NUMERICAL MODELING OF THERMAL PROCESSES IN COMPLICATED REGIONS WITH LARGE CHANGES IN MATERIAL CHARACTERISTICS AND PROPERTIES

YOGESH JALURIA

Department of Mechanical and Aerospace Engineering Rutgers, the State University of New Jersey New Brunswick, NJ 08903

2004 IMECE, Anaheim, CA

Topics Considered

- Modeling and Simulation
- Material Properties, Complex Domains
- Polymer Processing
- Optical Fiber Drawing and Coating
- Solidification and Other Processes
- Validation
- Enclosure Fires, Electronic Systems
- Conclusions and Future Research Needs

Different Approaches

COMPLICATED GEOMETRY

- Transformed Domain:. Simple Grids for FDM and FVM
- Physical Domain: Complex, Arbitrary Discretization for FEM, FVM

VARIABLE MATERIAL PROPERTIES

- Properties at Previous Time Step or Iteration
- Extrapolated Values
- Iterative Property Correction

Twin-Screw Food Extruder

- Feed Hopper
- Rotating Screw
- Extruder Channel
- Heating/Cooling Arrangement
- Die

Extruder geometries

Schematic of twin-screw geometries

Tangential (finite gap between screws)

Self-wiping (no gap between screws)

Cross Sections

Schematic of a single screw with shallow rectangular channel

Schematic of a single screw with curved channel

Sketch of Single-Screw Polymer Extruder

Model of Single-Screw Polymer Extruder

Material Properties

 Accurate Data on Material Properties

 Material Property Variations with Temperature, Shear Rate, Concentration, Pressure, etc.

 Link Between Properties and Process

Material Properties: Shear Stress Versus Shear Rate

Material Properties: Viscosity Variation

GLASS

 $v = 4545.45 \exp [32 (T_{melt}/T - 1)]$

POLYMER

 $\mu = \mu_{o} \left(\frac{\dot{\gamma}}{\gamma} \frac{\dot{\gamma}}{\gamma_{o}} \right)^{n-1} \exp \left(\frac{b}{T} \right)$

REACTIVE POLYMER

$$\mu = \mu_o \left(\dot{\gamma} / \dot{\gamma}_o \right)^{n-1} \exp \left[-b \left(T - T_o \right) \right] \exp \left[-b_m \left(C - C_o \right) \right]$$

Chemical Kinetics

FOOD

with where
$$\begin{split} &d[(1-X)]/dt = -K \ (1-X)^m \\ &K = K_T + K_S \\ &K_T = K_{To} \exp \left(- E_T / RT \right) \\ &K_S = K_{So} \exp \left(- E_S / \tau \, \eta \right) \\ &X: \text{ Degree of Conversion} \end{split}$$

CVD

 $K = K_0 p_{SiH4} / [1 + K_1 p_{H2} + K_2 p_{SiH4}]$

Transport in the Channel of a Single-Screw Polymer Extruder

Model of Extruder with Arbitrary Screw Profile

Distributive Mixing in Extruder Channel

Measured and Calculated Temperature Profiles in Single-Screw Extruder

Modeling of Twin-Screw Polymer Extruder

Flow in NIP Region of Twin-Screw Extruder

Flow in the Region Between Two Co-Rotating Cylinders

Measured and Calculated Velocity Profiles in Polymer Extrusion

Modeling of Flow through Extrusion Dies

Optical Fiber Drawing System

- Drawing Furnace
- Fiber Cooling
- Coating
- Curing
- Take-Up

Sketch of Optical Fiber Drawing System

Material properties: Radiation Properties of Silica Glass

Cylindrical Draw Furnace and Finite Zones For Radiation Analysis

The Governing Equations for Glass and Inert Gas

$$\frac{\partial v}{\partial z} + \frac{1}{r} \frac{\partial (ru)}{\partial r} = 0 \tag{1}$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + v \frac{\partial v}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} \left[r \upsilon \left(\frac{\partial v}{\partial r} + \frac{\partial u}{\partial z} \right) \right] + 2 \frac{\partial}{\partial z} \left(\upsilon \frac{\partial v}{\partial z} \right) \tag{2}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \frac{2}{r} \frac{\partial}{\partial r} \left(r \upsilon \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left[\upsilon \left(\frac{\partial v}{\partial r} + \frac{\partial u}{\partial z} \right) \right] - \frac{2 \upsilon u}{r^2} \tag{3}$$

$$\rho C_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial r} + v \frac{\partial T}{\partial z} \right) = \frac{1}{r} \frac{\partial}{\partial r} \left(r K \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial z} \left(K \frac{\partial T}{\partial z} \right) + \Phi \tag{4}$$

