
Plant to a Lake
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Salt-Gradient Solar Pond

October
e e == 0.1=-04 m
1-1.5m
0.5-3m
Heat ™= [ | 1
exchanger s 20 0 20 40 60 BO 100 O 20 40 60 80100
Salinity (%) Temperaturea (°C)
(a) ib) 4] {eh
(a) Cross section of a salt gradient solar pond;
(b) salinity profile, a possible stationary configuration
(c and d) temperature profiles, idealized, anticipated in space ...
heating applications. (From Nielsen, 1979 st
g app ( , 1979) VHTgers
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Flow Configurations for Energy
Extraction From a Heated Fluid Region
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Calculated Streamlines at Re=100

Gr/Re®=0.001




Streamlines for the Same-End Configuration

at Re = 1000 for Energy Extraction
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Steady-State Streamlines at Re = 100 for Heat
Reection to a Water Body
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Buoyancy Effectsin Fires

¢ Fire Growth
¢ Fire Spread to Other Objects

¢ Movement of Hot Gases, Smoke and Other
Outputs

¢ Inflow of Oxygen to the Fire

¢ Removal of Combustion Products

7 A 7‘45 7S
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Walls

A Typical Room Fire
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Room & Corridor System
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Laminar Flow Generated by a Fire in a
Room with an Opening

(a)

(b)




Flow and Thermal Fields
for Turbulent Flow

(a)

Steady state flow and thermal
Field, (a) Isotherms and (b)
Streamlines.

(b)




Flow in an Enclosure with a Single
Horizontal Vent

: INLET AIR
out going

In coming :




Effect of Decreasing Pressure Difference
with Fixed Density Difference
Acrossa Vent in Water/Brine System




Flow Through a Horizontal Vent
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Buoyancy-Induced Flow for Safety

If Externally Induced Fow is Absent, Buoyancy-
Driven Flow isthe Only Mechanism for Energy
Removal

* Nuclear Safety
« Heat Removal from Electronic Systems
 Removal of Pollutants and Toxic Materias
 Natural Ventilation
//ﬂfﬁ/ff
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World Trade Center Attacks
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Flows in a Vertical Elevator Shaft and in
a Stairwell
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Mised gases
leaving 1op door way
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Series of Schlieren Photographs of the Buoyant Flow
Near the Inlet of the Vertical Shaft, with Increasing
Inlet Flow Rate from Left to Right and Down




Typical Flows in a Vertical
Elevator Shaft

Config.#1
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-
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Config.#2

e
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Config.#3
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Thermosyphons
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Natural Convective Cooling of Electronic
Equipment
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|nteraction Between Adjacent Plane
Plumes of Equal Strength in Air

From Pera and
Gebhart (1975)




Effect of aVertical Wall on a Plane
Plume Flow at Various Spacings

From Pera and
Gebhart (1975)




Computed Downstream Variations of
Dimensionless Surface Temperature and
Maximum Velocity

201

1.0

X

{a) (&)

(a) Surface temperature variation for three heated elements for D/L=D/L=2.0
(b) Variation of Umax for various distances separating heated elements;
(—) two elements; (— _—) three elements with D/L=D/L=2.0; (—-) single source . "

VHTHENS
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Flow in an Enclosure due to Isolated

Heat Sources
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Y-Z. Planes for 3D
Channel
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Isotherms on the Horizontal Midplane at t=8.0
(Top Figure) and T=24 (Bottom Figure) for
Re=20, Gr=10000 and Ar=10.0

e
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Czochralski Crystal Growing
and Casting

Solid
/K/{ crystal
T Inert

gas flow

Crucible
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Chemical Vapor Deposition

e Vertical Reactor

Fl
e Horizontal Reactor l 1 i l J'

Cooled Walls

Flow
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Solidification with Conjugate Transport
at the Wall

1 /f\w
w( ) i  Isotherms

0.039
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Solidification of Water in an Enclosure
with Conjugate Effects

TLC tracers

mms ———>

Evaluated velocity




Melting of Gallium in Enclosed Region
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Measured Versus Calculated Solid-
Liquid Interfacein Solidification
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From Wolff and Viskanta (1987) r ';:_'ﬂ“ etrs



Sketch of Typical CVD Reactors
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Film Growth in aHorizontal CVD
Reactor
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Flow and Temperature Fieldsin
a Horizontal CVD System
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Experimental and Numerical Results on
Horizontal Channd Flow for CVD
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Flow Patternsin Horizontal Channe
Flow for CVD

a) Re=9.48, Gr=4.3x10
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Flow Dueto Moving Surface and
Buoyancy
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Sequence of Photographs Showing the Flow Near the
Surface of the Aluminum Plate Moving Vertically
Downward at Us= 3.7 cm/sin water
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Candle Flame under Normal and
Microgravity Conditions

Courtesy Dr. Vedha Nayagam 4 fﬁ 5 /s
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Liquefied Candle Flame under
Microgravity

CH chemiluminescent
/ emission

Q Soot containing region

. e Streaming aerosol
Liquefied wax- \ L

Solid wax Flow pattern

5 mm diameter

candle holder\

80191
11-24-00

Courtesy Dr. Vedha Nayagam




Burning Droplet under
Microgravity and Normal Gravity

o

Spherically symmetric burning of a heptane droplet in
microgravity (left), and a fiber suspended heptane droplet
burning in air at normal gravity (right). Buoyancy forces in

normal gravity leads to elongation of the flame destroying the
spherical symmetry and making theoretical models complex.

Courtesy Dr. Vedha Nayagam




Conclusions and Future Research Needs
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Conclusions

* Buoyancy-Induced Flows Arisein a Wide Range of
Basic and Applied Problems

* Only Mechanism in the Absence of External Flow

» Underlying M echanism for Several Natural Phenomena

 Critical for Heat and Material Rgection

» Can Affect Quality of Processed Materials

* Extremely Important in Safety and Security

* Provides Baseline Transport Rates

» Can be Used Effectively to Simplify System Design




Futur e Research Needs

* Need Better Link Between Basic Research and
Engineering Practice

e Experimentation for Validation and I nsight

* Natural Processesin Oceans, L akes, Environment

 Mantle Convection, Geothermal Energy

e Microgravity Transport

* Fire Growth, Forest Fires, Building Fires

* Natural Ventilation, Thermosyphons




Future Research Needs

Different Scales: Micro, Nano, Global
Multiphase and Multispecies Transport

Effect of Buoyancy-Driven Flowson Materials
Processing

Environmental Effects of Heat and Mass Rgjection
L ow Grashof Number Flows, Strong Property Changes

Combined M echanisms
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