Schematic Diagram of Double-layer Optical Fiber

Landau's Transformations

$$\eta^{(2)} = \frac{r^{(2)} - R^{(1)}(z)}{R^{(2)}(z) - R^{(1)}(z)}, \ \beta = \frac{z}{L}$$

$$\eta_a = \frac{r_a}{R_F - R^{(2)}(z)}, \ \beta = \frac{z}{L}$$

Generation of Neck-Down Profile

Iterative Convergence Of Neck-Down Profile

Streamlines in Optical Fiber Drawing

Isotherms in Optical Fiber Drawing

Neck-Down Profile from Numerical Simulation and Experimentation

Calculated Versus Measured Tension in Optical Fiber Drawing

Flow in Fiber Coating Process

Open-Cup

Pressurized

Grid Generation in the Fiber Coating Process

Meniscus in Fiber Coating Process

A, C: Unpressurized

B, **D**: **Pressurized**

Effect of Meniscus

Pressure Distributions in Coating Die

Melting in Enclosed Region

Solidification of Water in an Enclosure with Conjugate Effects

TLC tracers

Temperature field

Calculated velocity and temperature fields

Melting of Gallium in Enclosed Region

Streamlines

Isotherms

Measured Versus Calculated Solid-Liquid Interface in Solidification

Solidification with Conjugate Transport at the Wall

0.620

0.584 0.547

0.511

0.475

0.438

0.402

0.329

0.293

0.256

0.220

1.425

1.108

0.792

0.475

0.158

-0.158

-0.475

-0.792

-1.108

-1.425

(b)

Isotherms

(c)

Streamlines

Chemical Vapor Deposition

Contours in Horizontal TiN CVD Reactor

Film Growth in a Horizontal CVD Reactor

A Typical Room Fire

Room & Corridor System

Laminar Flow Generated by a Fire in a Room with an Opening

(a)

Flow and Thermal Fields for Turbulent Flow

Steady state flow and thermal Field, (a) Isotherms and (b) Streamlines.

Flows in a Vertical Elevator Shaft and in a Stairwell

From Marshall (1986)

Natural Convective Cooling of Electronic Equipment

Heat sources

(c)

Flow in an Enclosure due to Isolated Heat Sources

Governing Equations with Variable Properties

Dimensionless Property Coefficients¹

$$\rho = \frac{\hat{\rho}}{\hat{\rho}_0} = \frac{1}{\theta\epsilon + 1}$$

$$c_p = \frac{\hat{c}_p}{\hat{c}_{p0}} = (\theta\epsilon + 1)^{0.104}$$

$$\mu = \frac{\hat{\mu}}{\hat{\mu}_0} = (\theta\epsilon + 1)^{0.65}$$

$$k = \frac{\hat{k}}{\hat{k}_0} = (\theta\epsilon + 1)^{0.79}$$

¹based on the power law correlation for air given by Fotiadis et al. (1990).

Governing Equations with Variable Properties

Dimensionless Governing Equations

$$\begin{aligned} \frac{\partial \rho}{\partial \tau} + \frac{\partial (\rho u_j)}{\partial x_j} &= 0\\ \frac{\partial (\rho u_i)}{\partial \tau} + \frac{\partial}{\partial x_j} (\rho u_j u_i) &= -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} (\Gamma_v \frac{\partial u_i}{\partial x_j})\\ &+ \frac{\partial}{\partial x_j} (\Gamma_v \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \Gamma_v \frac{\partial u_k}{\partial x_k}) + \frac{Gr}{Re^2} \frac{\rho}{\epsilon} \eta_i\\ \frac{\partial (\rho \theta)}{\partial \tau} &+ \frac{\partial}{\partial x_j} (\rho u_j \theta) &= \frac{\partial}{\partial x_j} (\Gamma_\theta \frac{\partial \theta}{\partial x_j}) + \frac{1}{PrRe} \frac{k}{c_p^2} \frac{\partial \theta}{\partial x_j} \frac{\partial c_p}{\partial x_j} \end{aligned}$$

with

$$\Gamma_v = \frac{\mu}{Re}$$
$$\Gamma_\theta = \frac{k}{c_p} \frac{1}{PrRe}$$

Governing Equations with Variable Properties

VP

Steady Streamlines on Y-Z Planes for 3D Flow in a Channel

Isotherms on the Horizontal Midplane at τ =8.0 (Top Figure) and τ =24 (Bottom Figure) for Re=20, Gr=10000 and Ar=10.0

Conclusions

- •Strong Need for Material Properties
- •Must Model Changing Material Characteristics
- •Use of Properties at Previous Time or Iteration Convenient
- •Improved Accuracy and Convergence with Extrapolated Property Values
- •Transformations, FEM, other Approaches for Complex

Geometry

Conclusions (Contd.)

- Important to Employ Suitably Grid
- •Critical to Represent Boundary Conditions Correctly
- •Convergence Characteristics Strong Functions of Numerical Scheme
- •Experimentation for Validation and Insight

Flow in Neck-Down Region During Optical Fiber Drawing

Viscous Dissipation and Temperature in Neck-Down Region During Optical Fiber Drawing

Flow and Temperature Fields in a Horizontal CVD System

Experimental and Numerical Results on Horizontal Channel Flow for CVD

